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ABSTRACT: 
 
Kalman filtering theory plays an important role in integrated GPS/INS georeference system design. A Kalman filter (KF) uses 
measurement updates to correct system states error and to limit the errors in navigation solutions. However, only when the system 
dynamic and measurement models are correctly defined, and the noise statistics for the process are completely known, a KF can 
optimally estimate a system’s states. Without measurement updates, a Kalman filter’s prediction diverges; therefore the performance 
of an integrated GPS/INS georeference system may degrade rapidly when GPS signals are unavailable. It is a challenge to deal with 
this problem in real time though it can be handled in post processing by smoothing methods.  
This paper presents a neural network (NN) aided Kalman filtering method to improve navigation solutions of integrated GPS/INS 
georeference system. It is known that the errors inherent to strapdown inertial sensors are affected by the platform manoeuvre and 
environment conditions etc., which are hard to be modelled precisely. On the other hand, NNs have the capability to map input-
output relationships of a system without apriori knowledge about them. A properly designed NN is able to learn and extract complex 
relationships given enough training. Furthermore, it is able to adapt to the change of sensors and dynamic platforms. In the proposed 
loosely coupled GPS/INS georeference system, an extended KF (EKF) estimates the INS measurement errors, plus position, velocity 
and attitude errors, and provides precise navigation solutions while GPS signals are available. At the same time, a multi-layer NN is 
trained to map the vehicle manoeuvre with INS prediction errors during each GPS epoch, which is the input of the EKF. During GPS 
signal blockages, the NN can be used to predict the INS errors for EKF measurement updates, and in this way to improve navigation 
solutions. The principle of this hybrid method and the NN design are presented. Land vehicle based field test data are processed to 
evaluate the performance of the proposed method. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION  

1.1 Geo-referencing using GPS and INS  

Geo-referencing mobile mapping and remote sensing platform 
is always a challenge considering its requirement for accuracy, 
reliability operation environment. With the development of 
GPS and INS technologies in recent decades, it is an increasing 
trend in the use of integrated GPS and INS systems for platform 
geo-referencing. GPS is capable of providing accurate position 
and velocity information if at least four GPS satellites with 
good geometry are directly viewable by a GPS antenna. On the 
other hand, attitude information can not be obtained from GPS 
measurements though multi-antenna can provide it with limited 
accuracy. Furthermore, satellite signals are easily to be blocked, 
especially for land vehicle, which worsens the GPS positioning 
accuracy and even makes it unusable.  
 
INS is a self-contained system, incorporating three orthogonal 
accelerometers and gyroscopes to measure linear acceleration 
and angular rates in three directions respectively. A set of 
mechanization equation is applied to the raw measurements 
from the sensors to calculate position, velocity and attitude 
information. The INS inertial sensors have inherent errors, 
which can cause a significant degradation of INS performance 
over a period of time. Especially for strapdown INS (SINS), in 
which inertial sensors are subjected to the full range of heading 

and attitude changes and turn rates which the vehicle 
experiences along its path. Therefore, GPS and INS are often 
integrated together to overcome the drawbacks associated with 
each system.  
 
1.2 GPS/INS Integration Techniques 

GPS and INS are usually integrated with a KF to overcome 
drawbacks associated with each system, and provide a robust 
navigation solution. Since GPS has a consistent, long-term 
accuracy, it is used to correct INS measurements and thus to 
prevent the long-term growth of their errors. On the other hand, 
the accurate short-term measurement provided by the INS is 
used to solve problems related to GPS such as cycle slips and 
clock biases. KF is the optimal filter for modelled processes, 
and the core of most GPS/SINS integrated systems 
implemented to date (Farrell and Barth, 1999). It can optimally 
estimate the position, velocity and attitude of a moving vehicle 
using precise GPS measurements to update the filter states. KF 
is computationally efficient, which is especially useful for real-
time applications. With correct dynamic models and stochastic 
models of GPS and INS errors, KF can produce very accurate 
geo-referencing solutions provided that there is a continuous 
access to GPS signals. If GPS outages occur, KF operates in 
prediction mode, and corrects INS measurements based on the 
system error model.  
 



 

 

There are three types of GPS/INS integration, namely loosely, 
tightly and ultra-tightly coupled, which are categorized by the 
level of measurements in each subsystem used for the 
integration. Figure 1 is the block diagram of a typical loosely 
coupled GPS/INS integration system using KF. 
 

 
 

Figure 1.  A typical DGPS/SINS integration with KF 
 
There are several considerable drawbacks of KF. The necessity 
of accurate stochastic modelling may not be possible in the case 
of low cost and tactical grade sensors. It is demanding to 
accurately determine the parameters of the system and 
measurement covariance matrices for each new sensor. The 
weak observability of some error states may lead to unstable 
estimates of the error states. And inherently, KF has relatively 
poor accuracy during long GPS outages, since in most cases a 
first order Gauss Markov assumption is made which means that 
the current estimates depend solely on the previous estimates. 
So if the previous estimates have any errors, these errors will be 
propagated into the current estimates and will be summed with 
new errors to accumulate an even larger errors (Goodall et al., 
2005). 
 
Many algorithms are proposed to overcome the limitations of 
the KF mentioned above. Various adaptive KF algorithms have 
been developed to eliminate the requirement of accurate 
stochastic modelling and pre-resolved parameters of the system 
and measurement covariance matrices for each new sensor 
(filter tuning). Some artificial intelligence methods, such as NN 
and fuzzy logic reasoning etc., are also proposed for this 
purpose.  
 
NNs have been proposed as a multi-sensor integrator (Chiang 
and El-Sheimy, 2004; El-Sheimy and Abdel-Hamid, 2004). It is 
well known that NNs are capable of mapping input-output 
relationships. This means that no initial dynamic or noise 
models need to be set as these are learned over time. NNs can 
also adapt to the changes of the system model or vehicle 
dynamic. At the same time, however, the NN approach also has 
some shortcomings. Its accuracy is not ideal and depends on the 
artificial experience. At current stage, therefore, Kalman Filter 
still remains at the forefront of GPS/SINS integration.  

 
1.3 Neural Network Aided Kalman Filtering  

Combining KF with NN to outwit their inherent shortcomings 
and improve the overall performances of GPS/SINS integrated 
systems is a potential solution. A NN aided adaptive EKF was 
proposed by Jwo and Huang (Jwo and Huang, 2004). A NN 
based approach for tuning KF was developed by Korniyenko et 
al (Korniyenko et al., 2005). NN and KF were combined 
together to bridge GPS outages (Goodall et al., 2005; Kaygisiz 
et al., 2004; Semeniuk and Noureldin, 2006). NN model was 

used for de-noising MEMS-based inertial data (El-Rabbany and 
El-Diasty, 2004). NN is also employed to map the platform 
dynamic with corresponding Kalman filter states to smooth 
system outputs and to bridge GPS outages (Wang et al., 2006a; 
Wang et al., 2006b). 
 
A new EKF and NN hybrid method is introduced in this paper 
to improve the performance of integrated DGPS/SINS systems 
during GPS outages, by employing NN to estimate GPS 
corrections. A radial based function NN (RBFNN) is trained to 
map these input-output relationships along with the EKF 
measurement update. The inputs of the NN are the parameters 
representing vehicle dynamic situation and variations, and the 
outputs are the INS positioning errors corrected by the GPS. 
When no GPS measurements are available, the outputs of the 
trained NN are used to estimate INS positioning errors and 
improve navigation solutions.  

 
This paper is organized as follows. The INS error estimation in 
EKF during the filter prediction is analyzed in Section 2. The 
relation between the vehicle dynamic variation and the filter 
error states is explored. The combination of NN and EKF is 
introduced in Section 3. The inputs and outputs of a NN are 
defined. Pre-processing is conducted for NN inputs in order to 
establish better input-output relationships. The design and 
operation of the NN are introduced in Section 4. Section 5 
presents field tests and discusses the results. The concluding 
remarks are given in Section 6. 
 

2. INS ERROR ANALYSIS 

In fact any lack of precision in a measurement used in a dead 
reckoning system such as SINS is passed from one estimate to 
the next with the overall uncertainty in the precision of the 
calculated navigation solution drifting with time. In integrated 
DGPS/SINS system, the SINS estimation error just accumulates 
during the gaps of GPS measurements. The error is frequently 
corrected by GPS measurement so that the accuracy of 
navigation solution can be  
 
The performance of SINS is highly dependent on the motion of 
the host vehicle. Strapdown inertial sensors are subjected to the 
full range of heading and attitude changes and turn rates as the 
platform experienced. This is in marked contrast to the inertial 
sensors in a stable platform navigation system which remains 
nominally fixed in the chosen reference frame and are not 
subjected to the rotational motion dynamics of the vehicle 
(Titterton and Weston, 2004). The need to operate in a 
relatively harsh dynamic environment whilst being able to 
measure large changes in vehicle attitude with sufficient 
accuracy has a major effect on the choice of inertial sensors. 
For example, gyroscope scale-factor accuracy and cross-
coupling must be specified more precisely in a SINS than it 
would be necessary for a platform system of comparable 
performance. In addition, a number of motion dependent error 
effects need to be taken into account, including inaccuracies 
introduced through cyclic or vibratory motion of the host 
vehicle, which are hardly to model.  
 
Figure 2 is the example of INS prediction errors during GPS 
epochs in an integrated system using EKF with field test data. 
The error is presented by the positioning difference between a 
SINS and differential GPS (DGPD). The lower figure is the 
corresponding vehicle manoeuvre presented by acceleration 
measurements, which will be selected as part of the NN input. 
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 Figure 2.  INS prediction errors and vehicle manoeuvre  

 
It is noted from the above figure that INS prediction errors are 
not random noise; instead, they have certain patterns that could 
be related to the vehicle manoeuvres, especially the errors in the 
horizontal directions. It is a challenge, however, to find a proper 
method to map the relationship and to estimate INS prediction 
errors during GPS outages. Here NNs are employed to map the 
relationship between the INS prediction errors and the vehicle 
manoeuvre. 
 

3. SYSTEM DESIGN  

3.1 NN and EKF Combination 

The block diagram of proposed EKF and NN hybrid system is 
presented in Figure 3 and Figure 4, for NN training phase and 
prediction phase respectively. The vehicle manoeuvre derived 
from navigation solutions are continuously input into the NN. 
As long as the DGPD signal is available, the system operates in 
the training phase. The EKF produces navigation solutions and 
updates the filter states with GPS measurements. At the same 
time, EKF measurement δr, the INS positioning error with 
respect to GPS measurement, is selected as the target/output for 
the NN. The training process matches the NN output with the 
target incessantly by adjusting the parameters in the NN at each 
epoch of EKF measurement update, as shown in Figure 3. 
 

 
 
Figure 3.  System diagram during NN training phase 

 
 
Figure 4.  System diagram during NN prediction phase 
 
During GPS outages, as shown in Figure 4, no GPS signal is 
available.  The NN output δrNN is used as the EKF measurement 
δr to keep the EKF running as if the GPS is available for INS 
error compensation, if the NN is well trained. Otherwise, No 
EKF measurement update is conducted, the EKF keeps in 
prediction model as in normal EKF only case.   
 
The principal strategy of the proposed NN and EKF hybrid 
method is to map the relationship between vehicle manoeuvre 
and the INS positioning errors during each EKF measurement 
update with NN. The system navigation errors during GPS 
outages can be effectively attenuated if INS positioning errors 
can be estimated. The NN training procedure is executed at the 
GPS sampling rate. Then the output of the well-trained NN can 
be used for EKF measurement update at the same rate during 
the GPS outages.  
 
3.2 NN Input and Output Selection 
 
The NN outputs, or the training targets, are selected as the INS 
positioning error with respect to GPS measurement, which is 
also the measurement of the EKF in the loosely coupled 
DGPS/SINS integration system. The NN inputs are expressed 
as follows:  

 
[ , , ]out N E DNN r r r rδ δ δ δ= =                                         (1) 

 
To fully represent the vehicle dynamic variation, the input 
parameters of the NN are selected as the changes of vehicle 
velocity and attitude in each epoch. The average attitude in each 
epoch is also selected to deal with errors relating to gravity and 
earth rotation etc. The NN inputs can be selected as follows:  
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It should be noticed that as the heading angler ψH is limited to 
the change between π and -π , its changing rate ∆ψH has 
spikes when the heading angle has jumps between π and -π . 
These jumps will disturb the NN training, and need to be 
removed. This kind of jumps may also happen to the pitch and 
roll parameters for airborne applications, where no any limit to 
the aeroplane manoeuvre.  
 
After selecting proper inputs and outputs, a NN need to be 
designed and trained to map the relationships between them. 



 

 

There are several items need to be decided in the design of a 
NN, such as the number of layers, the number of neurons and 
the transfer function of each layer, the network training 
algorithm, the method and goal etc.  
 

4. NEURAL NETWORK DESIGN 
 

Neural networks are composed of simple elements operating in 
parallel. These elements are inspired by biological nervous 
systems. As in nature, the network function is determined 
largely by the connections between elements. A NN can be 
trained to perform a particular function by adjusting the values 
of the connections (weights) between elements so that a 
particular input leads to a specific target. The NN is adjusted, 
based on a comparison of the output and the target, until the 
network output matches the target. The procedure of supervised 
learning for NN is shown in Figure 5(Chiang and El-Sheimy, 
2004). Given an unknown model or an unknown functional 
relationship with its input x and observed target d. A neural 
network learns to fit the relationship by comparing the output y 
from a neural network with the observed target d. It then adjusts 
the value of its internal weighted links w iteratively until the 
error e between y and d meet a predefined accuracy; or after 
certain times iteration.  

 
O b s e rv e d  
O u tp u t

d

x

y +
-

e

U n k n o w n  m o d e l
( .)f

N e u ra l n e tw o rk s

),(ˆ wxf -
∑

 
Figure 5.  NN learning procedure 

 
The learning rule specifies how the parameters in a NN should 
be updated to minimize a prescribed error measure, which is a 
mathematical expression that measures the discrepancy between 
the network’s output and the target. Typically many such 
input/target pairs are used to train a network. Batch training of a 
network proceeds by making weight and bias changes based on 
an entire set of input vectors. Incremental training changes the 
weights and biases of a network as needed after presentation of 
each individual input vector. Incremental training is sometimes 
referred to as "on line" or "adaptive" training. 

 
The neuron model and the architecture of a NN describe how 
the network transforms its input into an output. A NN can have 
several layers. Each layer has a weight matrix W, a bias vector 
b, and an output vector a. A three-layer network and the 
corresponding functions are expressed as Equation (3). The 
number of the layers is appended as a superscript to the variable 
of interest, to distinguish them between each of these layers. 
The network output is the function of the network input with all 
the function of each layer imbed together, as expressed by 
Equation (3).  

 

           (3) 
 

Each layer of a multi-layer network plays different role. A layer 
that produces the network output is called an output layer. All 
other layers are hidden layers. The neurons in the hidden layer 

gather values from all input neurons and pass the input to a 
transfer function that calculates the output for each neural node. 
It is common for different layers to have different numbers of 
neurons. The transfer function f of each layer can be selected 
individually. A three-layer feed-forward NN is employed in this 
approach. The transfer functions of the first and second layers 
are sigmoid and the third layer is linear. 
 
Table 1. The parameters of three NNs 
 

 output Inputs neurons 

NNN Nrδ Nv∆ Pψ  Rψ  Hψ∆  Pψ∆ 3,3,1 

NNE Erδ Ev∆ Pψ  Rψ  Hψ∆  Rψ∆ 3,3,1 

NND Drδ Dv∆ Pψ  Rψ  Pψ∆  Rψ∆ 3,6,1 

 
Instead of using a single NN that outputs a vector of estimates, 
three separate NNs are used to predict the position differences 
in orthogonal directions. This is to avoid coupled learning 
during training where degradation of one output may occur 
while the others improve. This approach also increases the 
speed of convergence of the overall system by decreasing the 
number of neurons in each NN.  This is because that one NN 
with three outputs and more parameters in input needs a high 
number of hidden layer neurons. The proposed structure 
exploits three NNs with relatively low numbers of neurons.  
 

5. TEST RESULTS 
 

Field test data were collected to evaluate the proposed hybrid 
method. The test system comprises two sets of Leica 530 GPS 
receiver and one set of Boeing’s C-MIGITS II (DQI-NP) INS 
system, which gyro and accelerometer bias is 5 deg/hr and 500 
µg respectively. A Micro Tracker GPS receiver was used to 
synchronize the INS time tagging with the GPS time. One of 
the Leica receivers was set up as a reference station and the 
other one used as rover receiver with its antenna next to the INS 
unit, above the roof of the test vehicle. 1 Hz GPS data were 
saved in GPS receiver PCMCIA card and 100 Hz IMU data 
were stored in a notebook PC. The horizontal trajectory of the 
test is shown in Figure 6. 
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Figure 6.  Horizontal trajectory of the field test  



 

 

 
The row GPS measurement data were processed first to 
generate reference solutions. Then GPS and INS data were 
processed with the proposed algorithm to evaluate the proposed 
EKF and NN hybrid approach for GPS/INS integration.  
 
5.1 NN Training Results 
 
The NN was trained with an incremental batch method. A set of 
60 epochs input vectors were applied to train the three NNs by 
adjusting their weight and bias matrixes. Then the next set of 
input vectors were applied for training. The back-propagation 
algorithm computes derivatives of the cost function with respect 
to the network weights. The weights were then updated using 
conjugate gradient learning algorithm.  It can reduce oscillatory 
behaviour in the minimum search and reinforces the weight 
adjustment with previous successful path direction (Chiang and 
Nassar, 2002).  
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 Figure 7. NN training results  
 

The training results of two parameters with two different INS 
are shown in Figures 7. The NN output is very close to the 
target in the training window (masked in the figures), and keeps 
to follow the target after the window, though it is much less 
similar to the target in comparison with the output in the 
training window. This indicates that after training, NN can 
make reasonable prediction for quite a long period, and improve 
system navigation solutions during GPS signal outages. The 
uncertainty in measurement noise covariance matrix in the EKF 
during the prediction is set 5 times of the original training 
values. It should be noticed that different training set requires 
different number of neurons in a NN to achieve optimal training 
results. 
 
5.2 Navigation Results 

 
In order to access the performance of the hybrid method, GPS 
outages were simulated along different portions of the test 
trajectory. The NN was trained 60 seconds before each GPS 
outage, which lasts for 60 seconds. During the GPS outages, the 
EKF uses the output of the NN for measurements update. The 
hybrid navigation results are compared with the results of INS 
stand along navigation, in terms of position, velocity and 
attitude errors referencing to the case without GPS outages. The 
results are listed in the Table 2. 

  
Table 2.  Navigation test results 
 

Section xδ  (m) vδ (m/s) δψ (sec) 

 NN KF NN KF NN KF 

1 3.5 6.8  0.10 0.23 13 33 

2 2.2 5.2 0.09 0.21 15 31 

3 2.4 5.3 0.11 0.22 22 41 

4 2.6 6.1  0.08 0.24  23 59  

5 4.1 9.7 0.16 0.36 32 81 

1-NN/KF  55.2% 57.2% 56.0% 
 
The test results above show that the NN and KF hybrid method 
can improve the navigation solutions, in terms of position, 
velocity and attitude, during the GPS outages. The NN after 
training works well near the training window. Its output can 
make reasonable predictions after training, and correct the EKF 
predictions. Further research will be done to find the optimal 
NN architecture and an effective online training method.  
 

6. CONCLUDING REMARKS 
 

This paper has presented a NN and KF hybrid method to 
reducing KF drift during GPS outages. The inputs of the NN are 
selected as the measurements of the EKF in a loosely coupled 
DGPS/SINS integration system. The outputs of the NN are 
selected as the parameters representing a vehicle’s dynamic 
variation. The NN is merged into an EKF for DGPS/SINS 
integration. The outputs of the trained NN are used to 
compensate EKF drifts and improve navigation solutions when 
no GPS measurements are available.  

 
It is shown that relationships exist between a vehicle dynamic 
variation during the EKF measurement update (NN input) and 
the INS prediction error (NN output). Primary test results have 
shown that three-layer feed-forward NNs with back the 
propagation learning method is capable of mapping the 
complex relationships after training. The proposed method can 
reduce the impact of vehicle dynamic variations, and improve 
the navigation solution during GPS outages, by about 60%, in 
comparison with INS stand along results in the GPS outage of 
60 seconds.  
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