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ABSTRACT:

This paper presents a general strategy for 3D reconstruction of complex architectural scenes. This approach makes use of both laser
data (range and retro-diffusion) and image data, and of their great complementarity. The proposed approach starts with pose estimation
between the two data sets. This part is largely automated by means of correlation of fine feature points and linear primitives. The
second part deals with segmentation of the scene. Here, each element of the scene must be detected. This can be fulfilled in two ways.
The first one is semi-automatic extraction of the objects where user interaction is used to initialize the object localisation, the second
one is fully automatic segmentation, driven by image and 3D data. Then, each object needs to be reconstructed. We consider a large
range of objects since we can describe planar surfaces, general geometric primitives and generalised cylinders. When these models do
not fit with the surface, that is to say on complex parts, triangulation is performed. This leads to two potential reconstruction tools:
one similar to laser data editing software, with more efficient object selectionand object boundary estimation, the other would perform
automatic reconstruction, which would be followed by a verification procedure. The advantage of this approach, compared to existing
techniques, is to reduce dramatically reconstruction time, without having any hard limitation on the set of shapes that can be obtained.

1 INTRODUCTION

The 3D reconstruction of large scale scenes’ geometry is studied
for numerous reasons. Researches within this field are motivated
by both the practical applications and the automation difficulties
involved. One great goal is to complete 3D city models generated
from aerial imagery, on historically or architecturally significant
buildings. The second main goal lies in cultural heritage digital
archiving. A further aim is to answer to geometric reconstruc-
tion needs, either for restoration purposes or for archaeological
analysis.

Terrestrial environments yield scenes that are complex with re-
spect to the number, the shape and the difference in size of geo-
metric primitives involved. In this context, the description we are
looking for is a compact structured surface description, with a
high geometric accuracy.

With the laser scanner soaring since the beginning of the 90’s,
laser scanning has been competing with classical photogramme-
try on many surveys. As a consequence meaningful question-
ing rises about sensing lay-out and sensors complementarity (El-
Hakim and al., 2003; Dekeyser and al., 2004). One may em-
phasize the interest of laser scanning for complex surfaces, while
images provide relevant surface boundaries and of course tex-
ture. Moreover, scanners have the best of both worlds in bringing
a quick description of the scene. But when a structured mod-
elling of the scene is needed, either photogrammetry or laser data
editing is appealing for interactive drawing. These operations are
extremely time consuming.

Promising work has addressed the automation of terrestrial scene
reconstruction either from images (van den Heuvel, 1999; Werner
and Zisserman, 2002; Pollefeys and al., 2003; Dick and al.,
2004), or from range data (Stamos and Allen, 2002; Han and al.,
2003; Yu and al., 2001). Most of these deal with piecewise planar
description, or mesh generation. Planar description remains too
simple for complex geometry while triangulation has also major
drawbacks: non-optimal description length, dependence to point
density on discontinuity description (if object boundaries are not
available), lack of measurement redundancy on same features,
and no object oriented description of the scene. Most of current
known work dealing with combining laser data and image adress
the problem through an additive scheme: laser data and image

add a contribution independently from each other. Here, we want
to combine data in the heart of the reconstruction process. (Dias
and al., 2001) have used images and triangulation to complete lo-
cally the point cloud, on complex structures or on edges. This
technique is useful for occluded parts filling, but does not deal
with reconstruction into geometric features.

1.1 Sensing lay-out

As laser scanning provides accurate and dense 3D information,
it can be preferred to stereo based techniques, which encounter
difficulties when faced with deep scenes or poorly textured sur-
faces. Moreover, scanner constructors offer imaging devices, at
the moment mainly for texturing purposes. These imaging de-
vices can have a higher resolution than that of the scanner, and so
give good geometric clues, especially on object boundaries. We
are thus considering a sensing lay-out close to that of the laser
scanner: one scan station and one imaging sensor from the same
point of view or from two close viewpoints. The scanning reso-
lution is chosen slightly lower than that of the image, in order to
reduce the scanning time and the post-processing time.

This lay-out has got ideal properties for reconstruction: precise
geometry is supplied by range data while higher image resolu-
tion improves that of the scanner, especially on object boundaries.
This lay-out also yields communal occluded regions for both the
image and 3D data, which means no need for Z-buffering, and
which already provides the right image for texturing. Then, it
allows to deal with 3D data through a range image geometry be-
cause laser data are still organised (after the registration step, they
would not be anymore organised). Finally, it will ease pose esti-
mation automation since details have the same aspect in the range
image geometry and in the image geometry.

1.2 Data description

Laser data has angular and distance noise, which can be reduced
by multiple shots. Precision on distance measurements is lowered
to 2 mm in our case studies. Scan resolution for our first tests is
around one point every 2 cm. In addition to multiple shots on
each point, the large number of measurements on each primitive
(plane, cylinder or other...) allows to get a very good estimation
of the primitive, through least square fitting.



Image resolution is around one pixel every 5 mm on the object.
The radiometric dynamic range is spread out over 12 bits, and the
signal to noise ratio is over 300. The CCD array used is 4096
by 4096 pixels. Intern parameters are known, computed indepen-
dently. Optical distortions are corrected at a tenth of a pixel.

2 GENERAL PROCESSING STRATEGY

The general strategy described in figure 1 is split into three stages.
The first one solves the orientation between the point cloud and
the image. Once pose is settled, the reconstruction question is
divided into two very-linked parts: segmentation into consistent
primitives and estimation of each primitive. Since segmentation
remains a complex problem (a problem that we are currently ad-
dressing, through a hierarchical image based segmentation), we
propose a semi-automatic restitution scheme, which belongs to
the same strategy: detection of each primitive and reconstruction.
Thus, the reconstruction of a global 3D scene model will be split
into as many elementary reconstruction problems as occurring
models: planar surface, surface of revolution, surface of transla-
tion, parametric model, surface without any acceptable geometric
description. This follows the same framework as 3D data editing
software, or CAD software, or even photogrammetric worksta-
tions, but it brings powerful automation on the extraction of sur-
face boundaries and accurate primitives’ estimation.

As the whole scene cannot be reconstructed from a single view-
point, we assume that the same reconstruction strategy can be re-
produced on the next stations, with minimum overlapping parts,
and that reconstructions can be merged afterwards. Overlapping
reconstructed parts may improve pose estimation, and allow au-
tomatic estimation, again without any target placed in the field.

LASER / IMAGE MATCHING

SCENE SEGMENTATION

RECONSTRUCTION

Figure 1: General strategy

3 LASER/IMAGE MATCHING, POSE ESTIMATION

The first step consists of estimating the relative pose between
laser data and image. We are only considering the external pa-
rameters estimation, making the hypothesis, as stated before,
that camera intern parameters are known and computed indepen-
dently. Thus, we want to find a rotation and a translation between
two frames, i.e. six independent unknowns. Most of the methods
coming from the photogrammetry or the vision community use
points matches to find pose between two overlapping data sets.
Matching is commonly performed manually on feature points.
This needs target positioning in the field and dense scanning in
the laser survey case, which takes up a lot of time in the field.
Here, we propose a method where we do not need any target: we
rely on punctual and linear primitives found in the laser and im-
age data. When considering laser data sets, one may notice that
laser points constitute a sampling of the surface. So choosing a
few points within the point cloud and matching them with image
pixels will not bring a good pose estimation: we will not match
the same features. But if we choose many feature matches, this
effect will be absorbed by a global compensation. Furthermore,
laser data has measurement noise, which will also be compen-
sated by dense matching.

Since laser scanners perform a scan under an image topology
(sweeping around two axes), an image can be recovered, where
each pixel stores a 3D point or the retro-diffusion intensity of the
laser beam (see Figures 2 and 3). Because the points of view be-
tween the camera and the scanner are supposed to be close, and
because retro-diffusion of the laser beam is sensitive, as for any
light beam, to the surface material, such images are very simi-
lar to the digital image. Thus, correlation is possible, if the two
data sets are resampled at the same resolution. Here, we suppose
that we can get a first approximate pose from a few points. We
can then resample the laser image into the digital image grid: for
each pixel of the digital image, the ray intersects the point cloud
triangulation, where interpolation is made. Correlation is then
carried out on a square window around the feature point. Let us
remark that the laser beam wavelength lies in a narrow bandwidth
(usually red or green); so the correlation may be done in the cor-
responding image channel (red or green).

Figure 2: Scan topology

Figure 3: Range image and laser retro-diffusion image - detail



This scheme has been proposed in (Deveau and al., 2004), where
more details can be found. Here, we will discuss some im-
provements. In our first attempts, we used to manage correlation
around best feature points homogeneously spread out on the digi-
tal image. This was done by selecting then best feature points be-
longing to squares of a regular grid. This approach yields a good
spread of points at our disposal. But the main fact is that feature
points are often located on geometric discontinuities (Gregor and
Whitaker, 2001). Even if we can perform sub-pixel estimation of
the point match, it will lead to an interpolation in the 3D data, and
a bad approximation of the 3D point. To prevent this interpola-
tion issue, a focalization (or focusing) of feature point detection
is carried out on planar surfaces.

Figure 4: Resampling and correlation geometry

Planar surfaces are extracted from the point cloud and then re-
projected into the image thanks to the first approximated pose
estimation. Once a feature point is matched in these regions (cor-
relation is no longer done on a square window, but on a mask
corresponding to the plane), the 3D point is determined by in-
tersection between the corresponding ray and the plane. Since
the plane has been estimated on numerous points (generally more
than one thousand) the localisation of the 3D point is very good.
One drawback of this focusing step is the loss of the regular
spread of points. This is compensated by adding measurements
to the system: linear features enhance constraints on the general
system.

Root mean square errors on ground control points are around 0.8
pixels. This result seems good, but could be better: this may
be caused partly by residual distortions on the laser data, and an
ill-conditioned system caused by many measurements in approx-
imately the same plane - that of the facade. The good quality of
pose estimation is illustrated in Figure 5, where a high resolution
image is projected onto the laser mesh.

Figure 5: 3D point shaded mesh and textured mesh

4 SEGMENTATION

The segmentation issue has been largely studied over the last few
decades (see (Haralick and Shapiro, 1985) and (Hoover and al.,
1996) for a review of existing techniques). Here, we want to use
both image data and 3D data to separate meaningful objects. This
is done through a hierarchical segmentation scheme (Guigues and
al., 2003). This approach has many advantages: it can lead to a
multi-scale representation of the scene, i.e. to several levels of
description for the same scene (coarse to fine); it allows fusion
of geometric and radiometric energy to take advantage of both; it
can supply a set of partitions from which an interactive selection
of good regions can speed up efficiently the modelling.

The hierarchical segmentation is formulated through the mini-
mization of a multi-scale separable energy which involves two
terms: a goodness-of-fit term and a regularization term, the two
terms being balanced by the scale parameter. A hierarchy is built
from an initial partition, merging regions according to the global
energy minimization criterion.

In our case, initial segmentation is derived from a watershed al-
gorithm applied to the image. So the region boundaries lie on
the image edges, and are very well localized. To reduce compu-
tation complexity, the watershed basins are merged according to
a previous geometric segmentation of the range image into con-
tinuous regions, thanks to region growing. The function used to
encode the energy is for the moment radiometric, but should take
advantage of a geometric factor.

Even if we try this way to get an automatic segmentation without
any interaction needed, this multi-scale representation can ease
interactive focalization on significant objects. The operator can
be proposed to move into the hierarchy, choose the right level,
and then catch the region(s) corresponding to the object.

Figure 6: Hierarchy and one possible segmentation

5 RECONSTRUCTION

The reconstruction step is always split into two stages: focalisa-
tion or focusing, and primitive estimation. Focusing returns the
region in which the object lies. In a segmentation process, this re-
gion would be given automatically. In a semi-automatic process,
the region can come from a polygonal capture, or from region
growing, the seed being retrieved manually. In this context, one
picking in the image returns instantaneously the primitive. In the
following paragraphs, we present reconstruction algorithms from
the semi-automatic point of view, in the knowledge that the fo-
cusing stage could be replaced in a segmentation process.

5.1 Plane reconstruction

Let us consider a point set belonging to a plane. Its spatial reso-
lution is lower than that of the image. The high resolution of the
image is recovered on the region boundaries by the point set pro-
jection into the image watershed. Each watershed basin where a
point is projected may belong to the good region. This implies
a good correspondence between watershed partitioning and geo-
metric discontinuities. Once the region boundaries are known in



the image, they are reprojected onto the plane estimated on the
point set.

5.2 Surface of revolution reconstruction

Here again, let us work with a point set belonging to a surface of
revolution. This kind of object is characterized by a profile which
turns around its axis of revolution. First, we need to work out the
axis of revolution pose. The method makes use of the property of
coplanarity between the axis of revolution and each normal to the
surface. Each line normal to the surface adds a contribution to a
voxel space surrounding the axis location. This focus is achieved
by detecting the symmetry axis in image space. This first es-
timation is followed by a finer estimation, where the rms error
between point cloud and the reconstructed surface of revolution
is used as the quality criterion. This algorithm keeps dependant
axis estimation and profile reconstruction. It could be replaced
by an axis estimation quality criterion regarding the morphology
of the point cloud projection on a plane perpendicular to the es-
timated axis. The ratio between the radii of the larger included
circle and the smaller including circle in relation to the projected
point cloud should be minimum on the right axis.

Figure 7: Point cloud (left) - normal estimate - axis of revolution
estimate (right)

Given the axis of revolution, one may try to recover the ob-
ject profile. The point cloud is projected onto the plane rotat-
ing around the axis of revolution. The recovery of the profile
is carried out by noise reduction with the Moving Least Squares
(MLS) method (Lee, 2000). The profile is then reconstructed by
sampling the profile along the axis direction. This sampling may
be improved by including discontinuities, which would provide a
better description of the surface.

The rms errors of distances between the 3D points and the re-
constructed surfaces are less than 2 millimetres, which has to be
compared with the scanner measuring distance noise (2 mm).

Figure 8: MLS point cloud thinning - reconstructed surface

5.3 Cylinder reconstruction

Cylindrical primitives are very common features in architectural
scenes. They are characterized by a profile extruded along a gen-
erating line. We are considering here only cylinders with straight
generating line. The cylinders’ reconstruction follows mainly the
surface of revolution reconstruction scheme. It differs in the way
the axis is determined: we consider the Gaussian image. The
Gaussian image of a cloud is the result of the Gauss map ap-
plied to the whole set of points. The Gauss map corresponds to
the mapping from a point on a surface to the unit normal of the
surface at this point. For a cylinder, unit normals focus in a plane
perpendicular to the generating line. They belong to a great circle
of the Gaussian sphere. So, the method consists in estimating ro-
bustly the plane on the unit normals, with the constraint of joining
the origin. To get the profile of the cylinder, points are projected
on the same plane. Then, the profile is estimated the same way as
for a surface of revolution.

Figure 9: Cylinder reconstruction examples



6 CONCLUSION

We have proposed a general strategy for 3D reconstruction of
large scale complex terrestrial scenes using both image and laser
data. The three main steps are registration, segmentation and re-
construction. The registration step uses dense matching between
punctual features and between linear features. These features can
be fully automatically extracted with a good accuracy from both
image and laser data. The main contribution is the proposition
of a global semi-automatic modelling architecture with very few
interactions needed. Those interactions concern the segmentation
step, which could be replaced by an automatic segmentation. The
global principle is based on the idea of building as many interac-
tive tools as primitives describing the scene. The chosen sensing
lay-out allows quick field work, without loosing geometric accu-
racy on reconstruction. This approach may speed up the recon-
struction tasks, part which should be evaluated in future work.
Further work will concern adding geometric primitives to extend
the current library. Improvements must also be made towards au-
tomatic segmentation.
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