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ABSTRACT

The registration of scan data often uses special markers which are placed in the scene. This leads to a reliable registration
but the method is not very efficient. Therefore, we search for a registration method which works without markers. There
are methods like the iterative closest point (ICP) algorithm which calculate the registration on the basis of the data itself.
However, these algorithms have a small convergence radius and therefore a manual pre-alignment is necessary.
In this paper, we explore a registration method called the normal distribution transform (NDT) which does not require
markers, has a larger convergence radius than ICP and a medium alignment accuracy. The NDT was initially proposed
in robotics for single-plane horizontal scans. We investigate three modifications to the original algorithm: a coarse-to-
fine strategy, multiple slices, and iterative solution using the method of Levenberg-Marquardt. We apply the modified
algorithm to real terrestrial laser scanner data and discuss the results.

1 INTRODUCTION

Nowadays, the standard technique to align terrestrial scans
uses specialized markers, e.g. retro-reflective targets or
spheres, which have to be placed in a scene prior to scan-
ning. As there are typically only a few such targets in the
scene, they have to be placed quite deliberately. Automatic
extraction operators usually followed by some manual in-
teraction are used to locate the markers in the scene, which
are then scanned again in high resolution in order to obtain
a high redundancy and thus, a high accuracy.

This technique works reliably, but it is not very efficient.
According to our experience, 10–15 terrestrial scans with
different standpoints are feasible per day. This means that
scanning time and total time differ by a factor of about
eight. The most time-consuming parts are (i) the distribu-
tion and collection of markers in the scene, (ii) checking
and selection of automatically extracted marker positions
in the scan image, and (iii) fine scan of the markers. Thus,
it is desirable to replace the marker approach by another
technique, which, however, must be able to align scans
rapidly, so that the result is immediately available during
the measurement campaign. Such an attempt would also be
reasonable in a setting where the laser scanner is mounted
on a vehicle.

There are well-known methods for aligning scans based on
the scan data itself, most notably the iterative closest point
(ICP) algorithm (Besl and McKay, 1992) and its variants.
In fact, those methods are nowadays available in commer-
cial software packages. However, usually the convergence
radius is not very high, so that scans have to be pre-aligned
interactively before starting automatic alignment. What we
seek for is a large convergence radius and medium align-

ment accuracy, as we can still improve accuracy by post-
iterating using the ICP algorithm once an initial alignment
is found.

In this paper, we explore a method to align terrestrial scans
without artificial markers. It is borrowed from robotics,
where the task is to simultaneously navigate in an un-
known environment while at the same time building a
map of it (so-called simultaneous localization and map-
ping, SLAM). In order to determine the transformation be-
tween successive scans, the normal distribution transform
described in (Biber, 2003) is used.

In the context of robotics, the NDT is used to align 2D scan
data. Especially in indoor environments, scanning in one
plane parallel to the ground leads to sufficiently character-
istic scan data. However, in an outdoor setting, a certain
fixed plane will often not contain enough information to
align scans. Thus, we explore a method to obtain subsets
of our original full 3D scan data which contain enough in-
formation to align properly.

The paper presents the original NDT and the modifications
we have implemented in order to use it with 3D data. The
methods are tested using real data acquired with our ter-
restrial scanner. Finally, the results are presented and dis-
cussed.

2 RELATED WORK

A well-known registration method is the iterative clos-
est point algorithm (Besl and McKay, 1992, Chen and
Medioni, 1992). ICP is based on a nearest point to point or
nearest point to tangent plane search. For each point, the
nearest object is calculated and from all the pairs the rigid



transformation which aligns both scans is estimated. This
transformation is applied to one of the scans. It is iterated
until a convergence criterion is reached. The convergence
behaviour of ICP is monotone with respect to the mean
square distance and very slow. In the average case there
are about 30 to 50 iterations.

To accelerate convergence of the ICP, (Besl and McKay,
1992) propose to update the parameter vector by a linear
or parabolic extrapolation. (Pottman et al., 2004) force
the parameter vector to a helical movement. This leads
to an quadratic convergence but there is the possibility of
exceeding the solution or to impair the orthogonality of the
rotation matrix.

(Fitzgibbon, 2001) use the Levenberg-Marquardt algo-
rithm to minimize the error. This is a combination of
Gauss-Newton and gradient descent and presents a closed
update of the transformation. This enables the use of the
Huber- or Lorentzian-kernel as error function which en-
large the convergence radius.

The most expensive part of the computation is the nearest
point search. (Zhang, 1992) accelerate the the nearest point
search by a coarse-to-fine strategy. The first iterations only
use a subset of the points whereas for the fine registration
all points are used.

Another way to reduce computation time is to use special
search structures. (Besl and McKay, 1992) suggested a
k-d tree search and (Greenspan and Yurick, 2003) devel-
oped an approximate k-d tree search. This method returns
a point which is not necessarily the nearest neighbour but
it guarantees that the distance of the solution and the orig-
inal point is not bigger than1 + ε times the distance be-
tween the nearest neighbour and the original point. Dif-
ferent combinations of k-d tree search and approximate
k-d tree search are used to get the benefits of shorter com-
putation time of the approximate k-d tree in the first itera-
tions and the full accuracy in later iterations.

(Greenspan and Godin, 2001) use a preprocessing step
to compute correspondences. For each reference point,
all points within a certain distance are calculated. These
points are stored in increasing distance from the reference
point. At runtime, the relations are kept up to date and
the correspondence of the previous iteration is used as an
estimate for the current correspondence.

3 TERRESTRIAL SCAN DATA

Large progress has been made in the area of terrestrial laser
scanners during the last decade. A number of scanners
is nowadays available, with measurement ranges from 25
to 1000 meters, accuracies from as few as 6 millimeters
to centimeters, and scanning rates of more than 100,000
points per second. Major applications are the scanning of
industrial facilities for as-built documentation, acquisition
and monitoring of engineering structures, buildings and fa-
cades, and cultural heritage. Although it is usually the case
that dense terrestrial data is acquired for selected objects

only, using a fixed number of viewpoints, it is worth to
note that there are commercial systems which allow to ac-
quire dense, large scale 3D point clouds from terrestrial
laser scanning using moving platforms.

The test data sets we have used for the investigations in this
paper were acquired using the scanner Riegl LMS-Z360i.
A number of scans were taken along a street in Hannover,
Germany, with buildings of different height. Color infor-
mation has been acquired as well, however it has not been
used for the registration. Each scan requires about 4 min-
utes and yields approximately 2,250,000 scanned points.
We have chosen the street scene deliberately because, as
noted earlier, scanning from a mobile platform would be
one application that could benefit from a marker-free reg-
istration procedure. Figure 1 shows several scans of the
street scene where each scan has a different color.

Figure 1: Four scans taken along a street in Hannover,
shown in different colors.

4 SCAN ALIGNMENT USING NDT

This section describes the normal distribution transform
(Biber, 2003) and how it is used for the registration of two
scans. As in the original publication, the transform is first
described in two dimensions, although it is straightforward
to generalize it to higher dimensions.

The NDT converts the original point cloud of the first scan
into another representation, which captures the distribution
of the points, rather than individual points. In order to do
this, the area covered by the first scan is subdivided into a
regular grid of cells. It is assumed that the distribution of
points inside each cell is characterized to a sufficient extent
by a normal distribution. Thus, for each cell the meanq
and the covariance matrixΣ are calculated, using

q =
1
n

∑
i

xi, Σ =
1

n− 1

∑
i

(xi − q)(xi − q)t.

The probability of measuring a pointx in cell i is then
modeled by the normal distributionN(qi,Σi),

p(x) = C · exp
(
−1

2
(x− qi)tΣ−1

i (x− qi)
)

.



For the purposes of the NDT,C is set to 1. A set of points
xj , 1 ≤ j ≤ J is assigned the score

score=
J∑

j=1

exp(−1
2
(xj − qij

)tΣ−1
ij

(xj − qij
)) (1)

whereij is the index of the cell the pointi falls into.

As an example, figure 2 shows original scan points in a)
and the corresponding NDTs with cell size b) 30m× 30m,
c) 10m× 10m and d) 5m× 5m. White pixels represent a
high probability and black ones a low probability.

a) Original laser scanner data. b) NDT 30m× 30m.

c) NDT 10m× 10m. d) NDT 5m× 5m.

Figure 2: Laser scanner data and associated NDTs for dif-
ferent cell sizes.

Figure 3 illustrates how the score function varies when a
point set is rotated. The original scan from figure 2 a) is
converted into the NDT using a cell size of 10m× 10m.
The second set is chosen identical to the original scan, ex-
cept for a rotation which is carried out from−π to π in
steps ofπ

50 . For each rotation angle, the score is evaluated.
The plot shows the expected peak at zero.

Figure 3: Behaviour of the score function when the point
set is rotated.

Figure 4 shows the behaviour of the score function when
the scan is translated. The translation is performed from

-100 to 100 in x direction and from -30 to 40 in y direc-
tion. This corresponds to translations where the two scans
overlap by at least 50 percent in each direction.

Figure 4: Behaviour of the score function when the point
set is translated.

In order to register two scans, the first one is held fixed and
its NDT is computed. The second one is transformed using
the Euclidean transformation in the plane,[

x′

y′

]
=

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
x
y

]
+

[
tx
ty

]
. (2)

The three parameters of this transformation arep =
(tx, ty, φ). They are to be estimated so as to maximize
the score function (1), which is now dependent on the
transformation parametersp. Since the optimization al-
gorithms minimize functions, we treat the negation of the
score functionf = −score(p). There are no start values
for p assumed, so all parameters are initialized to zero. The
following steps are iterated until a convergence criterion is
reached.

1. Transform each pointxj of the second scan according
to (2) using the current transformation parametersp.

2. Compute the cell indexij in which each pointx′j lies
and retrieve the parametersqij

, Σij
of the normal dis-

tribution of that cell.

3. Calculate the score value, score(p), according to (1).

4. Compute new parameters by optimizing the function
f = −score(p) using Newton’s Algorithm.

H∆p = −g,

whereH is the Hessian andg the transposed gradient
of f .

Figure 5 shows several snapshots of the iterative alignment
of two datasets.



Figure 5: Snapshots of the iterative registration process for
two scans.

5 MODIFICATIONS TO THE ORIGINAL NDT AL-
GORITHM

In this section we describe the different modifications we
made on the NDT. Namely there are a coarse-to-fine strat-
egy, the use of slices as subsets of the data and the choice
of another optimization technique.

5.1 Addition of a coarse-to-fine strategy

The parameter estimation of the NDT is iterative. Just as
with the ICP, bad initial values may lead to local minima.
In fact, since the score function (1) relies on points hitting
cells of the NDT, no estimation will take place at all if the
second data set is not overlapping the cells of the NDT of
the first data set. Also, we experienced problems when the
two data sets to be aligned are mainly linear in structure
and initially cross in a point, since in this case, the ability
to turn the second data set depends entirely on the NDT
cell where both data sets cross. If the normal distribution
of this cell has a main axis far off the correct direction,
the second data set will not be tied versus the first one.
Especially if the cells are small, their normal distributions
may not be meaningful.

In order to address this problem, the original algorithm of
(Biber, 2003) was augmented by a coarse-to-fine strategy.
The cell size of the NDT is chosen large when iteration
starts. This helps to align the data sets according to their
coarse structure. Then, the cell size is successively de-
creased, making it possible to take the fine structure into
account.

In the experiments, a cell size of 200m× 200m was found
to be appropriate to initially align the data sets. Successive
sizes of 200m, 100m, 50m, and 25m were used. This se-
quence may be too elaborate for some data sets, however
we found that it leads to good results in the case of more
‘difficult’ data sets as well. The usage of another optimiza-
tion method is leading to a smaller initial cell size of 100m
(see sec. 5.3). For any cell size, the algorithm iterates un-
til the score function does not improve for a fixed number
of iterations. Then, it continues with the next smaller cell
size.

5.2 Slicing 3D scans

The discussion so far has addressed 2D scan data, which is
especially useful in robotics applications. Instead, in our
case, full 3D scans have to be aligned for the purpose of
extracting 3D scene descriptions. It is straightforward to
extend the NDT to three dimensions: the grid cells become
voxels which contain 3D normal distributions. However,
this will lead to a large number of voxels, possibly negating
the advantages of the NDT.

Considering the typical application, though, it is usually
reasonable to assume that the laser scanner is set up ap-
proximately upright for each scan. Also, the approximate
distance to the ground will be always the same or, if it
varies, it will be technically simple to measure it. In or-
der to apply the 2D NDT directly, a slice parallel to the
ground can be cut out of the 3D data (see figure 6).

Figure 6: Cutting a 2D slice out of the 3D scan.

A single slice may, however, not contain enough data
for an alignment. As compared to the case in robotics,
where highly structured indoor environments prevail, nat-
ural scenes may lack the desired amount of information.
For example, when driving along a corridor of buildings, a
single slice may yield essentially points along two parallel
lines (the projection of façades to the left and right of the
street). Thus, transformation (2) will be under-determined,
since a translation along the street axis does not change the
score.

We also made the experience that taking a single slice in-
creases the chance that different real-world structures that
cause similar patterns in the scan data are erroneously as-
signed to each other. For example, figure 7 shows a case



Figure 7: Erroneous registration of two data sets.

Figure 8: Correct registration of Fig. 7.

where a corner is present in each scanned data set. The
single slice NDT associates both corners, although they be-
long to different real-world objects.

Single slices also lead more often to the situation where
coarse alignment, using large cell sizes, yield good results,
which however are later getting worse when cell sizes are
reduced. For example, figure 9 shows the result of a good
coarse alignment, and figure 10 shows how this gets much
worse at a later stage with smaller cell sizes.

Figure 9: Coarse registration using a large cell size.

To solve these problems we took a set ofn slices instead of
a single slice. Each slice has a height of 40 cm, all points
within a slice are projected to the ground plane. With
our data sets, the lower slices typically contain 15,000 to
20,000 points. Since there is only one high building in the
scene, we have appreciably smaller data sets at a height of
12 meters or higher, containing 1,000 to 5,000 points.

The slices lead ton independent NDTs, calculated with
the same cell size. Since only one single transformation
is sought for, the score function sums up the probabilities
over all points and height levels

score(p) =
n∑

k=1

scorek(p) , (3)

where scorek(p) is the score function (1), defined for slice
k and parametersp. Equation (3) is optimized in the same
way as the single score solution (1).

Figure 11 shows how the score function changes with an
increasing number of slices, for the example of rotating
one data set shown earlier in figure 3. As can be seen,

Figure 10: When iteration of Fig. 9 is continued with a
smaller cell size, alignment is lost.

the score function becomes more and more smooth outside
the peak at zero degrees. Figure 12 shows the same for
translating one data set like in figure 4.

Figure 11: Behaviour of the score function from fig. 3
when different numbers of slices are used.

Figure 13 shows the result of using a two-slice NDT. In-
dividually, the two slices, shown in figs. 7 and 9, cause
the two problems discussed earlier. Combined in a single
NDT, however, a correct registration is obtained.

5.3 Optimization using Levenberg-Marquardt

In (Fitzgibbon, 2001) the optimization uses the method of
Levenberg-Marquardt (Press et al., 1992). We applied this
method to the NDT algorithm as well. This section de-
scribes the method and the results obtained.

The Levenberg-Marquardt method combines Gauss-
Newton optimization with gradient descent. To remain in
our notation, we define the scoresj of a single pointxj ,

sj = exp
(
−1

2
(x′j − qij

)T Σ−1
ij

(x′j − qij
)
)

.

s(p) = (sj(p))j=1,...,Nd
is the vector of all score functions

whereNd is the number of points. LetJ be the Jacobian
Nd × 3-matrix with the entriesJi,j = ∂si

∂pj
.

Gauss-Newton is similar to Newton optimization but the



Figure 12: Behaviour of the score function from fig. 4
when 1 to 4 slices are used.

Figure 13: Combining two slices leads to a correct regis-
tration.

HessianH is approximated byJT J whereJ is the Jaco-
bian matrix. The parameter update is calculated as

∆p = −(JT J)−1JT s.

If the underlying error function is close to being quadratic
in the parametersp, this will converge fast to the mini-
mum value. On the other hand, sinceJ is a linearization,
the update is not guaranteed to reduce the nonlinear error
function.

In an accelerated gradient descent approach theparameters
are updated using

∆p = −λ−1JT s,

whereλ controls the magnitude of the steps in gradient
direction. A smallλ leads to large steps and vice versa. If
λ is large enough, this approach guarantees to decrease the
error term but convergence may be very slow.

To achieve good results in any situation the Levenberg-
Marquardt algorithm combines the two procedures. The
parameters are updated using

∆p = −(JT J + λI)−1JT s. (4)

λ is set to a start value and updated in each iteration. The
value of∆p is determined. If the parameter update reduces
the error,∆p is accepted andλ is divided by a factor. In
the other caseλ is multiplied by the same factor and∆p is
calculated again until it satisfies the condition for the first
case. A typical start value forλ is 10−3 times the average
of the diagonal elements ofN = JT J . The factor for
division and multiplication is typically 10.

We applied this optimization algorithm with a small modi-
fication to our multi slice NDT. The modification is neces-
sary because the score function involves only those points
which fall into cells with at least three points. This pos-
sibly leads to a reduction of the score in some iterations.
For this reason it is not possible to prohibit parameter up-
dates which decrease the score function. So we use the
Levenberg-Marquardt equation (4) with a fixedλ and ac-
cept all parameter updates.

We compared the case of the original Newton optimiza-
tion with Levenberg-Marquardt. Figure 14 shows the score
values of the first iterations with a cell size of 200m×
200m for the Newton optimization and 100m× 100m for
Levenberg-Marquardt. It turns out that Newton optimiza-
tion generates strong oscillations in the beginning. This is
because of the fact that the score function does not take
all points into account. This affects only the Newton op-
timization because Levenberg-Marquardt slows the update
down and large parameter changes are suppressed.

Different cell sizes are chosen since the Levenberg-
Marquardt method leads to good results with this starting
cell size while the Newton optimization oscillates heavier
so that no correct alignment can be found. The different
cell sizes explain the smaller score value of Levenberg-
Marquardt. A smaller cell size leads to less overlapping
and several points are not included in the score.

Figure 14: Progression of score values for Newton’s
method (ndt score) and Levenberg-Marquardt (ndt lm).

As can be seen in Figs. 15 and 16, the parameterstx,
ty and φ converge to the final parameters much faster
with Levenberg-Marquardt optimization than with New-
ton’s method. The fastest convergence is reached with
small values forλ.



Figure 15: Convergence oftx andty when using Newton’s
method and Levenberg-Marquardt.

Figure 16: Convergence ofφ when using Newton’s method
and Levenberg-Marquardt.

6 CONCLUSIONS

We tested the multi slice NDT with the Levenberg-
Marquardt and Newton optimization with three slices. For
the coarse-to-fine strategy we used different cell sizes for
each method because we had no reliable results with small
sizes using Newton’s method.

For Levenberg-Marquardt we used cell sizes of 100m,
50m, 25m, 10m, 5m and 3m and iterated 100 times each.
To assess our results we compared them to a marker-based
registration as provided by the software RiSCAN PRO.
Since the markers are well-defined retro-reflective targets
which were measured by high density fine scans, this reg-
istration was taken as a reference. As a result, we found
an average point distance of 8.8mm. The cell sizes for the
Newton method were chosen to be 200m, 150m, 100m and
75m. The first size was iterated 500 times and the other
200 times. This lead to an average point distance of 0.42m,
mainly due to the large cell size.

We made additional convergence tests for the Levenberg-
Marquardt method. For this, one of the scans was rotated in
multiples of π

24 . For the registration, we used cell sizes of
100m, 50m, 25m, 10m, 5m and 3m. Each size was iterated
100 times. A registration with our method was possible
with a rotation angle from -1.83 to 2.09. The tests with
starting angle -1.31, -1.047 and -0.785 only converged with
an initial cell sice of 200m. The difference of the starting
angle and the registration angle is shown in figure 17.

We have explored how the normal distribution transform

Figure 17: Difference between starting rotation angle and
resulting registration angle.

can be used to align 3D scans. We added three enhance-
ments to the original algorithm: a coarse to fine strategy,
multiple slices, and iteration using Levenberg-Marquardt.
From the datasets we have shown in this paper, we con-
clude that the algorithm yields a large convergence radius
and can be used to provide initial values for a subsequent
application of the ICP algorithm.
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