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ABSTRACT: Network orientation is a fundamental step in image-based 3D measurement. This paper aims to offer insights into 
network orientation by considering developments in analytical close-range photogrammetry during its evolution from a film-based to 
digital image-based measurement technology suited to full process automation. A brief mathematical background to orientation 
models derived via perspective projection and projective geometry is first presented, and the issue of generating initial values for 
image orientation parameters is highlighted. Developments in network orientation processes for close-range photogrammetry are 
then reviewed and the potential of utilising linear models from projective geometry in the photogrammetric orientation process is 
discussed. The state of the art in network orientation for close-range photogrammetry is indicated by way of the discussion. 
 
 
 

1. INTRODUCTION 

Photogrammetry has been applied to the measurement and 
modelling of complex heritage sites and architectures for a very 
long time. In the past two decades or so there has been an 
evolution in close-range photogrammetric recording from film-
based stereo restitution with metric cameras to multi-image 
network orientation of images from consumer-grade digital 
cameras, with automatic and semi-automatic 3D feature point 
measurement. Whereas camera and computing technology have 
witnessed dramatic change during the life of analytical 
photogrammetry, the underlying mathematical models for 
network orientation, which are based on perspective projection, 
remain essentially unchanged. They have served 
photogrammetry well, and continue to do so. 
 
The well-known models for relative, absolute and exterior 
orientation are non-linear, yet they are solved via linear least- 
squares techniques. These require initial approximate or 
‘starting’ values for the parameters. This determination of 
starting values has had a considerable influence upon the 
development of different computational schemes for close-
range photogrammetry. The network orientation process, 
however, almost always culminates in a ‘rigorous’ solution, 
most often via a bundle adjustment. 
 
In the more general domain of image-based 3D measurement, 
which embraces computer vision as well as robot and machine 
vision, alternative network orientation approaches have been 
developed. Some of these have been rigorous from a metric 
standpoint; most have not. Popular in this context are models 
for 3D motion capture and scene reconstruction based on 
projective geometry. These are characterised by elegant 
mathematics, and also by questions as to the computational 
stability and reliability of the linear solutions adopted in the 
recovery of image-to-object geometry. One motivation for 
adopting the linear solution algorithms of projective geometry 
is that they circumvent the need to provide the initial values that 
are required with photogrammetric orientation models based on 
perspective projection. 
 
This paper aims to offer further insights into the network 
orientation problem for image-based 3D measurement. A brief 

mathematical background to orientation models based on 
perspective projection and projective geometry is first offered. 
This is followed by a review of the different network 
orientation scenarios that have been employed in close-range 
photogrammetry over the past 25 years, i.e. in the period of 
development of stand-alone measurement systems designed for 
a broad range of applications, including heritage recording. The 
role of projective geometry models is considered in the context 
of seeking better ways to determine initial values for image 
orientation parameters. In discussing network orientation 
approaches, the paper also reports on the state of the art in 
close-range photogrammetry and vision metrology, which is 
represented by systems ranging from fully automatic to those 
with on-line network orientation to support manual 
measurement of images recorded with off-the-shelf digital 
cameras. 
 
 

2. MATHEMATICAL BACKGROUND 
 
2.1 Collinearity Model 
 
The fundamental goal of photogrammetry is to obtain 3D 
measurements of objects from multiple, overlapping 2D images. 
In basic terms, what is required is a transformation of 
coordinates between two Cartesian spaces, image space (x, y, z) 
and object space (X, Y, Z). This can be written as a 7-parameter 
similarity transformation: 
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where the rotation matrix R is formed as the product of three 2D 
rotations through angles which are identified here as azimuth α, 
elevation ε and roll κ. The translation terms Xc, Yc and Zc 
express the position of the image space coordinate system in the 
object space system. If the scale factor λ is 1, Eqn. 1 represents 
a rigid body transformation. If we take into account that the 
image points are all within a focal plane, then the 3D-to-2D 
perspective projection follows from Eqn. 1 as 

(1) 
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where c is the principal distance and xp, yp the coordinates of 
the principal point. These three parameters constitute the 
interior orientation elements of the camera. The terms dx and dy 
represent the corrections for so-called departures from 
collinearity, which arise from image distortions. The principal 
perturbation to image point position is radial lens distortion. 
 
Eqn. 2 can also be cast in a form more familiar to the computer 
vision community, who utilise methods of projective geometry 
in their building of 3D object models from imagery: 
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Here, the 3x4 matrix P is termed the projection matrix and C 
the ‘calibration’ matrix, even though it typically does not take 
into account the very significant lens calibration corrections 
represented by dx and dy in Eqn. 2. 
 
As written, there is no distinction between the homogenous 
representation of Eqn. 3 and the form more familiar to 
photogrammetrists (Eqn. 2), except of course for the lens 
distortion corrections dx and dy. It will be seen, however, that in 
solving for the image-to-object space transformation there is a 
marked difference in approach. A simple division of the first 
and second rows of Eqn. 2 by the third gives rise to the well-
known collinearity equations 
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The solution of the non-linear equation system generated by 
bundles of intersecting rays from multiple images is via a linear 
least-squares approach, which requires linearization of Eqn. 5 to 
the general form of the photogrammetric bundle adjustment: 
 
      02211 =+++− wAAv δδ  
 
Here, v is the vector of observational residuals (residuals in 
image coordinate measurements); A1 and A2 are matrices of 
partial derivatives; w is a discrepancy vector and δ1 and δ2 
comprise the corrections to starting values for the six exterior 
orientation parameters (α, ε, κ, Xc

, Yc, Zc) and three object point 
coordinates (X, Y, Z). It is not the intention here to develop the 
well-known bundle adjustment formulation any further, as the 
reader can find this in modern textbooks on photogrammetry 
(e.g. Krauss, 2000; Mikhail et al., 2001). What is important to 
this discussion is firstly that the solution to Eqn. 6 is rigorous in 
a functional and stochastic sense (it is a maximum likelihood 
solution), and secondly that in order to recover δ1 and δ2 
appropriate starting values for the parameters are required. 
These initial values will here be termed O and X, where 
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for the m images and n object points involved. 
 
Since the emergence of analytical photogrammetric methods in 
the 1960s and 1970s, much of the attention given to finding 
practical solutions for Eqn. 6 has centred upon developing 
efficient means to determine starting values. As will be seen 
later, the most common approach has involved separately 
solving for δ1 and δ2. Under the assumption that a given number 
of ‘control points’ (known in XYZ) are available, δ2 can be 
suppressed and δ1 is solved image by image in a series of spatial 
resections. Having determined the image orientation, δ1 is 
suppressed and δ2 is solved by spatial intersection. With the 
initial values O and X in place, a full bundle adjustment solution 
follows. More will be said later about the scenarios for exterior 
orientation. 
 
To non-photogrammetrists, the need to determine initial values 
seems to have been an impediment to the adoption of rigorous 
photogrammetric approaches, as was both the explicit 
requirement for image coordinates referenced to the principal 
point (base of the perpendicular from the projection centre to 
the image plane) and the implicit necessity of accounting for 
calibration corrections such as lens distortion. Thus, projective 
geometry formulations as represented by Eqn. 3 appeared as 
potential alternatives because they could be solved in a linear 
manner. This assumed that the elements pij of the projection 
matrix P are linearly independent, which of course they are not 
if the equivalence of Eqns. 2 and 3 is to hold true. The first of 
these linear models, which predated early developments in 
computer vision approaches by a decade, was the well-known 
direct linear transformation (DLT) which was introduced to 
close-range photogrammetry by Abdel-Aziz & Karara (1971). 
This modelled the projective geometry relationship between 
image coordinates (x’, y’) of arbitrary scale, orientation and 
origin, and object space coordinates.  
 
The DLT is generally solved in a two-step process, equivalent 
to spatial resection and intersection, though a ‘bundle 
adjustment’ formulation is possible. Of the 11 parameters 
involved, only 9 are independent and thus difficulties can be 
expected with certain configurations of camera stations and 
object points, the most obvious being that the DLT will not 
handle situations where the object point array is planar or near 
planar. As a consequence of the two non-linear constraints 
implicit in its formulation being ignored, the DLT has a 
tendency to be numerically unstable, especially in situations of 
low observational redundancy, say with 10 or lesss ‘known’ 
object points; a minimum of 6 is required. The DLT can 
accommodate calibration corrections dx and dy, but only where 
‘true’ image coordinates (x, y) are employed, rather than (x’, y’). 
 
2.2 Coplanarity Model 
 
In any discussion of approaches to orientation of close-range 
photogrammetric networks it is necessary to consider a second 
fundamental model which, at least in analog form, has been the 
basis of stereo photogrammetry for more than half a century. 
This is the coplanarity model that states that the two 
intersecting rays to an object point from two images must lie in 
a single plane, which also includes the baseline vector between 
the two perspective centres. This plane is called the epipolar 

 (2) 

  (3) 

          (5) 
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plane. The coplanarity condition can be formulated, again 
making use of the perspective projection, Eqn. 2, for the case of 
one image being relatively oriented to a second, as 
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Here, the matrix R2 describes the rotation of the second image 
with respect to the first and by and bz are translations. The 
translation bx, which lies in the base line, can be assigned an 
arbitrary value, since scale cannot be recovered from the 
coplanarity model. Note also, that object space coordinates do 
not explicitly appear. 
 
Equation 7 can also be recast into homogeneous form, along the 
same lines as Eqn. 3. For the case of two images from the same 
camera, the expression becomes 
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Here, K represents the skew-symmetric matrix in Eqn. 7 and C 
is again the calibration matrix (without consideration of dx or 
dy). Further substitution for matrix products leads to 
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where E is called the essential matrix, and F the fundamental 
matrix. The distinction between them is the assumption that the 
interior orientation is known for the essential matrix expression 
(Hartley & Zisserman, 2000; Faugeras & Luong, 2001). The 
non-iterative algorithm for relative orientation (RO) via the 
essential matrix, which has been widely adopted in computer 
vision, has been attributed to Longuet-Higgins (1981). 
However, it had already been known within the 
photogrammetric community for at least two decades, as 
illustrated by Thompson (1959) and Stefanovic (1972). 
 
Once again, the projective geometry models for RO, which 
algebraically represent epipolar geometry and centre upon the 
essential and fundamental matrices, are equivalent to the 
coplanarity condition, at least when the lens distortion 
corrections dx and dy are ignored. However, the solution of 
Eqn. 9 by linear methods, which assume that the elements of E 
and F are independent, is not the same as solving Eqn. 7 via a 
Gauss-Markov model. The linear solution for the three rotations 
and two translations of RO via the essential matrix, which is 
more appropriate in a photogrammetric context than the 
fundamental matrix, is generally a two-step process. The 
elements eij of E are first solved via the expression 
 

       0=eA  
where 
         ( )ii yxyyyyxxxyxxA 1112212122121=  

 

and 
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after which E is decomposed into its constituent component 
matrices K and R2. 
 
In much the same way as was previously described for the 
collinearity model, the linear least-squares model for the 
coplanarity condition is given as (Mikhail et al., 2001): 
 
      0=++ wABv δ  
 
where A and B are matrices of partial derivatives with respect to 
the parameters and to image coordinates, respectively; v and w 
are as previously defined for Eqn. 6; and δ is the vector of 
corrections to the initial values for the three rotation angles 
(taken this time as Euler angles ω, ϕ, κ) and two translations. 
These initial values are represented by the vector ∆: 
 

      Tbzby ),,,,( 00000 κϕω=∆  
 
For convergent imaging configurations with arbitrary image 
orientation (e.g. the camera is ‘rolled’ between portrait and 
landscape orientation), the determination of appropriate initial 
values ∆ can be very challenging, hence the appeal of linear 
solutions such as the essential and fundamental matrix 
approaches. One can read not only of the recovery of RO 
parameters from a stereo pair of images via the projective 
geometry approach, but also of the simultaneous determination 
of certain interior orientation elements, for example the focal 
lengths associated with each image. Photogrammetrists would 
state that this is not feasible, at least in practical and metric 
terms, in spite of the elegance of the mathematics involved in 
deriving the solutions for E and F and subsequently 
decomposing these matrices to determine the projection matrix 
P in Eqn. 3. More will be said on this aspect later. However, it 
is widely recognised that ‘noisy’ data (read redundant 
observations and real measurements) can lead to numerically 
unstable solutions for the essential and fundamental matrices, 
and consequently to unreliable results.  
 
In the two-step solution process mentioned above,  E (or F) is 
typically determined through either a homogenous linear 
equation solution with normalised coordinates for the 8 or more 
points involved (Hartley, 1997), a singular value decomposition 
or a RANSAC approach (Fischler & Bolles, 1981) in cases 
where there is an abundance of corresponding point pairs 
available. The rotation matrix and translations are then 
recovered by singular value decomposition (Hartley, 1992), 
which for the essential matrix of Rank 2 should in theory yield 
two equal singular values and a third which is zero. 
 
The projective geometry approaches are considered in this 
discussion not because they present a potential alternative to the 
collinearity and coplanarity models of photogrammetric 
orientation, but more because they offer at first sight possible 
practical approaches to the determination of initial values ∆, O 
and X. The implementation of such an approach has been 
reported by Roth (2004). One must keep in mind, however, the 
difficulties associated with the reliable recovery of RO via 
projective geometry approaches in cases of ‘difficult’ (read 
highly convergent) geometry. Moreover, like the DLT, these 
approaches do not work in instances of a near planar array of 
object points and they can yield ambiguous solutions. The 
words of Horn (1990a) are noteworthy in this regard: “Overall, 
it seems that the two-step approach to relative orientation, 
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where one first determines an essential matrix, is the source of 
both limitations and confusion”. Alternative RO algorithms 
employing closed-form initial parameter determination are 
available (e.g. Horn 1990b).  
 
It is useful, having reviewed the mathematical approaches to the 
determination of relative and exterior orientation, to now 
consider the developments in network orientation that have 
occurred over the past three decades in close-range 
photogrammetry. The common endpoint of the orientation 
process for metric applications is - and should be - the bundle 
adjustment model of Eqn. 6. Critical to implementation of this 
general model, however, is the generation of initial values. It 
will be seen how this aspect has greatly influenced practical 
implementation of analytical photogrammetry, and how the 
emergence of digital cameras has given impetus to the 
development of new approaches for multi-image network 
orientation. 
 
 

3. NETWORK ORIENTATION SCENARIOS 
 
3.1 Range of Camera Station Configurations 
 
Shown in Figs. 1 to 4 are examples of camera station 
configurations encountered in close-range photogrammetry. 
The first exemplifies a ‘stereo’ geometry, implying low 
convergence or near parallel optical axes. Figs. 2 and 3 
constitute typical convergent configurations, which exemplify 
strong network geometry. Finally, Fig. 4 represents a 
photogrammetrically challenging network geometry where the 
camera stations and most object points are near to being in a 
single plane. The last case is unfortunately very representative 
of the network geometry encountered in traffic accident 
reconstruction, which is a fast growing applications area for 
digital close-range photogrammetry (Fraser et al., 2005). 
Reference will be made to these network configurations in the 
following discussion.  
 
3.2 The Traditional Approach 
 
As analytical photogrammetry evolved, the ‘traditional’ 
orientation scenario of analog stereo restitution remained 
popular. This was a two-step process, appropriate for 2-image 
configurations: 
  
 
 
 
 
 
 
 
The RO was via the coplanarity model (Eqn. 7) or, less 
frequently, the collinearity model (Eqn. 5). The absolute 
orientation (AO) was performed with a 3D similarity 
transformation (Eqn. 1). Thus, in the present context, the first 
issue typically concerned how to determine initial values ∆. 
Fortuitously, this was relatively straightforward for stereo 
geometry. Two rotations could be assigned an initial value of 
zero, and the relative rotation about the optical axis could be 
estimated from the image point distribution. The initial values 
for translation were most often taken as zero. For AO, closed-
form and quasi least-squares solutions for 3D similarity 
transformation are well known, and thus computing rigorous 

AO via a linear least-squares solution to Eqn. 1 does not pose 
any practical difficulties. Networks exemplified by Fig. 1 could 
therefore be oriented reliably, with certain constraints upon the 
degree of convergence between the two optical axes. 
 
3.3 Early Days with Multi-Image Networks 
 
Given that the approach above was effectively limited to two-
image stereo networks, and that stereo geometry is not optimal 
from a accuracy standpoint, an alternative was sought to 
accommodate the convergent multi-image geometry shown in 
Figs. 2 and 3. This gave rise to a second orientation scenario, as 
follows: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
A number of object points (minimum of 4) were assigned 
preliminary XYZ coordinates (measured or arbitrary), and from 
these two or more images would be resected via closed-form 
resection (e.g. Fischler & Bolles, 1981). Thus, O was 
established for these images. Spatial intersection would follow 
to provide the XYZ coordinates of object points (X). From the 
new object point coordinates, further images were resected and 
further points intersected until initial values were established 
for all parameters. Bundle adjustment then followed to refine 
the approximate values. This process suited the sequential, 
monoscopic measurement of images. It had two main 
drawbacks – which were not viewed as such at the time – 
namely that initial XYZ coordinate values for at least 4 points 
were needed and a careful labelling of image points was 
required to ensure correct correspondences between images. 
 
This approach was adopted in the 70s and 80s for industrial 
photogrammetry systems, and it remains in common use today. 
At the same time the computer vision community were engaged 
in popularising the essential matrix approach, albeit two images 
at a time. Why, one might ask, were the methods of 
photogrammetric orientation not adopted in computer vision? 
Of the no doubt many contributing factors, four come to mind:  

i. There was no desire whatever to get involved with manual 
point labelling; correspondences were to be determined 
automatically, with a percentage of these accepted as being 
potentially erroneous.  

ii. The need to assign object point coordinates and determine 
initial values was to be avoided.  

iii. There was a preference to work with pixel coordinates and 
to ignore lens calibration. 

iv. Metrically accurate results were not being sought. 

 Nevertheless, some developments in computer vision were 
curious given the then state of the art in photogrammetry. For 
example, the camera calibration approach of Tsai (1987) 
required not only the provision of an object point array with 
known XYZ coordinates, but also a multi-stage process 
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Figure 1: Stereo image geometry with low convergence. 
 
 
 

Figure 2: Convergent multi-image network and near-planar array. 
 



 

Figure 3: Multi-image convergent geometry for complex object. 
 
 

   Figure 4: Multi-image geometry with camera stations near to the effective plane of the object, typical in accident reconstruction. 

 



 

involving closed-form solutions and initial value generation for 
iterative non-linear optimization. Moreover, there were different 
requirements relating to planar and non-planar 3D object point 
arrays. At the time, a fully rigorous single or multi-camera self-
calibration could be obtained with much less effort and much 
greater model fidelity and accuracy via a photogrammetric bundle 
adjustment with additional parameters. 
 
3.4 The Exterior Orientation Device and Coded Targets 
 
The introduction of digital cameras to close-range 
photogrammetry opened the door to full automation of the 
network orientation process. Images could be scanned for 
targets, and after initial exterior orientation (determination of O) 
a correspondence determination based on, say, epipolar 
constraints or spatial intersection criteria could be employed to 
provide initial values for object point coordinates. But how was 
exterior orientation to be obtained? The answer to this question 
was the exterior orientation (EO) device introduced in the mid 
1990s (e.g. Ganci & Hanley, 1998; Fraser, 1997). This device, 
examples of which are shown in Fig. 5, is an automatically 
detected and recognized pattern of target points within the 
image. The points on the EO device have known XYZ 
coordinates. Hence, the scenario for orientation follows that of 
the previous section. 
 

    
 

Figure 5: Examples of EO devices. 
 
After resection of images that ‘see’ the EO device, intersection 
follows to determine initial values X of object point coordinates. 
What happens with images in which the EO device does not 
appear? This is where coded targets come in. These were first 
proposed for close-range photogrammetry in the late 1980s. If 
there are coded targets distributed on the object, which are 
automatically recognised and triangulated in the initial spatial 
intersection, then groups of these become, effectively, EO 
devices and they facilitate resection of additional images. Once 
again, an iterative process of resection/intersection and possibly 
initial bundle adjustment is pursued until starting values for all 
parameters are determined. A final bundle adjustment, usually 
with camera self-calibration, is then performed. 
 
This scenario affords fully automatic network orientation and 3D 
coordinate determination of targeted object points. The word 
target here is important, for targets are essential, along with 
favourable illumination conditions (usually provided via a strobe 
flash) to ensure that the resulting image points will be 
automatically detected and accurately measured. Whereas from a 
computer vision standpoint the provision of targets is anathema, 
it would seem to this author that the EO device/coded target 
approach would go a long way to alleviating camera calibration 
concerns in applications such as motion tracking and object 
modelling, since the process is simple, fully automatic and 
produces an accurate, scene independent calibration. 
 
3.5 Coded Targets Alone 
 
In spite of the benefits of the EO device, and its widespread 
adoption in vision metrology, it does display shortcomings. For 

very large objects, a large EO device is warranted to ensure 
success in the initial closed-form resection. Moreover, the 
camera station geometry and EO device location must be such 
that robust detection and measurement is provided in enough 
images (minimum of two) with suitable geometry to support 
reliable initial spatial intersection. Consider now a scenario 
where the EO device is not used, but coded targets are. 
 
As with the previous process, the images would be scanned and 
the coded and uncoded targets measured. Because the coded 
targets provide point correspondences, there need only be a 
sufficient number of pairs of homologous points between two 
images to facilitate RO. This first step in the orientation process 
now requires a solution of the coplanarity equations (initial 
values ∆), with the full scenario becoming: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following the initial RO, resection follows for those images 
‘seeing’ enough of the codes included in the RO. A bundle 
adjustment can then be used to refine the network, after which 
correspondence determination and spatial intersection follow to 
establish additional object point coordinates (X). This is 
followed by a final bundle adjustment and AO. There may be a 
number of resection/intersection stages in the building of the 
network, though these occur fully automatically and the user 
can be oblivious to the number of iterative cycles performed. 
 
This process is followed in the ongoing development of the 
Australis software system, and also in iWitness (Photometrix, 
2005; Fraser & Hanley, 2004) albeit only for sensor calibration 
in fully automatic form in iWitness (Fraser et al., 2005). While 
the approach has proven to be robust and reliable for providing 
initial values O and X for the bundle adjustment, the provision 
of starting values ∆ for the initial RO has proven to be a very 
challenging problem, which has fortunately been overcome. 
 
Given the considerable amount of literature on the essential 
matrix/fundamental matrix model for image orientation, one 
would be left with the impression that this was a viable 
‘working’ approach for RO. Experience suggests otherwise, and 
indeed it is consistent with the observation by Horn (1990) 
quoted earlier. Put simply, reliable and reasonably representative 
values for the five parameters of relative orientation cannot be 
expected with a sufficient degree of confidence, especially in 
convergent imaging configurations with a modest number of 
point correspondences (say 8-10) and object arrays which 
display limited depth in proportion to their lateral extent. The 
networks in Figs. 2 to 4 provide examples of such cases. 
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As an alternative and remarkably straightforward approach to 
determining initial values ∆ for RO, a Monte Carlo type 
strategy has been adopted in which a very large number of 
possible relative orientation solutions are assessed for the 
available image point pairs. The refined solution in each case is 
obtained via the coplanarity model using combinations of 
plausible initial values (there could be many of these). From the 
number of qualifying solutions obtained for the first five point 
pairs considered, the most plausible are retained. But, RO 
results are not finalised at this time, as there may be quite a 
number of possible solutions in cases of weak geometry. This 
will be compounded by the presence of random image 
coordinate measurement errors, however small. The entire 
process takes only a fraction of a second.  
 
3.6 On-line Orientation for Manual Image Measurement 
 
A favourable characteristic of adopting an initial RO in the 
orientation process, much as is done with stereo model 
restitution, is that it is quite well suited to on-line initial 
network orientation. This is where the measurement of image 
coordinates involves interactively referencing points in image 
pairs rather than labelling them for later off-line computation of 
orientation. As soon as enough image points are referenced, RO 
can automatically take place, in the background. It is quite 
conceivable that in cases of very poor geometry, such as 
represented by Fig. 4, there may be multiple plausible solutions 
to the RO when only 5 to 8 points are available. The RO 
process must then keep track of these possible solutions and 
examine every one as each additional point is referenced. The 
correct solution is generally isolated with no more than ten 
points, whereas for a strong geometry a successful RO can 
usually be reported to the operator after 6 points are referenced. 
The orientation process can then be summarized as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This on-line network orientation capability is a distinctive 
feature of iWitness. It also extends to the system’s other 
computational processes related to orientation, namely to 
resection, bundle adjustment and coordinate transformation for 
AO. At no time need the operator select a key such as 
‘compute’ or ‘process’; this happens immediately enough 
information is available to support the computation. Greatly 
enhanced error detection is a further feature of this approach 
since observational blunders are recognised, and corrected, as 
they occur. 

4. CONCLUDING REMARKS 

The purpose of this paper has been to review the network 
orientation processes that have been employed in close-range 
photogrammetry as it has evolved from a film-based to digital 
image-based 3D measurement technology. Underlying the 
different orientation and sensor self-calibration algorithms and 
computational procedures are two basic functional models 
which have served photogrammetry well: the collinearity and 
coplanarity models. Although non-linear, both are solved via 
linear least-squares, thus requiring the determination of initial 
values for the parameters. The reason for the different 
computational sequences that have evolved is closely related to 
the different approaches to initial value determination.  
 
It is also for this reason that one hears justification for the 
developments of alternative, linear solutions to image 
orientation. The author has attempted to demonstrate that while 
generation of initial values may have been viewed as an 
impediment in the past, it has never been much more than a 
necessary nuisance. Moreover, with closed-form solutions and 
alternative approaches to solving the relative and exterior 
orientation problems in an approximate manner, orientation 
systems requiring no operator input and no provision of 
additional object space information are readily realisable. For 
example, the provision of coded targets, not in any required 
configuration, is sufficient to enable fully automatic exterior 
orientation and camera calibration, as exemplified by the 
iWitness camera calibration process (Fraser et al., 2005).  
 
Finally, though perhaps regrettably, this author concludes that 
in the context of practical close-range photogrammetry, which 
focuses upon metric measurement, either automatic or manual, 
the linear projective geometry based approaches centred upon 
the essential and fundamental matrices have very little to offer 
as viable alternative models for network orientation. 
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