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ABSTRACT: 
A combination of the two remote sensing systems, imaging spectrometry (IS) and Light Detection And Ranging (LiDAR), is well 
suited to map fuel types, especially within the complex wildland urban interface. LiDAR observations sample the spatial information 
dimension describing geometric surface properties. Imaging spectrometry on the other hand samples the spectral dimension, which is 
sensitive for discrimination of species and surface types. As a non-parametric classifier Support Vector Machines (SVM) are 
particularly well adapted to classify data of high dimensionality and from multiple-sources as proposed in this work. The presented 
approach achieves an improved land cover mapping based on a single SVM classifier combining the spectral and spatial information 
dimensions provided by imaging spectrometry and LiDAR.  
 

1. INTRODUCTION 

Accurate description of wildland fuel types and fuel properties 
is vital for understanding the processes involved in initiation 
and propagation of forest fires (Carlson and Burgan 2003). 
Remote sensing offers the potential to provide spatially 
distributed information on fuel types important for the 
assessment of fire risk and to mitigate the impact of wildland 
fires (Chuvieco 2003; Justice et al. 2003). Data of the two 
remote sensing systems, imaging spectrometry and LiDAR, are 
well suited to map the diverse and heterogeneous fuel types, 
especially within the complex Mediterranean environment and 
the wildland urban interface (WUI).  
Land cover monitoring in the context of forest fire management 
enables the assessment of the spatial distribution for different 
fuel types. The classification of fuel types is specifically 
dependant on the height, density and the surface type of the 
fuel. LiDAR observations sample the spatial information 
dimension describing the geometric properties of natural and 
artificial surfaces (Andersen et al. 2005; Morsdorf et al. 2004). 
Imaging spectrometry on the other hand samples the spectral 
dimension, which is sensitive for discrimination of species, 
surface types and fuel moisture (Jia et al. 2006; Kötz et al. 
2004). The observations of these two remote sensing systems 
can mutually complement each other and are thus indispensable 
for comprehensive and specific fuel type mapping. Spatial 
distribution of land cover together with additional properties on 
the fuel structure and condition can be further translated into 
fuel models important for the parameterization of forest fire 
behaviour models. 
The synergistic use of LiDAR and spectral data has already 
been exploited for land cover mapping purposes (Hill and 
Thomson 2005; Hodgson et al. 2003; Packalen and Maltamo 
2007). Nevertheless commonly used statistical classification 

methods, such as maximum likelihood classification, are limited 
to classify high dimensional data typically provided by multiple 
sources (Benediktsson et al. 1990). With increasing numbers of 
input dimensions and complexity of the data the description of 
an appropriate multivariate model required by statistical 
approaches becomes unpractical. Several non-parametric 
classifiers have been introduced which do not require such prior 
knowledge on the statistical distribution of the data to be 
classified.   
Being such a non-parametric classifier Support Vector 
Machines (SVM) are particularly well suited to classify data of 
high dimensionality and from multiple sources (Waske and 
Benediktsson 2007 (in review)). SVM delineate two classes by 
fitting an optimal separating hyperplane to those training 
samples that describe the edges of the class distribution. As a 
consequence they generalize well, even when only small 
training sets are available for the classification of high 
dimensional data (Pal and Mather 2006).  
Within the presented study we focus on mapping fuel types at 
landscape level based on airborne LiDAR and imaging 
spectrometer data over a Mediterranean site south of Aix-en-
Provence. 
The final performance of the data fusion approach is assessed 
by the accuracy of the classification based on the combined 
imaging spectrometry and LiDAR data compared to a pure 
spectral classification input. 
 

2. DATA 

An airborne survey was conducted early October 2006 over a 
Mediterranean site south of Aix-en-Provence, France. The 
covered site comprised typical Mediterranean vegetation 
intermixed with urban structures. Vegetation covered a typical 
range of French Mediterreanean wildland fuels: (i) fire-resistant 



matorrals (so-called garrigue) dominated by species such as the 
sclerophyllous Quercus coccifera and Ulex spp.; (ii) fire-prone 
Pinus halepensis woodlands; and (iii) fire-resistant Quercus 
woodlands (Q. ilex, Q. pubescens). These three predominant 
vegetation types are mixed as a function of fire history and 
vegetation dynamics (Quézel and Médail 2003). These 
vegetation types are intermingled with human settlements and 
buildings forming a wildland-urban interface. This entails 
frequent management practices of vegetation in the region such 
as shrub-clearing of the understorey, and thinning of the 
overstorey.  
The employed remote sensing systems the LiDAR (Optech, 
ALTM3100) and the imaging spectrometer (AISA-Eagle) were 
mounted together with a very high-resolution photogrammetric 
camera (40 cm spatial resolution) on a helicopter and operated 
by the company HELIOGS. The airborne survey was organized 
to cover a region of about 13.6 x 3.6 km in a spatial resolution 
of 1 meter. In the presented study only subset is presented (Fig. 
1-2). 
After pre-processing, LiDAR derivatives and spectral bands of 
the imaging spectrometer were co-registered and as layer stack 
jointly considered for the classification. Parallel to the airborne 
survey a comprehensive field campaign was conducted for the 
validation of the fuel types derived from the observations of the 
two remote sensing systems. The field measurements collected 
describe the relevant fuel types, including a specific 
characterization of the WUI interface and species composition. 
Fuel properties such as biomass and fuel moisture content were 
also sampled. 
 
2.1 Imaging Spectrometer 

The imaging spectrometer data employed in this study has been 
recorded by the AISA/Eagle imaging spectrometer (Tab. 1). The 
proposed thematic analysis required a dedicated geometric and 
radiometric pre-processing of the imaging spectrometer data. 
The image data was geometrically corrected by the parametric 
geocoding approach PARGE. Topography and illumination 
effects were taken into account based on the digital surface 
model provided by the LiDAR. Remaining geometric 
inaccuracies caused by erroneous synchronization with the 
inertial navigation system had to be corrected by a direct co-
registration to the LiDAR data. Subsequently the physically 
based atmospheric correction software ATCOR4 was employed 
to obtain top-of-canopy reflectance (Richter and Schläpfer 
2002; Schläpfer and Richter 2002) (Fig. 1). The original 
spectral range and resolution have been reduced due to data 
quality issues to 454-923 nm and 4.6 nm respectively. 
 

Image area Ground resolution Spectral bands 
2000 x 370m  1 m 244 bands 
FOV: 36.7° IFOV: 0.036° with 2.3 nm width 
  400-970 nm 

 Table 1.  Specifications of the AISA/Eagle imaging 
spectrometer data 

 
Figure 1.  Geometrically and radiometrically corrected 

AISA/Eagle data of the study site (true colour 
composite) 

 

2.2 LiDAR 

The LiDAR system used was the Airborne Laser Terrain 
Mapper ALTM3100 laser scanner developed by the Canadian 
company Optech (Tab. 2). The ALTM3100 system is a laser 
rangefinder recording up to four returns of the laser signal from 
the ground surface. For a small subset of 2 x 1.5 km the full 
waveform of the laser return signal was also recorded with the 
Optech waveform digitizer. The survey was conducted with a 
nominal height above ground of 1000 m. This leads to average 
point density of 3.7 points per square meter (p/m2) enabling the 
processing of elevation models of the surface and terrain in the 
spatial resolution of one meter (Fig. 2). 
Several simple derivatives describing the vertical and horizontal 
geometric surface properties are retrieved from the original 
LIDAR return distribution similar to (Naesset 2002; Naesset 
and Gobakken 2005). The vertical height distribution of laser 
returns within gridded 3 x 3 meter boxes was described by six 
height percentiles. Furthermore point density for six equidistant 
layers was derived based on the same vertical return distribution 
for an assessment of the vertical density distribution. Finally the 
difference between the digital surface and the terrain model 
provided an estimate of the canopy height model, which also 
included heights of artificial structures. All LiDAR derivatives 
were normalized to their respective maximal values facilitating 
the optimization of the SVM classification parameters.  
 

Scan angle Ground 
resolution 

Point density Laser 
wavelength 

FOV: ±25° 1 m pixel size 
(DTM & DSM) 

3.7 points/m2 1064 nm 

 
Table 2.  Specifications of the ALTM3100 LiDAR (Optech) 

 
Figure 2. Digital surface model (DSM) obtained by the Optech 
laser scanner ALTM3100 of the study site 
 

3. METHODS 

The land cover classification was performed by the non-
parametric Support Vector Machines (SVM). The SVM 
classification was trained and applied to three different data sets 
representing different input sources and information 
dimensionality (Fig. 3).  
 

Remote 
Sensing Input:

a) IS (99 bands)
b) LiDAR (13 layers)

c) IS & LiDAR (99 
bands & 13 layers)

SVM
Land cover 

map

Training
(~100 samples 

per class)

Validation
(total 1248 

samples, min. 
100 per class)  

Figure 3. Processing flow of SVM classification setups a-b) 
single sources and c) multiple remote sensing sources 
 
3.1 Support Vector Machines 

SVM split two classes by constructing an optimal separating 
hyperplane, which maximizes the distance between the two 



classes (Fig. 4) (Burges 1998). This hyperplane is fitted only to 
the training samples that describe the margins of the 
corresponding classes. For linear non-separable cases the data is 
mapped into a higher dimensional feature space that allows a 
linear hyperplane to split the classes newly distributed data.  
Separate SVM were trained for different remote sensing inputs 
(Fig. 3): single sources: Imaging spectrometer (IS, 99 bands), 
LiDAR (13 layers) and as multiple source: IS and LiDAR 
combined in a layer stack (99 bands + 13 layers).   
To solve the multi-class problem with the originally binary 
SVM a one-against-all (OAA) strategy was applied (Foody and 
Mathur 2004): a set of binary classifiers is trained to 
individually separate each class from the rest. The final class 
label is then determined by selecting the maximum decision 
value, i.e. the distance of a pixel to the separating hyperplane, 
from the set of OAA outputs. 
The training of the SVM was performed using the ν-SVM 
approach in LIBSVM (Chen and Lin 2001). A Gaussian kernel 
was used to transform the data (Vapnik 1998). In this case, two 
parameters needed to be set for the training: the parameter γ that 
controls the width of the Gaussian kernel and ν, an upper bound 
on the fraction of training errors and a lower bound of the 
fraction of support vectors (Schoelkopf et al. 2000). The more 
common C-SVM and the applied ν-SVM lead to similar results, 
but ν-SVM were chosen as they require less processing time. 
An IDL-implementation of LIBSVM for remote sensing data 
was used to train wide ranges of values for γ [0.001-1000] and ν 
[0.001-0.2]. Subsequently the quality of the resulting 
classification was evaluated based on a 16-fold cross validation 
(Janz et al. 2007). This way, optimal parameters could be found 
for each binary OAA classifier and an overfitting to the 
reference data was avoided. 

 
Figure 4. Fitting of a hyperplane (Burges 1998)   
 
3.2 Classification: training and validation 

A classification scheme specifically adapted to the 
characteristics of the wildland urban interface was developed 
based on the fuel type classification of the European 
PROMETHEUS project and the experiences in mapping urban 
areas (Herold et al. 2003). The classification scheme is divided 
into different levels as presented in Table 3. The first and 
second level represent functional categories and land cover 
classes relevant for fuel type discrimination. The third level is 
thematically divided by surface properties and could be 
extended to include different vegetation functional types or 
species. Only classes present in the covered area could be 
considered amounting up to a number of nine land cover 
classes.  
The accuracy of a supervised classification depends 
significantly on the training data set. Specifically for training of 
SVM it is important to include mixed pixels at the border of 
class boundaries, as they are most efficient to determine the 
hyperplane between two classes (Foody and Mathur 2006). 
Therefore, a clustered sampling strategy was performed. For 
each class seed points were randomly selected where a 5 x 5 
pixel cross was sampled similar to (van der Linden et al. 

submitted). This strategy helped to cover the class internal 
heterogeneity of the different classes as well as to include mixed 
pixels along with adjacent pure pixels to describe the position of 
the hyperplane. The samples were labeled based on very high-
resolution aerial photographs acquired along with the remote 
sensing data. For discrimination of vertical properties for certain 
classes, such as shrubs, the canopy height model was consulted. 
For each class about 100 samples were selected. For classes 
with a low areal coverage, such as swimming pools and roofs, a 
lower number of samples had to be taken. 
For the accuracy assessment of the different classification 
results an independent validation set was collected by 
unstratified randomized sampling (900 samples). Additional 
stratified randomized sampling was necessary for 
underrepresented classes (roof tiles, swimming pool, road 
asphalt, road gravel, bare soil, bare rock) adding up to 100 
samples for each class. A total of independent 1248 samples 
were selected and labeled to one of the land cover classes based 
on the very high-resolution aerial photographs. 
 
Level 1 Level 2 Level 3 

Wood shingle roof 
Tile roof 
Metal roof 

Buildings/roof 

Concrete roof 
Asphalt road 
Concrete road  
Gravel road 

Transportation areas 

Parking lot 

Built up 

Sport infrastructure Tartan court 
Ground fuels (< 30 
cm) 

Grass & agricultural 
fields 

Shrub / Garriuges (< 2 
m) 

* extendable for 
different vertical 
structure & species 

Vegetation 

Tree stands * extendable for 
different vertical 
structure & species 

Non-urban 
bare surfaces 

Bare soil  

 Bare rock  
Water bodies Swimming pools  
 Natural water bodies  
Table 3.  Landcover classification scheme adapted for fuel type 
mapping in the wildland urban interface 
 

4. RESULTS AND DISCUSSION 

The performance of the different SVM classifications were 
assessed using confusion matrices and user’s accuracy 
(Congalton and Green 1999). Three SVM classifications based 
on different remote sensing inputs have been validated 
separately to assess the advantages for land cover mapping of 
each sensor system and the improvement of the multiple-source 
fusion.  
The SVM classification of the imaging spectrometer data 
provided acceptable results in terms of overall accuracy and 
kappa coefficient (Tab. 4). Class specific results reveal 
significant classification confusion between spectrally similar 
classes such as the three vegetation classes, which lead to 
moderate user accuracies (Fig. 5). Also some confusion between 
bare rock and ground fuel is evident caused probably by mixed 
pixels.  
The overall classification performance of the pure LiDAR data 
was poor, but nevertheless provided significant user accuracies 
for classes with properties in the vertical dimension (Fig. 5). 



Especially the class roof tiles performed very well, which 
probably can probably be explained by the absolute height 
above ground with concurrent opaqueness of roofs as opposed 
to tree canopies, which are semi-transparent three-dimensional 
objects. The moderate results for the shrub class is caused by 
issues with the vertical separability of laser returns for low 
canopies. Further for shrubs with high canopy density the laser 
is incapable of penetrating to the ground. Both issues lead to the 
lack of the vertical information content in the LiDAR data for 
certain shrub canopies. 
The joint classification of the multiple sources, imaging 
spectrometer and LiDAR, leads to a significant improvement in 
terms of overall accuracy and kappa (Tab. 4). The inclusion of 
classes with similar geometric but different spectral properties, 
such as roofs of different materials (e.g. in Tab. 3), would even 
increase this improvement. Most of the achieved improvement 
in accuracy for the multiple-source classification can be 
explained by the decreased confusion between the vegetation 
classes. The vertical information content of the LiDAR 
observations was especially helpful to separate the classes 
ground fuel and tree canopy. LiDAR provides relatively to 
spectral information content no additional information on the 
class shrub due to the issues related to vertical separability of 
laser returns and vegetation density. Further, spectrally similar 
classes such as bare soil and roof tiles made of similar material 
could better be separated by the vertical information provided 
the LiDAR. This effect was not revealed by the confusion 
matrix but is visible in the land cover maps (Fig. 6). 

 
Remote sensing input Overall Accuracy Kappa coefficient 
IS & LiDAR 75.4 % 0.716 
IS 69.15 % 0.645 
LiDAR 31.73 % 0.226 

Table 4.  Accuracy assessment of the SVM classifications 
 

 
Figure 5. User accuracy of SVM classification performances 
based on different remote sensing data input 

 

 

Figure 6. Land cover maps based on the different SVM classifications, upper map: product based on the multiple input sources IS & 
LiDAR, lower map: product based on the single input source IS 
 

5. CONCLUSIONS 

The Earth observation requirements within several scientific 
fields, such as urbanization, biodiversity and natural hazards, 
demand land cover monitoring of landscapes with increasing 
complexity and in ever higher levels of detail. The commonly 
used approach of land cover classification based on multi-
spectral data is limited by the spectral similarity of certain 
surface types. Further, three-dimensional features of important 

surface types, such as built-up urban construction or vertical 
vegetation structure, are not directly inferable from the spectral 
information content provided by passive optical sensors.  Due to 
this underdetermined and partly indirect relationship, the 
interpretation of remote sensing data for land cover monitoring 
should rely on as many independent observations as possible. 
This conclusion leads to the combined exploitation of multiple 
information sources as provided for example by complementary 
sensor systems. The increased dimension and complexity of 



such information also requires new classification methods to 
adequately interpret the data of multiple information sources. 
The method presented in this study is capable of a joint one-step 
SVM classification for the fusion of multiple-source remote 
sensing data provided by an imaging spectrometer and a 
LiDAR. The SVM classifier was able to efficiently exploit the 
significantly increased information content in the 
(hyper)spectral and the three-dimensional dimension. 
Specifically the SVM generalized well, even when only small 
training sets were available for the classification of the high 
dimensional data provided the multiple data sources. The three-
dimensional information of the LiDAR data complemented well 
the spectral information leading to a significant increase in the 
overall land cover classification accuracy relative to the pure 
spectral information input. Important features of fuel types as 
the vertical structure vegetation and houses could be assessed 
with higher accuracy and reliability. This enhanced mapping of 
the wild land urban interface can be a significant input to forest 
fire behaviour models leading to improved risk assessment and 
mitigation of forest fires. 
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