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ABSTRACT: 
 
The linear spectral mixing model is a widely used technique in remote sensing to estimate the fractions of several individual surface 
components present in an image pixel and the pure reflectance spectrum of a component, called endmember, is the model’s 
necessary parameter. Different methods can be used to extract endmembers, finding out the pure pixel from hyperspectral data is the 
most common way, but at the regional scale, the selected single pixel can not present the typical component accurately. The 
objective of this paper is to estimate the feasibility of up-scaling from high spatial resolution data to medium spatial resolution 
hyperspectral data by linear spectral unmixing based technique for extracting the required endmembers. In this case, an inverted Li-
Strahler geometric-optical model is applied to retrieve one of the forest canopy variables (crown closure) in a broadleaved forest 
natural reserve, located in the Three Gorges region of China. This model needs three important scene components (sunlit canopy, 
sunlit background and shadow). The three components’ classes are firstly estimated using QuickBird fusional image with 0.6 m 
spatial resolution by eCognition, an object-based classification method. Then, a 50 by 50 pixels moving window calculated each 
component’s proportion is matched to individual pixels with 30 m spatial resolution of EO-1 Hyperion data. The umixing model is 
finally used for deriving the three endmembers based on the Hyperion data with surface reflectance and the per-pixel three fractions 
computing from QuickBird classification. From the spectral profile comparison, the scaling-based endmembers indicate the mean 
spectra of the components unlike the pure pixels’ spectra. For validating the results, we use 32 independent sample sites collected in 
the study area to assess the accuracy of inverted model’s outputs, and the results of scaling-based endmember extraction method 
(R2=0.60) seem better than the pixel-based method (R2=0.51).  
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1. INTRODUCTION 

At local to regional and global scales, remote sensing has 
facilitated extraordinary advances in the modelling, mapping, 
and understanding of ecosystems and their functioning. One 
basic characteristic of remote sensing in the twenty-first century 
is the extensive use of quantitative algorithms for estimating 
Earth surface variables (Liang, 2004). Forests, being one of the 
most important natural resources worldwide, not only regulate 
the global atmospheric cycles, but also are increasingly being 
used in dynamic global vegetation models for terrestrial CO2 
estimations.  
 
A lot of work in monitoring forest canopy variables using 
remote sensing has focussed on inverting physical based canopy 
reflectance models. Geometric-optical models, which treat the 
surface as an assemblage of discrete geometric objects with the 
reflectance modelled as a linear combination of viewed sunlit 
and shaded components, have been used successfully to 
estimate the forest canopy (Chopping et al., 2006; Franklin and 
Strahler, 1988; Gemmell, 1999; Gerard and North, 1997; Hall et 
al., 1995; Peddle et al., 2003; Peddle et al., 1999; Scarth and 
Phinn, 2000; Scarth et al., 2001; Woodcock, 1994; Woodcock 
et al., 1997). The accuracy of the inverted model’s results is 
primarily related to the model inputs. In a previous study, we 
derived forest crown closure and crown diameter by inverting 
the Li-Strahler geometric-optical model (Zeng et al., 2007), one 
of the most important inputs is the fractional image of one scene 
component–sunlit background, which was calculated based on 
the pure reflectance spectra of viewed surface components, 
called endmembers. Therefore, the method and certainty of the 

endmember extraction is the main factor to influence the value 
of the inverted Li-Strahler geometric-optical model. 
 
Different approaches can be used to extract endmembers, like 
deriving the pure spectrum from the image with field training 
samples, directly obtaining from the observation of a field 
spectrometer or from an existing spectral library. For extracting 
the endmembers of sunlit and shaded scene components by 
hyperspecral remote sensing data, the most common way is 
selecting the pure pixels from the image. However, due to the 
spatial resolution of hyperspectral imagery, the “pure” pixel 
may still contain mixtures of components, and also, at the 
regional scale, the selected single pixel can not present the 
typical component accurately. For solving this problem, a linear 
spectral mixing model is addressed. Zhukov et al. (1999) 
unmixed low-resolution images using the information about 
their pixel composition from co-registered high-resolution 
images. Haertel and Shimabukuro (2005) estimated the 
components’ proportions from medium spatial resolution 
Landsat TM data and then successfully derived the unknown 
components’ endmembers in the low spatial resolution Terra 
MODIS image by the linear spectral mixing model. Zurita-
Milla et al. (2006) inverted the linear spectral mixing model to 
obtain MERIS endmembers based on the known fractional 
coverages of each pixel from a Landsat TM classification. In 
summary, when high spatial resolution imagery is available, the 
linear spectral mixing model can be used to unmix low spatial 
resolution data and estimate the required spectral reflectance. 
This method can also provide an avenue to up-scale the 
information from local to regional studies. Accordingly, the 
objective of this paper is to estimate the feasibility of up-scaling 



 

from high spatial resolution data to medium spatial resolution 
hyperspectral data by a linear spectral unmixing based 
technique for extracting the components’ endmembers used for 
Li-Strahler geometric-optical modelling.  
 

2. STUDY SITE 

In this case, the study area, namely Longmenhe forest nature 
reserve, lies in the Xingshan county of Hubei province, towards 
the northeast of Three Gorges region in China (centred at 
31°20′N, 110°29′E). The total reserve size is about 4644 ha. It 
is located in the temperate climate zone (Cwa–Subtropical 
monsoon, Koeppen (McKnight and Hess, 2000)) and is mainly 
dominated by natural evergreen broadleaved forest and mixed 
deciduous broadleaved forest. The field data were collected in 
June of 2003. A total of 40 sample sites (100mx100m) located 
in the study area were measured based on different plant strata 
and topographic distribution, and each of them randomly 
included 5 sample plots (20mx20m), which provided many field 
measurements about the forest canopy structure, such as crown 
closure, crown diameter, DBH (diameter at breast height), tree 
height, trunk height, tree age and visual estimations by forest 
experts for forest type, plant species and distribution. Those are 
the necessary ground truths for validating the model results. 
 

3. METHOD 

The overall method used in this study is shown as flowchart in 
Figure 1. The inverted Li-Strahler geometric-optical model is 
used to retrieve the forest canopy variables. The model needs 
three scene components: sunlit canopy (C), sunlit background 
(G) and shadow (T). The endmembers of these components are 
derived by two approaches: 
• The G, C, T three components’ classes are firstly estimated 

by a QuickBird fusional image with 0.6m spatial resolution 
using eCognition, an object-based classification method. 
Then, a 50 by 50 pixels moving window calculated each 
component’s fraction is matched to individual pixels with 
30m spatial resolution of EO-1 Hyperion image. The linear 
spectral mixing model is finally used for deriving the three 
endmembers based on the Hyperion data with surface 
reflectance and the per-pixel three fractions computing 
from QuickBird classification. 

• Using the PPI algorithm to explore the pure pixel of each 
component directly from Hyperion hyperspectral image. 

    
After inverting the model integrated with the components’ 
endmembers, canopy structural parameters per forest class, and 
slope/aspect data, select one of the model outputs–forest crown 
closure to compare the two methods of endmember extraction, 
and make use of 32 measured field samples for validation. 

 
Figure 1.  Flowchart of general method 

3.1 Inverted Geometric-Optical Model 

The Li-Strahler geometric-optical model (Li and Strahler, 1992; 
1985) is based on the assumption that the Bidirectional 
Reflectance Distribution Function (BRDF) is a purely 
geometric phenomenon resulting from a scene of discrete three-
dimensional objects being illuminated and viewed from 
different positions in the hemisphere. The reflectance associated 
with a given viewpoint is treated as an area-weighted sum of 
four fixed reflectance components: sunlit canopy, sunlit 
background, shaded canopy, and shaded background. Moreover, 
in most cases, these four components could be simplified to 
three: sunlit canopy–C, sunlit background–G and shadow–T (Li 
and Wang, 1995; Peddle et al., 2003; Peddle et al., 1999). This 
model also assumes that the resolution of the remote sensing 
image is much larger than the size of individual crowns but 
smaller than the size of forest stands, and that the individual 
trees are randomly (Poisson) distributed within the pixel 
(Woodcock et al., 1994). Based on the principle of three-
dimensional geometry of a spherical crown on a flat 
background, each proportion of components can be expressed 
by a combination of the forest canopy structural parameters. For 
inverting the model, one of the components–sunlit background 
(Kg) can be used for deriving the expected forest crown closure 
(CC), see equations (1) to (5) (Li and Strahler, 1992; Strahler 
and Jupp, 1990; Woodcock et al., 1997).  
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Where, 
i

θ  υθ are the zenith angles of illumination and viewing, O  is 

the average of the overlap function between illumination and viewing 
shadows of individual crowns as projected onto the background, ϕ  is 

the difference in azimuth angle between illumination and viewing. 
 
Since the study area is in the mountain region and actually the 
crown shape of the broadleaved forest needs to be modelled as 
an ellipsoid, with tree height (h) from ground to mid-crown, 
crown radius (b) in vertical direction and crown radius (r) in 
horizontal direction, double transformations are required to 
allow crowns to be treated as spheres and accommodate the 
sloping surface (Schaaf et al., 1994). The equations of all 
transformations are explained in Zeng et al. (2007). 
 
Therefore, the required inverted model inputs for determining 
CC are the proportional image of Kg; the solar zenith and 
azimuth angles; the view zenith and azimuth angles; the local 
slope and aspect image and the mean measured parameters for 
different kinds of forest crown shapes: h, b, r. Among them, 
deriving the component fractional image of sunlit background is 
the most crucial process, which needs accurately extracting the 
endmembers of the three scene components. 
 



 

3.2 Endmember Extraction  

3.2.1 Linear Spectral Unmixing based technique 
Traditionally, the linear spectral mixing model has been widely 
used to calculate the percentages of several individual surface 
components contained in each pixel of a remote sensing image 
(Goodwin et al., 2005; Peddle et al., 1999). The model assumes 
that the reflectance (S) of each pixel is a linear combination of 
endmembers (R), which are the pure reflectance spectra for 
each component. The general equations are:  
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Where m is the number of components, in this case, m is the 3 
components of C, G and T; p is the number of image bands; K is the 
fractional abundance of each component within the pixel and v is the 
residual for each band. 

However, in this study, we use the inverted approach of this 
model, called linear spectral unmixing based technique. The 
fractions of each component within the pixel of a medium 
spatial resolution image are provided in advance from the 
overlapping high spatial resolution image, and then the 
endmembers of each component will be the final requirements. 
In practice, for deriving the endmembers, we need a test image 
with at least n pixels, and the number of n must be more than 
the number of components. Thus, equation (6) can be more 
conveniently expressed in matrix notation: 
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Vj: n-dimensional vector of the residuals in band j; 
Sj: n-dimensional vector of the pixels’ reflectance in band j; 
K: n x m matrix of the fractions; 
Rj: m-dimensional vector of the components’ reflectance in band j. 
 
We seek a set of numerical values for the unknowns in Rj such 
that the sum of the residual squares becomes minimum (9), and 
then the least squares solution for Rj can be shown in (10) 
(Haertel and Shimabukuro, 2005): 
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The three components’ endmembers can be calculated after 
applying equation (10) to every spectral band in the medium 
spatial resolution hyperspectral image, and the inputs of this 
method are the fractional images for each components and a 
corresponding overlapped image with spectral reflectance. 
 
3.2.2 PPI 
The PPI (Pixel Purity Index) algorithm is a common method to 
find the most "spectrally pure" (extreme) pixels in multi-
spectral and hyperspectral images. It is computed by repeatedly 
projecting n-dimensional scatterplots onto a random unit vector, 
and then the extreme pixels in each projection (those pixels that 
fall onto the ends of the unit vector) are recorded and the total 
number of times each pixel is marked as extreme is noted. That 
consists of the following steps (Plaza et al., 2004): 1. A “noise-
whitening” dimensionality reduction step is performed by using 
the MNF (Minimum Noise Fraction) transform (Green et al., 
1988). 2. A pixel purity score is calculated for each point in the 
image cube by randomly generating lines in the N-D space 

comprising the MNF transformed data. 3. All the points in that 
space are projected onto the lines, and the ones falling at the 
extremes of each line are counted. 4. After many repeated 
projections to different random lines, those pixels that count 
above a certain cut-off threshold are declared “pure”. 5. These 
potential endmember spectra are loaded into an interactive N-D 
visualization tool and rotated in real time until a desired number 
of endmembers are visually identified as extreme pixels in the 
image. In this case, we use the PPI model of ENVI software to 
extract the components’ endmembers directly from the 
hyperspectal data. 
 

4. IMAGE DATA AND PROCESSING 

For this study area, an EO-1 Hyperion image was acquired on 
June 10, 2004, around 11:00 a.m. local time. Hyperion, one of 
the three sensors on the NASA EO-1 platform, was launched on 
November 2000. As a push-broom imaging instrument, 
Hyperion provides images capable of resolving 242 spectral 
bands (from 0.4–2.5 µm) with a 10 nm spectral resolution and a 
30m spatial resolution. For converting DNs to radiances, the 
data were scaled by 40 for VNIR and 80 for SWIR (Beck, 
2003). Several stripes (data columns of poor quality) in the 
Hyperion data contain no information and lower radiance. 
Those abnormal pixels are detected and replaced by the average 
radiance value of their immediate left and right neighboring 
pixels (Han et al., 2002). In addition, an atmospheric correction 
is required. We use ACORN version 4.0, a commercially 
available atmospheric correction program based on the 
MODTRAN 4 radiative transfer code (AIG, 2002). Due to the 
low signal to noise ratio at the beginning and the end of the 
Hyperion spectra (≤436nm and ≥2385nm) and the heavy water 
absorption influences in several bands, a total of 64 bands are 
dropped from 196 valid bands. Geometric correction is done by 
26 GCPs (Ground Control Points) relative to topographic maps 
and the geometric error is less than one pixel.  Finally, the 
corrected Hyperion data with 132 bands of surface reflectance 
in a UTM Zone 49 N WGS-84 projection are used in this study. 
 
The QuickBird data consisted of one panchromatic image at 
0.61m resolution and one multi-spectral image with 4 spectral 
bands (B/G/R/NIR) at 2.44m resolution. It was collected on 
August 23, 2003 at 11:08 a.m. local time. This QuickBird 
image being the high spatial resolution data will be used 
together with Hyperion data to derive components’ 
endmembers. Although the two images were acquired at 
different dates, the solar zenith and azimuth angles are similar 
(23.5° and 104.5° for Hyperion, 29.2° and 127.9° for QuickBird) 
and the sensor viewing direction is also the same at nadir. 
Hereby, only small variation in view/illumination geometry will 
be expected between the two images. 
 
For classifying the three components from the QuickBird image 
and matching it to Hyperion data, we firstly merge the 
panchromatic and multi-spectral images by principal 
component method and cubic convolution resampling technique 
of ERDAS IMAGINE software, the output image includes 0.6m 
spatial resolution and 4 spectral bands. Then, an object-oriented 
classification software eCognition is carried out for classifying 
the components. eCognition is designed to segment the image 
into units of similar spectral and spatial patterns and to classify 
those segments according to a pre-defined rule base (Baatz et 
al., 2004). Finally, the geometrically corrected QuickBird 
fusional image being a base image is used to spatially co-
register the two images, the matched subsets of Hyperion and 
QuickBird data that covered the same study region are selected. 



 

5. RESULTS 

5.1 Endmembers and Model Inputs 

The processed Hyperion data with surface reflectance and 30m 
spatial resolution is shown in Figure 2a. The dimension of this 
image is 208 (column) x 173 (line) x132 (band). The fusional 
QuickBird image with 0.6m spatial resolution and 4 spectral 
bands (shown in Figure 2b) is located in the centre of Hyperion 
image, and it includes 4300 (column) x 3400 (line) pixels.  
 

 

a. Hyperion image (bands: R50 G23 B16) b. QuickBird fusion image (R-NIR G-R B-G) 

  
c. Proportional image of Kg (30m) d: Classification of QuichBird (0.6m)  

  
e. Slope data with 30m resolution f. Aspect data with 30m resolution 

 
Figure 2: Processed Hyperion image, QuickBird image and the 

inputs of inverted Li-Strahler model 
 
The three components classification result from the QuickBird 
fusional image by eCognition is shown in Figure 2d (White: G-
sunlit background, Green: C-sunlit canopy and Black: T-
shadow). After spatially co-registration, a subset of the 
Hyperion image with 86 (column) x 68 (line) is masked out for 
matching the QuickBird classification image. A 50x50 pixels 
moving window is used to calculate the fractions of each 
component from the QuickBird classification, and that is just 
matching the individual pixels of Hyperion data. Then the three 
components’ endmembers extracted through the linear spectral 
unmixing based technique are shown in Figure 3. Comparing 
the endmembers retrieved from the pure pixels of the whole 
Hyperion image (G: x-104 y-89 C: x-150 y-102 T: x-127 y-117) 
by the PPI algorithm, the QuickBird scaling-based endmembers 
indicate the mean spectra of the components unlike the pure 
pixels’ spectra.  
 
In terms of the endmembers, the proportional images of Kg for 
both endmember extraction methods are derived by spectral 
unmixing the whole Hyperion image. Figure 2c illustrates one 
of the Kg images, which is from the QuickBird scaling-based 

endmembers. The brighter regions express higher proportions. 
The other required inputs for inversion of the Li-Strahler model, 
slope and aspect images with 30m spatial resolution are created 
from DEM data using topographic analysis model of ERDAS 
IMAGINE, see Figure 2e-f.  

 
Figure 3: Components’ endmembers (Up: QuickBird scaling-

based method; Down: three pure pixels by PPI) 
 
In this study area, the dominant forest communities include 
deciduous broadleaved forest, evergreen broadleaved forest, 
and conifer forest. Based on a forest classification image (Zeng 
et al., 2007) and the field measurements, the corresponding 
mean value of forest crown parameters, h, b, and r for every 
dominant forest class is shown in Table 1.  
 

Dominant Forests h (m) b (m) r (m) 

Deciduous Broadleaved Forest 9.79 3.97 1.79 

Evergreen Broadleaved Forest 8.86 3.36 1.61 

Conifer Forest 8.41 4.63 1.51 
 

Table 1. Inverted model inputs for each forest class 
 
5.2 Model Outputs and Validation 

We compiled an IDL program to implement the inversion of the 
Li-Strahler model integrated with the pixel-based inputs data. 
Figure 4 presents the final mapping results of forest crown 
closure distributed in the Longmenhe study area. The upper 
image is the model result according to the endmembers from 
the QuickBird scaling-based method and the other is the result 
for the PPI method. These two mapping images indicate the 
variety when one of the inverted model inputs (Kg) is different. 
 
For validating the model outputs, we calculate the mean value 
of 3x3 pixels from the mapping image for comparison to one 
field sample site. In total 32 independent samples are included. 
Figure 5 illustrates the agreement between model-interpreted 
crown closure and ground measurements. The coefficients of 
determination R2 and root mean square error (RMSE) are equal 



 

to 0.6 / 0.064 for QuickBird scaling-based method, and 0.51 / 
0.048 for Hyperion PPI method respectively.  

 
 

 

Figure 4.  Mapping results of forest crown closure by the 
inverted geometric-optical model (Up: QuickBird scaling-based 

method; Down: Hyperion PPI method) 

 
Figure 5.  Linear relationship between ground measured CC and 

model derived CC  

The validation results show that most of the model interpreted 
CC values are less than the ground measurements for both 
endmember extraction methods. But comparing the two 
methods, the results of QuickBird scaling-based method seem 
better than the pure-pixel deriving method in terms of the 
simulated regression lines. 
 

6. CONCLUSION AND OUTLOOK 

In this study, we use an inverted Li-Strahler geometric-optical 
model to retrieve one of the forest canopy variables (crown 
closure) from a hyperspectral Hyperion image collected in the 
Longmenhe broadleaved forest natural reserve, located in the 
Three Gorges region of China. For preparing the inverted model 
inputs, we compare two endmember extraction methods: linear 
spectral unmixing based technique, which requires a subset 
Hyperion image combined with the components’ fractional 
images from the matched QuickBird high spatial resolution data, 
and another method by selecting the pure pixel directly from the 
Hyperion image. Depending on the comparison of derived 
endmember profiles and the validation of the model outputs 
with field measurements, we can conclude that the linear 
spectral unmixing based technique is an effective method to 
estimate the components’ endmembers in a medium spatial 
resolution image. It can solve the mixed-pixel problem, when a 
matched high spatial resolution image is provided.   
 
Since the collected QuickBird image of this case is smaller than 
the Hyperion image, only the overlapped region can be used for 
extracting the endmembers. However, if the overlapped region 
is including all components and it is located in a typical area of 
the Hyperion image, then the derived components’ endmembers 
can be used for the whole Hyperion image. It indicates that the 
method of linear spectral unmixing based technique appears 
appropriate for up-scaling the information from high spatial 
resolution data, and it can also expand the consistent 
information from local to regional scale. 
 
Although the endmember extraction method of linear spectral 
unmixing based technique is applied using QuickBird as high 
spatial resolution image and Hyperion as medium spatial 
resolution image in this study, it can be implemented for any 
two sets of data with different spatial and spectral resolution, 
such as from QuickBird to Landsat TM, from landsat TM to 
MODIS, and even from Hyperion to MODIS. Therefore, using 
this up-scaling method to explore the information from images 
at global scale is also feasible. 
 
In future work, we will continue the study of quantitatively 
monitoring the forest canopy variables in the whole Three 
Gorges region of China using multi-scale and multi-spatial / 
spectral resolution data through the inverted Li-Strahler 
geometric-optical model and the up-scaling method. Even 
though the processes of the inverted model and the scaling 
method will need more careful analysis and calibrations in the 
future, the presented results show confidence in the approach 
selected. 
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