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ABSTRACT:

The linear spectral mixing model is a widely usechhique in remote sensing to estimate the frastidrseveral individual surface
components present in an image pixel and the peftectance spectrum of a component, called endmenitbehe model’s

necessary parameter. Different methods can betasedract endmembers, finding out the pure pirainf hyperspectral data is the
most common way, but at the regional scale, thectsdl single pixel can not present the typical comept accurately. The
objective of this paper is to estimate the feaisjbibf up-scaling from high spatial resolution datamedium spatial resolution
hyperspectral data by linear spectral unmixing 8dasehnique for extracting the required endmembarthis case, an inverted Li-
Strahler geometric-optical model is applied toiest one of the forest canopy variables (crownuwiesin a broadleaved forest
natural reserve, located in the Three Gorges regfddhina. This model needs three important scemepooents (sunlit canopy,
sunlit background and shadow). The three compohelatsses are firstly estimated using QuickBird dusil image with 0.6 m

spatial resolution by eCognition, an object-basedgification method. Then, a 50 by 50 pixels mowiigdow calculated each

component’s proportion is matched to individualghéxwith 30 m spatial resolution of EO-1 Hypericatal The umixing model is

finally used for deriving the three endmembers Basethe Hyperion data with surface reflectance thecber-pixel three fractions
computing from QuickBird classification. From theesfral profile comparison, the scaling-based endbpsgmindicate the mean
spectra of the components unlike the pure pixglstta. For validating the results, we use 32 ieddpnt sample sites collected in
the study area to assess the accuracy of invertetbla outputs, and the results of scaling-basatinember extraction method

(R?=0.60) seem better than the pixel-based meth&d0(B1).

1. INTRODUCTION

At local to regional and global scales, remote isgndas
facilitated extraordinary advances in the mode|lintapping,
and understanding of ecosystems and their functipnOne
basic characteristic of remote sensing in the ty«firgt century
is the extensive use of quantitative algorithms dstimating
Earth surface variables (Liang, 2004). Forestsidene of the
most important natural resources worldwide, noty aelgulate
the global atmospheric cycles, but also are inamghs being
used in dynamic global vegetation models for teri@sCO,
estimations.

A lot of work in monitoring forest canopy variablesing
remote sensing has focussed on inverting physased canopy
reflectance models. Geometric-optical models, whielat the
surface as an assemblage of discrete geometrictshijéth the
reflectance modelled as a linear combination ofveig sunlit
and shaded components, have been used successully
estimate the forest canopy (Chopping et al., 20@énigin and
Strahler, 1988; Gemmell, 1999; Gerard and Nortl®,71¥all et
al., 1995; Peddle et al., 2003; Peddle et al., 1$@%&rth and
Phinn, 2000; Scarth et al., 2001; Woodcock, 1994pt¢ock
et al.,, 1997). The accuracy of the inverted moded'sults is
primarily related to the model inputs. In a predatudy, we
derived forest crown closure and crown diameteiirtwerting
the Li-Strahler geometric-optical model (Zeng et 2007), one
of the most important inputs is the fractional iraa one scene
component—sunlit background, which was calculatasket on
the pure reflectance spectra of viewed surface oommts,
called endmembers. Therefore, the method and ngrtaf the
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endmember extraction is the main factor to infleettte value
of the inverted Li-Strahler geometric-optical madel

Different approaches can be used to extract endmembke
deriving the pure spectrum from the image withdigélaining
samples, directly obtaining from the observation aoffield
spectrometer or from an existing spectral librdgr extracting
the endmembers of sunlit and shaded scene compoibgnt
hyperspecral remote sensing data, the most comnayn isv
selecting the pure pixels from the image. Howedee to the
spatial resolution of hyperspectral imagery, their&g pixel
may still contain mixtures of components, and alab,the
regional scale, the selected single pixel can mesent the
typical component accurately. For solving this peol a linear
spectral mixing model is addressed. Zhukov et &P99)
unmixed low-resolution images using the informatiabout
their pixel composition from co-registered highaleion
images. Haertel and Shimabukuro (2005) estimated th
components’ proportions from medium spatial resofut
Landsat TM data and then successfully derived thienown
components’ endmembers in the low spatial resaiufierra
MODIS image by the linear spectral mixing model.rias
Milla et al. (2006) inverted the linear spectralkmg model to
obtain MERIS endmembers based on the known fradtiona
coverages of each pixel from a Landsat TM clas#ifin. In
summary, when high spatial resolution imagery @ilable, the
linear spectral mixing model can be used to unroix spatial
resolution data and estimate the required spentfdctance.
This method can also provide an avenue to up-stiade
information from local to regional studies. Accargly, the
objective of this paper is to estimate the feagjbdf up-scaling



from high spatial resolution data to medium spatésolution

hyperspectral data by a linear spectral unmixingseta
technique for extracting the components’ endmembses for

Li-Strahler geometric-optical modelling.

2. STUDY SITE

In this case, the study area, namely Longmenhestfarature
reserve, lies in the Xingshan county of Hubei pnoej towards
the northeast of Three Gorges region in China (edntut

31°20N, 110°2%). The total reserve size is about 4644 ha.

is located in the temperate climate zone (Cwa—Spiatab
monsoon, Koeppen (McKnight and Hess, 2000)) anddmly

dominated by natural evergreen broadleaved fonedtraixed

deciduous broadleaved forest. The field data wetkeated in

June of 2003. A total of 40 sample sites (100mx1)0rated
in the study area were measured based on diffptant strata
and topographic distribution, and each of them oamg

included 5 sample plots (20mx20m), which providezhgnfield

measurements about the forest canopy structurl, asicrown
closure, crown diameter, DBH (diameter at breasghtyi tree
height, trunk height, tree age and visual estinmatiby forest
experts for forest type, plant species and didtidbu Those are
the necessary ground truths for validating the rhoeilts.

3. METHOD

The overall method used in this study is shownl@sdhart in
Figure 1. The inverted Li-Strahler geometric-ogtio@odel is
used to retrieve the forest canopy variables. Theahneeds
three scene components: sunlit canopy (C), suniikdraund
(G) and shadow (T). The endmembers of these cormpoee
derived by two approaches:
« The G, C, T three components’ classes are firstiynased
by a QuickBird fusional image with 0.6m spatial deson
using eCognition, an object-based classification ekt

Then, a 50 by 50 pixels moving window calculatedhea M =

component’s fraction is matched to individual p&elith
30m spatial resolution of EO-1 Hyperion image. Tihear
spectral mixing model is finally used for derivitige three

3.1 Inverted Geometric-Optical M odel

The Li-Strahler geometric-optical model (Li andebiier, 1992;
1985) is based on the assumption that the Bidoeati
Reflectance Distribution Function (BRDF) is a purely
geometric phenomenon resulting from a scene ofatist¢hree-
dimensional objects being illuminated and vieweanfr
different positions in the hemisphere. The refleceaassociated
with a given viewpoint is treated as an area-wedhéum of
four fixed reflectance components: sunlit canopynlis

Itbackground, shaded canopy, and shaded backgrowregolver,

in most cases, these four components could be ifimipto
three: sunlit canopy—C, sunlit background—G and ewad (Li
and Wang, 1995; Peddle et al., 2003; Peddle e1299). This
model also assumes that the resolution of the rersehsing
image is much larger than the size of individualvwars but
smaller than the size of forest stands, and thatiridividual
trees are randomly (Poisson) distributed within thixel
(Woodcock et al., 1994). Based on the principle lufee-
dimensional geometry of a spherical cronn on a flat
background, each proportion of components can Ipeesged
by a combination of the forest canopy structuraapeeters. For
inverting the model, one of the components—surditkiground
(Kg) can be used for deriving the expected foresivo closure
(CC), see equations (1) to (5) (Li and Strahler, 19xPahler

and Jupp, 1990; Woodcock et al., 1997).
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cc=1-e¢™ (5)

endmembers based on the Hyperion data with surface

reflectance and the per-pixel three fractions caingu
from QuickBird classification.

* Using the PPI algorithm to explore the pure pixekach
component directly from Hyperion hyperspectral imag

After inverting the model integrated with the compaots’
endmembers, canopy structural parameters per folesg, and
slope/aspect data, select one of the model outipuest crown
closure to compare the two methods of endmembeadatidn,
and make use of 32 measured field samples foratiial
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EO-1 Hyperion
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Figure 1. Flowchart of general method

Where, 8, 6 are the zenith angles of illumination and viewir@,is

the average of the overlap function between illation and viewing
shadows of individual crowns as projected onto lihekground,¢ is

the difference in azimuth angle between illuminatémd viewing.

Since the study area is in the mountain regionautdally the
crown shape of the broadleaved forest needs todzkelfed as
an ellipsoid, with tree height (h) from ground tadmsrown,
crown radius (b) in vertical direction and crowrdites (r) in
horizontal direction, double transformations areuieed to
allow crowns to be treated as spheres and accontedda
sloping surface (Schaaf et al., 1994). The equatioh all
transformations are explained in Zeng et al. (2007)

Therefore, the required inverted model inputs fetedmining
CC are the proportional image of Kg; the solar zemittd
azimuth angles; the view zenith and azimuth angles;local
slope and aspect image and the mean measured parsrice
different kinds of forest crown shapes: h, b, r. dhg them,
deriving the component fractional image of sunditkground is
the most crucial process, which needs accuratehaeting the
endmembers of the three scene components.



3.2 Endmember Extraction

321 Linear Spectral Unmixing based technique
Traditionally, the linear spectral mixing model Hzeen widely
used to calculate the percentages of several haivisurface
components contained in each pixel of a remoteisgrisage
(Goodwin et al., 2005; Peddle et al., 1999). Thel@hassumes
that the reflectance (S) of each pixel is a line@nbination of
endmembers (R), which are the pure reflectance rspdot
each component. The general equations are:

S =Y KR+,  j=12..p (6)
i=1
1=3K K >=0 )

Where m is the number of components, in this caseis the 3
components of C, G and T; p is the number of imageds; K is the
fractional abundance of each component within tixelpand v is the
residual for each band.

However, in this study, we use the inverted apgroaf this
model, called linear spectral unmixing based temimi The
fractions of each component within the pixel of @&dium
spatial resolution image are provided in advanaamfrthe
overlapping high spatial resolution image, and thiwe
endmembers of each component will be the final irequents.
In practice, for deriving the endmembers, we ne¢gstiimage
with at least n pixels, and the number of n mustimee than
the number of components. Thus, equation (6) cammbee
conveniently expressed in matrix notation:

V, =S -K*R ®)

Vj: n-dimensional vector of the residuals in band j

Sj: n-dimensional vector of the pixels’ reflectareédand j;

K: n x m matrix of the fractions;

Rj: m-dimensional vector of the components’ refiecte in band j.

We seek a set of numerical values for the unknawri®j such
that the sum of the residual squares becomes mmi@), and
then the least squares solution for Rj can be shiow(i0)
(Haertel and Shimabukuro, 2005):

AV ©
OR,

R =(KK)?K'S, (10)

The three components’ endmembers can be calcukted
applying equation (10) to every spectral band ia thedium
spatial resolution hyperspectral image, and theiteypf this
method are the fractional images for each compsnand a
corresponding overlapped image with spectral reflece.

322 PPI

The PPI (Pixel Purity Index) algorithm is a comnraethod to
find the most "spectrally pure" (extreme) pixels multi-

spectral and hyperspectral images. It is compuyeckpeatedly
projecting n-dimensional scatterplots onto a randmih vector,
and then the extreme pixels in each projectionsghuxels that
fall onto the ends of the unit vector) are recorded the total
number of times each pixel is marked as extrenmoted. That
consists of the following steps (Plaza et al., 2004 A “noise-
whitening” dimensionality reduction step is perfaunby using
the MNF (Minimum Noise Fraction) transform (Greenag,

1988). 2. A pixel purity score is calculated fockagoint in the
image cube by randomly generating lines in the Ngace

comprising the MNF transformed data. 3. All themisiin that
space are projected onto the lines, and the orlesyfat the
extremes of each line are counted. 4. After mameated
projections to different random lines, those pixtiat count
above a certain cut-off threshold are declared é¢pus. These
potential endmember spectra are loaded into areictige N-D
visualization tool and rotated in real time untidl@sired number
of endmembers are visually identified as extremelpiin the
image. In this case, we use the PPl model of EN¥thare to
extract the components’ endmembers directly frone th
hyperspectal data.

4. IMAGE DATA AND PROCESSING

For this study area, an EO-1 Hyperion image wasliaed on
June 10, 2004, around 11:00 a.m. local time. Hpperbne of
the three sensors on the NASA EO-1 platform, wasdhed on
November 2000. As a push-broom imaging instrument,
Hyperion provides images capable of resolving 2g&csal
bands (from 0.4-2.5 um) with a 10 nm spectral e and a
30m spatial resolution. For converting DNs to radis, the
data were scaled by 40 for VNIR and 80 for SWIR (Bec
2003). Several stripes (data columns of poor gyalit the
Hyperion data contain no information and lower sadie.
Those abnormal pixels are detected and replacedebgiverage
radiance value of their immediate left and rightghboring
pixels (Han et al., 2002). In addition, an atmosjgheorrection
is required. We use ACORN version 4.0, a commercially
available atmospheric correction program based be t
MODTRAN 4 radiative transfer code (AIG, 2002). Duethe
low signal to noise ratio at the beginning and ¢mel of the
Hyperion spectras4¢36nm and>2385nm) and the heavy water
absorption influences in several bands, a toté4bands are
dropped from 196 valid bands. Geometric correcigodone by
26 GCPs (Ground Control Points) relative to topogi@piaps
and the geometric error is less than one pixelnalli, the
corrected Hyperion data with 132 bands of surfafectance
ina UTM Zone 49 N WGS-84 projection are used in #tudy.

The QuickBird data consisted of one panchromaticgenat
0.61m resolution and one multi-spectral image wWithpectral
bands (B/G/R/NIR) at 2.44m resolution. It was cokekcton
August 23, 2003 at 11:08 a.m. local time. This ®Bicd
image being the high spatial resolution data wil bsed
together with Hyperion data to derive components’
endmembers. Although the two images were acquired a
different dates, the solar zenith and azimuth anglke similar
(23.5° and 104.5° for Hyperion, 29.2° and 127.9°QuickBird)
and the sensor viewing direction is also the sameaalir.
Hereby, only small variation in view/illuminatioregmetry will

be expected between the two images.

For classifying the three components from the QBikckimage
and matching it to Hyperion data, we firstly mergee
panchromatic and multi-spectral images by principal
component method and cubic convolution resampke@nique
of ERDAS IMAGINE software, the output image includeém
spatial resolution and 4 spectral bands. Then bggctoriented
classification software eCognition is carried out étassifying
the components. eCognition is designed to segmenintage
into units of similar spectral and spatial patteansl to classify
those segments according to a pre-defined rule (Basatz et
al., 2004). Finally, the geometrically corrected icB®ird
fusional image being a base image is used to d$patia-
register the two images, the matched subsets oktityp and
QuickBird data that covered the same study regiersalected.



5. RESULTS
5.1 Endmembersand Model I nputs

The processed Hyperion data with surface refleetamd 30m
spatial resolution is shown in Figure 2a. The digsiem of this
image is 208 (column) x 173 (line) x132 (band). Thasional
QuickBird image with 0.6m spatial resolution and pedral
bands (shown in Figure 2b) is located in the ceotrdyperion
image, and it includes 4300 (column) x 3400 (lipiels.

3.2 Kilometers

o 08 15 24

a. Hyperion image (bands: R50 G23 B16) b. QuickBird fusion image (R-NIR G-R B-G)

i o

T

e. Slope data with 30m resolution

f. Aspect data ®0m resolution

Figure 2: Processed Hyperion image, QuickBird imaugg the
inputs of inverted Li-Strahler model

The three components classification result from GheckBird
fusional image by eCognition is shown in Figure @éhite: G-
sunlit background, Green: C-sunlit canopy and Blagk:
shadow). After spatially co-registration, a subs#t the
Hyperion image with 86 (column) x 68 (line) is madkout for
matching the QuickBird classification image. A 50xpixels
moving window is used to calculate the fractions ezfch
component from the QuickBird classification, andttsajust
matching the individual pixels of Hyperion data.efirthe three
components’ endmembers extracted through the ligpectral
unmixing based technigue are shown in Figure 3. Goimg
the endmembers retrieved from the pure pixels ef whole
Hyperion image (G: x-104 y-89 C: x-150 y-102 T: xf12117)
by the PPI algorithm, the QuickBird scaling-basedreembers
indicate the mean spectra of the components urlikepure
pixels’ spectra.

In terms of the endmembers, the proportional imajesg for
both endmember extraction methods are derived lectisg
unmixing the whole Hyperion image. Figure 2c ilhas¢s one
of the Kg images, which is from the QuickBird scglinased

endmembers. The brighter regions express highgyoptions.
The other required inputs for inversion of the ltig®ler model,
slope and aspect images with 30m spatial resolatiercreated
from DEM data using topographic analysis model &DRAS
IMAGINE, see Figure 2e-f.
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Figure 3: Components’ endmembers (Up: QuickBirdisgal

based method; Down: three pure pixels by PPI)

In this study area, the dominant forest communitiesgude
deciduous broadleaved forest, evergreen broadlefwezt,
and conifer forest. Based on a forest classificaitioage (Zeng
et al., 2007) and the field measurements, the sporeding
mean value of forest crown parameters, h, b, afat every
dominant forest class is shown in Table 1.

DominantForests h (m) b (m) r (m)
Deciduous Broadleaved Forest 9.79 3.9¢ 1.79
Evergreen Broadleaved Forest 8.8¢ 3.36 1.61

Conifer Forest 8.41 4.63 1.51

Table 1. Inverted model inputs for each forestlas

5.2 Model Outputsand Validation

We compiled an IDL program to implement the invensof the
Li-Strahler model integrated with the pixel-baseglts data.
Figure 4 presents the final mapping results of dorerown
closure distributed in the Longmenhe study areae Upper
image is the model result according to the endmesnfsem
the QuickBird scaling-based method and the othéndsresult
for the PPI method. These two mapping images inglitiae
variety when one of the inverted model inputs (isgjifferent.

For validating the model outputs, we calculate niean value
of 3x3 pixels from the mapping image for comparigorone
field sample site. In total 32 independent samplesincluded.
Figure 5 illustrates the agreement between modetpreted
crown closure and ground measurements. The caaffiiof

determination Rand root mean square error (RMSE) are equal



to 0.6 / 0.064 for QuickBird scaling-based methadj 8.51 /
0.048 for Hyperion PPI method respectively.

Sz

Crown Closure
[_] Unclassified

Sz

Crown Closure
[_] Unclassified
0.1-0.6

3.2 Kilometers

Figure 4. Mapping results of forest crown closbyethe
inverted geometric-optical model (Up: QuickBird segtbased
method; Down: Hyperion PPl method)
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Figure 5. Linear relationship between ground mess@€C and
model derived CC

The validation results show that most of the madtgrpreted
CC values are less than the ground measurementbofbr
endmember extraction methods. But comparing the two
methods, the results of QuickBird scaling-based owtbeem
better than the pure-pixel deriving method in terofsthe
simulated regression lines.

6. CONCLUSION AND OUTLOOK

In this study, we use an inverted Li-Strahler gemim@ptical
model to retrieve one of the forest canopy varishjerown
closure) from a hyperspectral Hyperion image ctdlédn the
Longmenhe broadleaved forest natural reserve, ddcat the
Three Gorges region of China. For preparing thertedemodel
inputs, we compare two endmember extraction metHodsar
spectral unmixing based technique, which requiresubset
Hyperion image combined with the components’ fiawi
images from the matched QuickBird high spatial netsoh data,
and another method by selecting the pure pixettirérom the
Hyperion image. Depending on the comparison of veeri
endmember profiles and the validation of the moalatputs
with field measurements, we can conclude that theat
spectral unmixing based technique is an effectiwthod to
estimate the components’ endmembers in a mediurtiaspa
resolution image. It can solve the mixed-pixel peol, when a
matched high spatial resolution image is provided.

Since the collected QuickBird image of this casenialler than
the Hyperion image, only the overlapped region lbamised for
extracting the endmembers. However, if the oveedpregion
is including all components and it is located itypical area of
the Hyperion image, then the derived componentdireambers
can be used for the whole Hyperion image. It inisahat the
method of linear spectral unmixing based technigppears
appropriate for up-scaling the information from tigpatial
resolution data, and it can also expand the camdist
information from local to regional scale.

Although the endmember extraction method of lingaectral
unmixing based technique is applied using QuickRisdhigh
spatial resolution image and Hyperion as mediumtiapa
resolution image in this study, it can be implemsenfor any
two sets of data with different spatial and speatesolution,
such as from QuickBird to Landsat TM, from landsid To
MODIS, and even from Hyperion to MODIS. Therefousjng
this up-scaling method to explore the informatioonf images
at global scale is also feasible.

In future work, we will continue the study of quiatively
monitoring the forest canopy variables in the whdleree
Gorges region of China using multi-scale and mapttial /
spectral resolution data through the inverted laler
geometric-optical model and the up-scaling meth&gen
though the processes of the inverted model andstading
method will need more careful analysis and calibret in the
future, the presented results show confidence énatbproach
selected.
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