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ABSTRACT: 
 
Dry grassland sites are amongst the most species rich habitats of Central Europe. In Switzerland, they are home to a large number of 
plant and animal species that are classified as endangered or threatened. A key component for designing optimal and effective 
management schemes ensuring the sustainability of these ecosystems, is knowledge of their biomass production. In this study we 
explored the potential of hyperspectral remote sensing for mapping above-ground biomass in grassland habitats along a dry-mesic 
gradient, independent of a specific habitat or a phenological period. We developed statistical models between spectral reflectance 
collected with a spectrometer but resampled to Hyperion bands, and biomass samples. We then tested to what degree the calibrated 
biomass models could be scaled to actual Hyperion data collected over the study area. Biomass samples (n = 155) were collected 
from 11 grassland fields located in the Central part of the Swiss Plateu. To capture normally occurring variation due to canopy 
growth stage and management factors sampling was performed at 4 time steps during the 2005 growing season. We investigated the 
relationship between biomass and a.) existing broad and narrow-band vegetation indices, b) narrow band NDVI type indices and c.) 
multiple linear regression using branch-and-bound variable search algorithms. Best models for estimating and predicting biomass 
were obtained from the multiple regression and narrow band NDVI type indices contrary to existing vegetation indices. Spectral 
regions related to plant water content were identified as the best estimators of biomass. Furthermore, results from this study 
demonstrated the importance of seasonal biomass measurements for building reliable models. Finally, promising results in 
estimating grassland biomass were not only obtained for the Hyperion resampled field spectrometer data, but also for the actual 
Hyperion data, showing the potential of up-scaling to the landscape level. 
 
 

1. INTRODUCTION 

Dry grassland sites are amongst the most species rich habitats 
of Central Europe. They originate from centuries of traditional 
land use and are a characteristic component of the cultural 
landscape in Europe. In Switzerland, conservation of 
biodiversity in these habitats is of major ecological importance. 
Almost 40% of plant and more than 50% of animal species 
living in these habitats are classified as endangered and are 
included in red lists (Eggenberg, 2001). Productivity and 
biomass of these grasslands have strong effects on both species 
competition and human management schemes, as higher 
productivity grasslands are more prone to be converted to 
agricultural areas. Therefore, development of robust and timely 
biomass estimates is of critical importance for monitoring and 
designing effective management practices that optimize 
sustainability of these ecosystems.  
 
Direct measurements of grassland biomass are time consuming 
and expensive since they require extensive field work. In 
particular estimation of the spatial and temporal distribution of 
biomass at the landscape level is difficult to obtain from 
traditional methods. One of the major sources of information 
for the study of landscape and for estimating biomass over large 
areas is remote sensing (Kumar et al., 2001; Wylie, 2002). 
Attempts to estimate biomass using broadband sensors with 
spatial resolutions of 30m to 1km have resulted in a wide range 
of accuracies and precision (Dengsheng, 2006). In most of these 

studies, quantity and variability of grassland biomass was 
estimated with vegetation indices calculated using the red and 
near-infrared bands of the broadband sensors. 
 
Recently, new remote sensing instruments such as hyperspectral 
sensors (Van de Meer et al., 2001) that record many individual 
bands at very high spectral resolution have been developed. 
Studies using hyperspectral data to retrieve biomass have been 
carried out under controlled laboratory conditions (Filella, 
2004; Mutanga, 2004) or in the field for vegetation types like 
wheat or corn that show low spatial variability of biomass 
(Hansen, 2003; Osborne et al., 2002; Xavier et al., 2006). Few 
studies only exist that have investigated the relationship 
between hyperspectral remote sensing and biomass production 
of mixed grassland ecosystems (He, 2006; Mirik et al., 2005; 
Tarr et al., 2005) and none, to our knowledge, that has extended 
such analyses over a growing season. 
 
The objective of our study was to develop a method using field 
spectrometer data for estimating above ground biomass in 
grassland habitats along a dry-mesic gradient. The method 
should be independent of specific habitats or phenological 
period.  We further investigated to what degree the calibrated 
biomass estimation could be scaled to Hyperion hyperspectral 
data. By this, we aimed at evaluating the potential to scale 
models calibrated from plot based estimates to larger 
landscapes as seen from spaceborne sensors. 



 

2. MATERIALS AND METHODS 

2.1 Study area 

The study was conducted on the Central part of the Swiss 
Plateu around 8°02’ E, 47°25’N near the village of Küttingen. 
The elevation of the area ranged from 350 to 500 m. Four 
characteristic grassland types were sampled (Table.1) that were 
previously mapped in a national mapping campaign 
(Eggenberg, 2001). The four semi-natural grassland types (AE, 
AEMB, MBAE, MB) were selected according to their position 
along a wet-dry gradient. AE is a species-rich Arrhenatherion 
type managed grassland, that is mesic and nutrient rich. The 
mesic and species-rich type AEMB includes tall, dense and 
multi-layered stands composed of many grasses, several herb 
species, and is still comparably nutrient-rich . In this type, 
canopy layers close to the ground are relatively damp and cool 
as a result of the dense growth. The type MBAE stands in-
between AEMB and MB with respect of species richness, 
nutrients and canopy height. Finally, true semi-dry MB 
grasslands are comparably nutrient-poor and are generally 
dominated by Bromus erectus or Brachypodium pinnatum with 
stems standing well above the surrounding shorter herb 
vegetation. These stands are generally colourful and rich in 
herbs and species in general. The main management practice of 
the grasslands in the study area is for production of hay and 
only a few are used as pastures. 
 
Type code Phytosociology Description 

AE species-rich 
Arrhenatherion type 

Mesic, species rich, 
nutrient–rich, managed  

AEMB 
Transition 
Arrhenatherion to 
Mesobromion 

Moderately-mesic, 
species-rich  

MBAE 
Transition 
Mesobromion to 
Arrhenatherion 

Moderately-dry, 
species-rich 

MB Mesobromion type Species-rich, semi-dry 
grassland 

 
Table 1.  Description of the four grassland types sampled 

 
2.2 

2.3 

2.4 
Biomass sampling 

A total of 11 fields belonging to the 4 grassland types were 
selected from the existing national campaign map. The fields 
were chosen to have a total area larger than 5 Hyperion pixels 
and were checked for purity: we only kept grasslands, where 
the major vegetation type covered at least 75% of the mapped 
polygon. Sampling was performed at four times during the 
growing season of 2005 (10th June, 23rd June, 28th July, 10th 
August). We did so to ensure that normally occurring variation 
due to canopy growth stage and management factors was 
included in the dataset and the subsequent statistical models. 
Biomass samples were clipped at ground level using a 32cm 
radius metal frame. Within each field, 3 randomly selected plots 
were sampled to account for the spatial variability of the 
grassland habitats and to assist with the up-scaling of the 
analysis to the landscape-Hyperion level. A total of 155 
biomass samples were collected. The collected material was 
stored in pre-weighted air-sealed plastic bags and transferred to 
the laboratory where the total fresh biomass was measured. 
Then samples were dried in the oven at 65 oC for 72h and 
weighted again to measure the water content and total dry 
biomass.  

Field-Satellite Spectral Measurements 

Spectral profiles of the grassland types were collected using the 
Analytical Spectral Devices (ASD) FieldSpec Pro FR 
spectrometer. This spectrometer has a 350-2500 nm spectral 
range and 1 nm spectral resolution with a 25° field-of-view. 
Collected spectra were converted to absolute reflectance by 
reference measurements over a Spectralon reflectance panel 
(Labsphere, Inc., North Sutton, N.H.) with known spectral 
properties. Calibration of the spectrometer was made every 20 
measurements to minimize changes in atmospheric condition. 
Measurements were collected under sunny and cloud free 
conditions between 10:00 and 16:00 h while walking along 2 
diagonal transects across the length of every field. This resulted 
in 60-100 spectral measurements per field, which ensured that 
the sampling would cover the spectral variability within each 
field. Measurements were taken from nadir at a height of ~1.5m 
above vegetation canopy. Field spectra were then resampled to 
simulate Hyperion spectral bands. Finally, after removal of 
erroneous measurements, the mean spectral reflectance of each 
grassland field was calculated. 
 
Hyperion Level 1R data were acquired over the study area at 
nadir (overhead) pass on August 10, 2005 at 10:06:49 GMT. 
The EO-1 satellite has a sun-synchronous orbit at 705 km 
altitude. Hyperion collects 256 pixels with a size of 30 m on the 
ground over a 7.65 km swath. Data is acquired in pushbroom 
mode with two spectrometers. One operates in the VNIR range 
(70 bands between 356-1058 nm with an average FWHM of 
10.90 nm) and the other in the SWIR range (172 bands between 
852-2577 nm, with an average FWHM of 10.14 nm). From the 
242 Level 1R bands, 44 are set to zero by software (bands 1-7, 
58-76, 225-242). Post-Level 1R data processing of the acquired 
Hyperion scene included correction for striping pixels, 
smoothing using forward and inverse Minimum Noise Fraction 
transformation (MNF) (Datt et al., 2003), atmospheric 
correction using ATCOR-4 (Richter, 2003) and georectification 
of the scene using 25 ground control points. After removal of 
Hyperion bands that: were set to zero, were weak and with 
noisy signal and were strongly affected by atmospheric water, a 
total of 167 bands were available for further analysis (426 – 
2355 nm). 
 

Statistical analyses  

The mean spectral reflectance of the 60-100 spectral 
measurements and the mean biomass of the 3 samples collected 
at each grassland field were used in the statistical analysis. 
Initial analysis revealed a heavily skewed distribution of the 
biomass data. In order to improve the regression modelling we 
log-transformed the biomass data so they would approach a 
normal distribution. Statistical models were calibrated with 
field spectrometer reflectance data resampled to simulate 
Hyperion bands. 
 
Firstly we evaluated the relationship between biomass and 
normalised differences indices (NDVI, SR, RDVI, TVI), red 
edge indices (GMI, CI, VOGa, RESP), three band indices 
(MCARI, TRVI, MCARI1) and soil line indices (SAVI, 
MSAVI, SARVI). A detailed description about properties and 
advantages of these indices can be found in Broge and Leblanc 
(2000) and in  Haboudane et al. (2004). 
 
However, most of the above mentioned indices consider only 
certain parts of the spectrum, primarily the chlorophyll 
absorption region (680nm), the NIR reflectance (800nm) and 



 

the green reflectance peak (550nm). Given this limitation and in 
an attempt to make use of the large number of narrow bands of 
hyperspectral data we built narrow band NDVI-type 
(nb_NDVItype) indices as shown in Eq. (1).  
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All possible two-pair combinations were used in Eq. (1) where 
λ1 and λ2 were the Hyperion simulated bands from the field 
reflectance measurements. A total of 27,889 narrow band 
indices were calculated. These indices were used in linear 
regression models to determine their relationship with measured 
biomass. 
 
The disadvantage of existing indices and of the nb_NDVItype 
indices is that they only consider a few of the available 
hyperspectral bands. Even though much of the information 
provided by neighbouring bands is often redundant 
(Thenkabail, 2004) it is still possible that the spectral 
information is not optimally used by these indices. Therefore, 
multiple linear regression (MLR) that selects the best 
combination of linear predictors from the Hyperion simulated 
bands was used for biomass estimation along the growing 
season. Branch-and-bound (b&b) (Miller, 2002) variable search 
algorithms were used to find spectral bands that best explained 
biomass.  
 
The overall capability of each model in explaining the 
variability in the biomass was evaluated by the adjusted 
coefficient of determination (adj.R2). We used the adj.R2 since 
it will only increase if the new variable added will improve the 
model more than would be expected by chance. The model 
prediction error for estimating biomass was assessed by using a 
cross-validation (CV) procedure (Diaconis and Efron, 1983). 
With CV predicted samples are not used to build the model, so 
the Root Mean Square Error (RMSE) calculated is a good 
indicator of the model accuracy and predictive power. Cross-
validation RMSE (CV-RMSE) was estimated by using all the 
biomass samples collected during the growing season. 
Nevertheless, to investigate the effect of seasonal variability we 
used a 4-fold “Date” CV procedure. By this, we calibrated 
models using data collected from three dates and then validated 
their predictions with data collected on the fourth. This process 
was repeated 4 times until each date was used for validation of 
model predictions once. Finally, the models with the highest 
accuracy and predictive power were used on the geometrically 
and atmospherically corrected Hyperion scene to predict the 
spatial distribution of biomass over the study area. 
 

3. RESULTS AND DISCUSSION 

Before the analysis of the relationship between biomass and 
remotely sensed data, descriptive biomass statistics were 
generated and are presented in Table 2 and Figure 1. Highest 
variability of biomass measurements was observed on the first 
(10th June) and second (23rd June) sampling dates. This 
happened since the grasslands sampled were along a dry-mesic 
gradient having different availability to water and nutrients and 
eventually different rates of growth and biomass accumulation. 
Lower biomass variability observed later on the season could be 
partly attributed to the management practices (cutting) applied 
on these fields. 
 

Models using existing indices (e.g., NDVI, SAVI, MCARI, 
VOGa) gave poor adj. R2 values (Table 3). Marginally better 
results were obtained for SAVI. This index corrects for the soil 
background reflectance thus improving the model since many 
grassland fields did not have complete canopy cover during the 
season. Models for estimating biomass that used recently 
developed narrow band indices (e.g., MCARI, TVI, VOGa ) did 
not produce higher adj.R2 (not all results shown here). 
 

  Biomass (kg/m2) 
 n Mean stdev Min Max Range 
Original 50 0.7756 0.5704 0.1785 3.3180 3.1395 
Log-transf. 50 -0.4523 0.6186 -1.7230 1.1990 2.9220 

 
Table 2.  Summary statistics for original and log-transformed 

measured biomass at 50 grassland fields over 4 time steps 
during the 2005 growing season 

 
All possible two band combinations were used to create 
nb_NDVItype indices. Regression coefficients (adj.R2) between 
biomass and each nb_NDVItype index were determined and 
graphically presented in Figure 3. The adj.R2 values ranged 
from 0.007 to 0.72 reflecting a wide variation in the strength of 
the relationship between nb_NDVItype indices and biomass. 
Compared to existing indices that primarily use the red and NIR 
parts of the spectrum, our analysis identified regions from the 
far-NIR and SWIR resulting in much higher adj.R2 values 
(Table 3). High adj.R2 values were found clustered in three 
spectral regions, namely: 1230nm, 1680nm and 2280nm. These 
parts of the spectrum are strongly related to plant leaf water 
content that has a correlation to canopy biomass and LAI (Hunt, 
1991) and to cellulose, starch, lignin and nitrogen 
concentrations (Kumar et al., 2001). Our results, and in 
particular the nb_NDVItype indices formed  from bands around 
1700 and 1170 nm confirm findings of earlier studies (Cook et 
al., 1989; Hunt, 1991) that correlate the ratio between NIR and 
SWIR to productivity and LAI. The use of nb_NDVItype indices 
for estimating biomass did not only improve the adj.R2, but also 
reduced the CV-RMSE thus the overall prediction accuracy of 
the models. 
 

 
 

Figure 1. Mean biomass measurements of individual sampled 
fields during the growing season 

 
Results of the multiple regression models for estimating 
biomass from spectral reflectance are listed in Table 3. We only 
built models using up to 4 spectral bands, since accuracies 
improved only marginally above this number and because we 
had too few measurements to build models with a high number 



 

of predictors. Although selection of spectral bands was solely 
based on statistical optimisation of the models, these bands 
were located at key spectral regions with respect to physical 
processes of vegetation. The 472, 522 nm bands from the 
visible region can be correlated with chlorophyll content of 
vegetation, the 1202 nm from the NIR and the 1716 nm from 
the SWIR are related to plant leaf water content (Hunt, 1991) 
and the 2266 nm region to biochemical canopy properties like 
cellulose, starch and lignin (Elvidge, 1990). Even though 
models used slightly different bands, these were neighbouring 
and highly correlated to the ones mentioned above and thus 
provided the same type of information.  
 

Model  Adj.R2 CV-RMSE 
SAVI  0.29 0.53 
NDVI 0.28 0.51 
VOGa 0.22 0.54 
nb_NDVItype b1715,b1172 0.61 0.39 
nb_NDVItype b1092,b2266 0.52 0.43 
MLR-2 bands b482,b1785 0.77 0.29 
MLR-2 bands b472,b1785 0.77 0.31 
MLR-3 bands b522,b1695,b1715 0.82 0.27 
MLR-3 bands b1192,b1202,b1232 0.82 0.29 
MLR-4 bands b522,b1212,b1232,b1715 0.86 0.23 
MLR-4 bands b522,b1212,b1232,b1705 0.86 0.25 

 
Table 3.  Adjusted regression coefficient (adj.R2) and prediction 
error (CV-RMSE) of the best models for the three approaches 
(existing indices, nb_NDVItype indices, MLR) for estimating 

grassland biomass 
 

 
 

Figure 2. Result of the nb_NDVItype indices analyses. The graph 
shows the correlations (adj.R2) between biomass and 

nb_NDVItype indices calculated from any band pairs among the 
simulated Hyperion bands. Darker areas indicate higher adj.R2. 

White gaps are strong water absorption regions that were 
removed from the analysis 

 
An overall comparison of the strength of the model fit and 
prediction errors is presented in Figure 4 and 5. Models that 
used existing indices developed either for broadband or 
hyperspectral sensors showed comparably poor performance 
with adj.R2 ranging from ~0.21 to ~0.29. Development of new 
nb_NDVItype indices greatly improved the adj.R2 from 0.29 to 
0.61. Relatively similar increase was observed when 2-band 
MLR models were used for biomass estimation since model 

adj.R2 improved from 0.61 to 0.77. Incorporation of more bands 
in the MLR models further increased the adj.R2 moderately 
(0.7783 for 3-band MLR and 0.8631 for 4-band MLR). Model 
prediction errors followed a similar pattern. In particular, 
models using existing indices showed high CV-RMSE (0.5323) 
that gradually reduced when nb_NDVItype (0.3961) and MLR 
(0.2935 to 0.2357) models were used for biomass estimation.  
 

RMSE Calibration-
Validation 

dates 
Exist. 

indices 
nb_ 

NDVItype

2-band  
MLR 

3-band 
MLR 

4-band 
MLR 

C-2,3,4/V-1 0.67 0.49 0.40 0.34 0.30 
C-1,3,4/V-2 0.65 0.50 0.36 0.31 0.34 
C-1,2,4/V-3 0.50 0.26 0.21 0.20 0.14 
C-1,2,3/V-4 0.44 0.39 0.28 0.25 0.25 
Mean-CV 0.56 0.41 0.31 0.27 0.25 

 
Table 4.  Prediction errors of best models build with the three 

approaches. Models were calibrated on three dates and 
validated on the fourth. C-2,3,4/V-1 means that regression 

models were calibrated on Dates 2,3,4 and validated on Date 1. 
Recording dates are, Date-1: 10th June, Date-2: 23rd June, 

Date-3: 28th July and Date-4: 10th August  
 

 
 

Figure 3. Best measured vs. predicted biomass estimates 
originating from regression models of A) existing indices, B) 2-

band MLR, C) nb_NDVItype, and D) 4-band MLR, optimized 
with a 4-fold cross-validation using samples from all four 

sampling dates 
 
The best models of each of the three approaches (existing 
indices, nb_NDVItype indices, MLR) were used in the 4-fold 
“Date” CV analyses (Table 4). A clear pattern was observed. 
Models calibrated from biomass samples collected in the first 
two sampling dates of the season predicted biomass with lower 
RMSE. Contrary, models calibrated using samples from only 
one of these dates gave poorer predictions. For example, the 
best nb_NDVItype index model for estimating biomass when 
calibrated with samples from Date 1 and Date 2 yielded RMSE 
of 0.2669 and 0.3990 that increased to 0.4905 and 0.5022 when 
samples from only one of these dates were used. This may 
reflect the high variability of biomass samples collected on 
Date 1 and Date 2 (Fig. 1). Models calibrated from data from 



 

these dates could account for a much broader range of 
variability of biomass. Contrary, model calibration with 
samples from only one of these dates was not sufficient to 
explain the variability observed on the samples collected on the 
other date. Thus, when models had to predict these values they 
produced higher errors.  
 

 
 

Figure 4. Boxplots of model calibration strength (adj.R2) 
against prediction error (CV-RMSE) for the best three 
performing models of the three modelling approaches 

 
Preliminary results of the spatial distribution of biomass over 
the study area, from up-scaling the statistical models to the 
Hyperion scene, are shown in Figure 6. This was done by 
applying the models calibrated with field spectrometer data 
resampled to simulate Hyperion bands, to the actual Hyperion 
scene acquired over the study area. Even thought models were 
calibrated for grassland habitats, forested areas could 
immediately be observed (dark areas) as high biomass was 
predicted for these habitats. High variation of predicted biomass 
values on grassland habitats (areas between dark forest patches) 
showed the sensitivity of the models in predicting subtle 
changes of in-field biomass variability. Validation of the model 
predictions (results not shown here) with field samples 
collected on the date of the Hyperion acquisition, gave similar 
prediction errors as obtained from the CV procedure. Cut 
grasslands with low biomass were correctly predicted and are 
shown with very light colours. However, over-estimation and 
higher errors were observed for areas adjacent to forests. This 
was due to the mixed pixels that affected the spectral signal 
recorded by the sensor and thus the model prediction. 
 

 
 

Figure 5. Biomass prediction map (Kg/m2) created from 
Hyperion reflectance values, using the nb_NDVItype  index 
regression model constructed with bands at b1715nm and 

b1172nm 
 

4. CONCLUSIONS 

Results presented in this paper showed the high potential of 
hyperspectral remote sensing for estimating biomass of 
grassland habitats along a dry-mesic gradient. Our analyses 
demonstrated the importance of acquiring biomass 
measurements along the growing season in order to capture the 
variability observed and eventually be able to create reliable 
and more accurate models. This is specifically important in 
managed grasslands since management activities introduce a 
high variability in phenological states. Furthermore, we 
illustrated the necessity of developing new indices since 
existing vegetation indices using information from the red and 
near-infrared regions yielded poor biomass estimation results. 
Rather, spectral regions related with plant leaf water content 
should be used as they appear to be more suitable for estimating 
and predicting biomass. Use of multiple linear regression 
always gave better models for estimation and prediction of 
biomass. In addition, branch-and-bound (b&b) variable search 
algorithms proved a powerful statistical approach since bands 
selected made sense with respect to physical processes of 
vegetation. Nevertheless, attention should be paid to the number 
of bands used in the multiple regression models since accuracy 
does not improve after a certain point and addition of extra 
bands will only reduce the quality of the models. Finally, 
preliminary results from up-scaling to Hyperion level showed 
that we could achieve high accuracies provided that multiple 
samples covering the in-field variability of biomass have been 
acquired. 
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