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ABSTRACT: 

Artificial drainage networks such as ditches networks are landscape elements that control many hydrological 
transfers. To introduce these elements in hydrological models, we need to develop methods that allow their 
representation in space. We aimed here to assess the utilities of LiDAR data in the detecting and characterizing 
of ditches in Mediterranean cultivated rural landscapes. To perform the detection, we combined jointly laser­
scanning and parcel boundaries data and developed a methodology based on : 1- estimation from last pulse laser 
points of terrain altimetric profiles that are perpendicular to parcel boundaries; 2- 1D wavelet transforms of 
the profiles ; 3- a supervised classification of profiles with CART on the wavelet coefficients that are relevant 
for the size of the shapes we want to detect. The methodology we developed was applied in France on a typical 
basin of the Mediterranean vineyard landscapes. Compared to visual interpretation of the profiles, we obtained 
satisfactory detection rate. According to these results, high resolution laser-scanning data appears reliable for 
ditches detection but, due to vegetation and sampling resolution, misclassification on ditches typology is still 
important. 

1 INTRODUCTION 

Artificial drainage networks such as ditches, roads, 
are the features of cultivated landscapes that control 
many water flow related mass transfers: water, pollu­
tants, sediments (Louchart et al. , 2001). The need to 
develop methods that allow the representation of these 
landscape elements in space and time, particularly for 
distributed hydrological models, has been often high­
lighted (Ambroise, 1999). To that end, the use of very 
high resolution remote sensing techniques appears re­
levant but has not been evaluated yet. In particular, 
high spatial definition laser-scanning supplies altime­
tric information, with partial discrimination between 
surface and terrain altimetry, at a scale that seems 
consistent with the sizes of artificial surface hydraulic 
network features (Gomes and Wicherson, 1999). 
The present work aims to assess the utilities of laser­
scanning in the detecting and the characterizing of 
ditches linear features in cultivated areas. As ditches 
are almost exclusively located on plot boundaries, we 
decided to focus on methods that analyze altimetric 
profiles which were automatically represented perpen­
dicularly to plot boundaries. Consequently, our ob­
jective was to develop a methodology that classify 
1D signals (the altimetric profiles) in a binary mode 
(ditches presence/ absence) or in types of ditch for each 
plot boundaries location. For such shape analysis in 
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1D signals (Antoine et al., 1997), the utility of wave­
let analysis has been proved for different applications : 
in medical studies (Sternickel, 2002), in financial time 
series analysis (Struzik, 2000), in LiDAR backscatte­
ring analysis (Quante et al., 2002) or LiDAR noise 
analysis (Fand and Huang, 2004) and in forest stand 
analysis from canopy LiDAR altimetric profiles (Ollier 
et al., 2003). Wavelets has the advantage to propose 
a multi-resolution analysis of a signal (Mallat, 1989). 
Thus, we may analyze the part of the noise-free signal 
that corresponds to the resolutions consistent with the 
studied objects and use classification models on wave­
let coefficients at these resolutions. The methodology 
based on wavelets we developed was applied on the ar­
tificial drainage network of the Roujan basin, situated 
in the south of France. This area is cultivated and is 
typical of the Mediterranean vineyard landscapes. 
This paper is organized as fellows. Section 2 presents 
discrete wavelet analysis illustrated on virtual altime­
tric profiles. In section 3, we describe briefly the data 
and their quality. The results of classification models 
based on wavelet coefficients for ditches detection are 
presented in section 4. 

2 WAVELET ANALYSIS OF 1D SIGNALS 

2.1 Wavelet Properties 
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Discrete wavelet transform (DWT) corresponds to a 
a transform that decompose a discrete signal z(t) into 
a set of basis functions that are obtained from a pair 
of orthogonal wavelet functions : ¢, the father func­
tion and 1/J, the mother function. The wavelets pair 
presented in figure 1 is the first orthogonal wavelet 
functions pair proposed by Haar (Haar, 1910) that 
present simple shapes, reliable to ditches shapes. 

psi phi 

1- ~ 

FIG. 1 - Haar wavelets pair 

The wavelet approximation (wavelet transform) of the 
1D signal z(t) is given by: 

J-1 nj-1 

z(t) Rj L SJ,k¢J,k(t) + L L dj,k1/Jj,k(t) (1) 
k j=1 k=O 

In equation 1, j is called resolution or scale parameter 
going from J, the wider resolution, to 1, the finest re­
solution. k is a translation parameter going from 0 to 
nj - 1, with nj corresponding to the number of coef­
ficients at resolution j. 

I ¢(t)dt = 1 so¢ approximate the signal trend. 
I 7/J(t)dt = 0 so 1/J is more traducing the signal details. 
The general principle of the wavelet transform is to 
approximate z(t) with increasing resolutions through 
scaling and translations of 1jJ and ¢ functions. This 
generates ¢J,k(t) and 1/JJ,k(t) in equation 1. For dyadic 
resolutions, we obtain: 

(2) 

and 

(3) 

The coefficients SJ,bdJ,k, ... d1,k are the wavelet trans­
form coefficients. The detailed coefficients dj,k are ap­
proximatively given by the integrals 

dj,k Rj j 1/Jj,k(t)z(t)dt for j = 1, ... ,J (4) 
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The magnitude of the coefficients gives a measure of 
the contribution of the corresponding wavelet function 
to the approximating sum (Bruce and Gao, 1996) : 
coefficients from different resolutions are straightfor­
wardly comparable. 
To better visualize how wavelet transform works, fi­
gure 2 shows on the top an example of a discrete si­
gnal z(t) with 32 values and its transforms through 
2 resolutions : from r = 8 = 23 ( 4 translations) to 
r = 16 = 24 = 2J (2 translations). The sub-figures si­
tuated on the figure 2 first column represent the values 
of the coefficients SJ,k and dj,k coming from equation 
4. On the second column, the scaled and translated 
wavelet functions ¢J,k(t) and 1/JJ,k(t) (Eq. 3, 2) are 
represented in different grey levels. On the third co­
lumn, the part of the signal we want to approximate 
with functions of the second column is in black and in 
grey, we depicted the second column functions multi­
plied by wavelet coefficients in the first column. In the 
column on the right, we represented the residuals from 
previous approximation of the black line by the grey 
one. These residuals becomes the part of the signal to 
be approximate at the next finer resolution (next line 
on the figure). On this example z(t) is almost totally 
captured by the wider resolution r = 16. 

z(t) 

resolution 16 phi 

resolution 16 psi 

~~II 
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resolution 8 psi 

~§:] id~ 
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FIG. 2- Example of z(t) transform with Haar wavelets 

2.2 Signals comparison with wavelet coeffi-
cients 

Scalogram (Bruce and Gao, 1996) represents mother 
wavelet (detailed) coefficients on a resolution, j versus 
time,k plot : each coefficient is represented by the same 
area (high and narrow for the finest resolutions), filled 
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with coefficient value on a grey level look-up table. Co­
efficients at the same resolution are ordered on a sca­
logram line with order corresponding to translations 
coefficients k. On figure 3, 4 virtual altimetric profiles 
with depressions corresponding to ditches are repre­
sented. The scalograms of these 4 profiles illustrate 
how wavelet coefficients are traducing the presence 
and the type of depression and how detailed wavelet 
coefficients may be discriminant variables for ditches 
detection and characterization: 

- a depression induces a succession of high ne­
gative then high positive values due to Haar 
¢ shape, at a resolution corresponding to the 
width of the depression (see profiles 1 and 4), 

- general shape of the profile is captured by the 
wider resolution (r = 16) and does not affect 
depression traduced by coefficients at smaller re­
solution (see profiles 1 and 2), 

- the location of the positive/negative values in 
the scalogram is related to the location of the 
depression on the profile (see profiles 1 and 3). 

";R ~ "=P ~ 
~ ~ ] ~ 

~ ~ 

0 5 15 25 0 5 15 25 

"~a ' "~~ '5 
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FIG. 3 - Virtual altimetric profiles and scalograms of 
detailed Haar wavelet coefficients on a grey look-up 
table from -2.5 (black) to 2.5 (white) 

3 DATA 

3.1 LiDAR acquisition 

Data were acquired on a 2km2 test area, part of the 
Peyne basin situated in the South of France. This area 
was selected while it's a representative area of the Lan­
guedoc vineyard landscape. This landscape is presen­
ting many erosion, pollution and flooding problems 
(Lagacherie et al., 2004). It is containing complex and 
dense artificial drainage networks related to previous 
problems. These networks are mainly made of ditches. 
Ditches are presenting an high variability of sections, 
going from 0.06 to 5m2 (with widths going from 0.3 

to 2.5m), this affecting hydraulic capacities of the net­
works. Ditches are more or less maintained by farmers 
and some are highly covered by vegetation. A Geolas 
LiDAR mission with Toposys system was realized in 
June 2002 with helicopter over the test area. This mis­
sion provided multi-pulses scatter of 3D points with 
a mean of 10 spot measurements per m 2 , irregularly 
distributed in space. 

3.2 Terrain altimetric profiles representation 

We automatically represented altimetric profiles per­
pendicular to plot boundaries using jointly last pulse 
LiDAR 3D points and plot boundaries database on a 
GIS: 1- locations along plot boundaries were almost 
regularly selected with a 10 meters lag, then coordi­
nates and azimuth of the boundary were attributed 
to each location ; 2- LiDAR points were selected for 
each plot boundaries location within a 5 meters ra­
dius from the plot boundaries and with a thickness 
of 2 meters (figure 4-A). From this scatter of points 
projected on the 10 m profile length (figure 4-B), we 
estimated a regular 32 values profile using: 1 - first 
decile statistic when there were several measurements 
at a bin of the profile and, 2- linear interpolation when 
measurements were missing, 3 - then an open filter on 
the regular profile obtained previously with a structu­
ral element of about 1m (Soille, 1999) to remove resi­
dual vegetation, in particular vines (figure 4-B). The 
parameters of the process was optimized by compari­
son with ground truth topographic profiles (Saidouni, 
2003). 

A 8 

FIG. 4 - Example of altimetric terrain profile estima­
tion perpendicular to a plot boundary at locl (location 
1): Selection of LiDAR points for each plot boundary 
location plotted on an IRC 0. 5 m resolution image for 
A and transformation of irregular scatter of topogra­
phic points (black points) to regular profile (line) for 
B 

7018 altimetric profiles were such obtained on the 2 km2 

test area. For each profile, exhaustive ground survey 
3 
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(Lagacherie et al., 2004) informed if it exists a ditch in 
its center, then the section of the ditch (width, depth). 
A visual classification of each profile where it exists a 
ditch was performed in 3 classes : with clear and ap­
parent depression, without any depression and inter­
mediary case. On these 2590 profiles, only 52% were 
presenting a clear depression. This prefigures the de­
tection rate on ditches we may hope with the data. 

4 RESULTS OF DITCHES DETECTION 

ON ALTIMETRIC PROFILES 

Classification models on mother wavelet coefficients 
were performed using CART classification method (Brei­
man et al., 1984) with deviance as partitioning crite­
rion. This classification method presents the advan­
tage to not assume a specific distribution of classes in 
variables space. This method is too quite explicit to 
interpret the models. Resampling method on the 7018 
profiles was used to asses the stability of classification 
models and results : for each classification, 500 pro­
files of each type were randomly selected then 70 % 
were randomly selected for model calibration, and the 
others 30% were used for cross-validation. For each 
classification, a CART model was calibrated on coef­
ficients of resolution r = 16,8,4 as the example shown 
on figure 5 then good classification rate and confusion 
matrix were computed. 

083 <00511759 

08.2 <- .018208 

04.4 <- 11125 04.3 < .00075 

FIG. 5 - Example of CART model on wavelet coeffi­
cient for ditches presence-absence classification: D8.3 
means resolution r = 8, k = 3-1 = 2 (third coefficient 
at this resolution) 

On 100 classifications with resampling, we obtai­
ned: 

- tree classification models that were mainly based 
4 

on central coefficients for resolutions r = 8,4 as 
seen on figure 5 

a mean of 82 % of good classification rate when 
calibrations and cross-validations were using only 
samples with ditches that presented visually a 
clear depression, with a well balanced confusion 
matrix between the two classes, 

a mean of 66 % of good classification rate when 
calibrations were using only samples with ditches 
that presented visually a clear depression and 
cross-validations were using all samples with ditches. 
But for that case, we observed an unbalanced 
confusion matrix between classes : 80 % of good 
classification for non ditches locations and 50 % 
for ditches locations. One of this model applied 
on all 7018 samples of the test area is presen­
ted in the left of the figure 6 : locations clas­
sified with ditch are depicted in light grey. On 
the right image of figure 6, we can see in light 
grey the ditches locations coming from ground 
survey. 

FIG. 6 - Comparison between classification of ditches 
presence (light grey) on the left and ground truth data 
on the right for each plot boundary location on the 
2km2 test area 

5 DISCUSSION 

If ditches locations along plot boundaries look poorly 
detected, this may be due to the data themselves (de­
pression on altimetric profile) rather than the analy­
sis method of the data when comparing to a visual 
interpretation of the data. This may be explained by 
the poor terrain altimetric information due to impor­
tance of vegetation masking ditches depression during 
data acquisition compared to laser power. This re­
sult of ditches detection should be balanced regarding 
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that 80 % of the plot boundaries locations without 
ditches, representing 67% of the studied locations on 
test area, are well classified. Looking at the spatial dis­
tribution of the classification results, well maintained 
ditches in openfields which are the main elements for 
drainage networks are the ones that are clearly detec­
ted. Whatever, these results shows than the automa­
tization with wavelets for such shape characterization 
is highly suitable. We may easily imagine than the 
same approach may be reproduced with other types of 
data: LiDAR during winter season, radiometric pro­
files using very high resolution images. 

For ditches characterization, tree models present 
leaves that seems to correspond to types of ditches 
(classes of width, depth) but some first results sho­
wed that misclassifications on types of ditches are still 
very high. This may due both to vegetation cover of 
the ditches that perturbs the shape in altimetric pro­
file and to spatial resolution of LiDAR spot measure­
ments that seems too large for precise discrimination 
between types of ditches. 

These remote sensing results is just a first step to 
reach the final objective that is to map a probable 
artificial drainage network on plot boundaries space. 
To go further, these results could be used to condi­
tion the reconstruction of a set of probable artificial 
networks. To that end, remote sensing results on in­
dividual plot boundaries location could be aggregate 
-1- at plot boundary scale then -2- at whole basin 
scale to reconstruct drainage networks corresponding 
to oriented trees from the plot boundary lattice using 
topographic and topological rules. 
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