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ABSTRACT

The use of remote sensing to monitor rapidly growing cities is challenging due to the dynamics of the landscape. Mapping
of these land cover changes calls for an integrated algorithm that can detect both when and where changes occur but also
which land covers are involved in the land conversion. The proposed method aims at improving the global observation of
cities by taking into account simultaneously the spatial and the temporal relations between the various land cover types.
At each pixel of the image, the time series of land cover type is modeled with transition probabilities. That time series at
any specific location is estimated jointly from the local satellite information, any neighboring ground truth data, andany
neighboring previously estimated time series deemed well-informed by the satellite measurements. The spatial component
of the land cover types is integrated with variograms and indicator kriging.
The method is demonstrated on six Landsat images spanning nine years to monitor the growth of the city of Shenzhen,
China between 1988 and 1996. The temporal prediction accuracy, i.e. all the land cover are correctly estimated at all
time for a particular location, improves significantly from33% to 61% when both spatial and temporal information are
considered jointly in the estimation process.

1 INTRODUCTION

Mapping of land cover changes is intrinsically a space time
operation, yet current image processing methods often
do not consider simultaneously the spatial and temporal
context when estimating land covers change.

There are two main issues with change detection: (a)
the combination of the images and (b) the classification
of those images. The simplest change detection method
classifies each image independently, changes are then
mapped by identifying which pixels have changed. The
problem lies in the errors associated with the mapping
of changed labels. The final accuracy is approximately
the product of accuracy associated with the classification
performed at each time, often with poor results.

A second method consists of analyzing the images concur-
rently and classifying the label trajectories. For example,
instead of classifying an image into label 1 or 2, all the
possible transitions between those labels (1 to 1, 1 to 2, 2
to 1 and 2 to 2) are considered, expanding to potentially
KNt transitions, whereK is the number of labels, andNT

the number of images.

A third method models every pixel as a time series, where
the time of change is estimated. For example [Kaufmann
and Seto, 2001] utilize time series econometrics to detect
dates of change with better results than when the changes
are obtained from post-processing independently classified
images.

Another common method to process multitemporal images
is the cascade approach [Swain, 1978] which consists of
analyzing the sequence of image in chronological order.
Past classifications being used to condition future classifi-
cation.

The methodology proposed here integrates the spatial cor-
relation of the land covers labels with temporal informa-
tion, thus improving the mapping of land cover changes.

The aim is to improve existing methods of land cover
change detection by considering prior knowledge about
the label spatial and temporal patterns and efficiently in-
tegrating them into the classification procedure. Finally,
the computational complexity of the algorithm should not
increases too drastically when one increases the number of
labels and/or the length of the time series.

The spatial context is integrated with geostatistics, specif-
ically indicator kriging, which already has been used to
incorporate spatial autocorrelation in estimating or sim-
ulating labels [Stein et al., 1998, Atkinson and Lewis,
2000, Brown et al., 2002, Goovaerts, 2002, Wang et al.,
2004].

The framework is applied to mapping land cover changes
for the city of Shenzhen, China,undergoing rapid urban
growth.

2 NOTATIONS

Consider a domainD ⊂ R2 sampled at different times
ti, i = 1, ..., Nt ⊂ T . Let (u, t) be a point inD × T

informed by a vector of lengthnB of continuous attributes,
Z(u, t) = {Z1(u, t), ..., ZnB

(u, t)}. These attributes are
the satellite measurements known as digital numbers (DN).

Each pixel(u, t) must be classified into one of K labels
L1, ...,LK , for example K land cover types. Define
Ik(u, t) an indicator variable indicating whether or not the
pixel at location(u, t) has labelLk

Ik(u, t) =

{

1 if (u, t) ∈ Lk

0 otherwise

And let
L(u, t) = k if Ik(u, t) = 1

Furthermore, letΩ be the set of locationuα, α = 1, ..., n
whose labels are known at all times (ground truth).V (u, t)



is the set of known labeled pixel data in an isochronous
neighborhood ofu at timet.

3 CODING AND COMBINING INFORMATION

Following [Serpico and Melgani, 2000] and [Brown et al.,
2002], three sources of information are considered relevant
for the mapping land cover changes. The first and foremost
source are the individual pixel satellite measurements. The
second is the spatial pattern that relates land cover classes
to each other. The third source of information is the
temporal pattern of labels. Based on three data sources,
the available information at each unsampled locationu
is separated between isochronous (cross-sectional) and
time series information. The isochronous information
includes the satellite response and the neighboring land
cover indicators at any specific time. The time series
information consists of transition probabilities linkingthe
land cover indicators through time. The classification at
locationu is then done by combining these two types of
information in such a way to minimize misclassification
over a given training set.

3.1 Information content for context

Depending of their information content, locations are sep-
arated into two groups; the well-informed time series and
the poorly informed ones. Those well-informed pixels are
locations where the DN measurementsZ alone are deemed
sufficient to label them. For example, a pixel where the
satellite information would indicate a probability of 0.98or
more to belong to a certain label would qualify as a well-
informed node.

The information content of a time series at location(u)
is measured as the sum of the maximum satellite-derived
probability at each times.

Inf(u) =
1

Nt

NT
∑

i=1

max(pDN
k (u, ti), k = 1, ...,K) (1)

Those pixels, assumed to be informed adequately by the
satellite information such that no spatial information is
needed, are used as anchor for the less informed ones. This
spreads information from high-confidence pixels to their
neighbors

3.2 Time series transition probabilities

Denote bypT
k(u, t) the probability of having labelLk at

location(u, t) given the co-located land cover indicators in
the past (L(u, t− ∆1t)) and/or future (L(u, t+ ∆2t)):

pT
k(u, t) = Pr{Ik(u, t) = 1 | L(u, t−∆1t),L(u, t+∆2t) }

(2)
The probabilitypT

k(u, t) is calibrated directly from ground
truth data or determined as a function of the transition
probabilitiespkk′(ti, tj) relating the probability of having
classLk′ at timetj given thatLk is observed at timeti.

pkk′(ti, tj) = Pr{Ik′(u, tj) = 1 | Ik(u, ti) = 1},∀ u, k, k′

(3)

The transition probabilitiespkk′(ti, tj) are calibrated from
ground truth or historical data.

3.3 Isochronous probabilities

The isochronous information at any specific time is ob-
tained by combining the satellite response and the spatial
information available at that time. Denote bypiso

k (u, t) the
isochronous probability obtained by combining the prob-
abilitiespDN(u, t) andpS(u, t) obtained from satellite and
spatial information respectively.

piso
k (u, t) =

Pr{Ik(u, t) = 1 | Z(u, t),L(u′, t),u′ ∈ V (u, t)}

= φ(pDN
k (u, t), pS

k(u, t))
(4)

with

pDN
k (u, t) = Pr{Ik(u, t) = 1 | Z(u, t)}, ∀ k (5)

and

pS
k(u, t) = Pr{Ik(u, t) = 1 | L(u′, t),u′ ∈ V (u, t)}, ∀ k

(6)
whereV (u, t) is a set of location in the vicinity of(u, t).
The combination algorithmφ is presented later. The
isochronous probability is calculated independently for
each time.

3.3.1 Satellite-derived probabilities The conditional
probability pDN

k (u, t) (5) for the pixel at location(u, t)
to be assigned to labelLk given the satellite response is
computed with a classifierF (·) calibrated from the known
data{Z(uα, t),L(uα, t)} [Richards and Jia, 1999]. The
functionF (·) approximates the conditional expectation of
Ik(u, t) given solely co-located satellite response. Further-
more, the classifierF (·) for time ti is calibrated only from
the ground truth data available at timeti.

In this study, the conversion of Landsat TM measure-
ments into land cover types probabilities is done with the
conventional Gaussian maximum likelihood (ML) classi-
fier [Richards and Jia, 1999], a generative algorithm. A
multiGaussian RF modeling the satellite bands is asso-
ciated to each label. The probabilities Pr{Ik(u, t) =
1 | Z(u, t)}, k = 1, ..,K are calculated from the training
set using a Bayes’ inversion

pDN
k (u, t) = Pr{Ik(u, t) = 1| Z(u, t) = z} =

Pr{Z(u, t) = z|Ik(u, t) = 1}Pr{Ik(u, t) = 1}
∑K

k′=1 Pr{Z(u, t) = z|Ik′(u, t) = 1} · Pr{Ik′(u, t) = 1}

Assuming the random vectorZ(u, t) to be multiGaussian,
its conditional probability is written as

Pr{Z(u) = z|Ik(u, t) = 1} =

1

(2π)N/2|Σi|1/2
e−

1

2
(z−mi)

T Σ−1

i
(z−mi)

(7)

where mi and Σi are the mean vector and covariance
matrix of the DN values belonging to the training data with
labelLi.



3.3.2 Spatially-derived probabilities Denote bypS
k(u, t)

the conditional probability of observingLk at location
(u, t) given the isochronous label data found in the neigh-
borhoodV (u, t) 6).

This spatial probabilitypS
k(u, t) may be estimated from

simple indicator kriging [Goovaerts, 1997]. Simple indi-
cator kriging is a linear interpolator that applied kriging
weights to indicator data yielding the probability of be-
longing to a class given the neighborhood data, the mar-
ginal and the covariance model of that class.

The spatial continuity for each land cover type is measured
with indicator variograms [Goovaerts, 1997] defined as

γk(h) = E{[Ik(u, t) − Ik(u + h, t)]2}

The indicator kriging system uses that measure of spatial
continuity to optimally assigns weight to the indicator data.
The simple indicator kriging system is

Kλ = k

WhereK is the data-to-data covariance matrix,λ an un-
known weight vector andk the unknown-to-data covari-
ance vector. Finally the conditional probability of having
labelLk at location(u, t) given the the neighboring data is

Pr{(u, t) ∈ Lk|Ik(u′),u′ ∈ V (u)}

= λT
d + (1 − λT

1)E{Ik(u, t)}
(8)

where d is the known indicator data vector and1 is
a column vector of one. The full posterior probability
density function is obtained by computing and normalizing
(8) for k = 1, ...,K such that they sum to one.

In addition to the ground truth data, the neighboring data in
V (u, t) also include the locations that are considered well
informed by the sole satellite measurements.

The spatial context is thus accounted for through the prob-
abilities pS(u, t) estimated with simple indicator kriging
using for conditioning data the time series at those loca-
tions deemed well informed by the satellite measurements.

Taking the neighborhing pixels as indicators of the pres-
ence or absence of a label assumes that those labels are
somewhat related to the unknown pixel. There is, how-
ever, a risk to overextend the spatial relevance of the well-
informed locations. The problem lies in the discontinuity
of the landscape. For example a certain region may be
predominantly urban, without forest or agriculture, yet the
vegetated area could start abruptly a few pixels away. A
well-informed water label located in a lake close to the
shore does not say whether that shore is urbanized or vege-
tated, instead it tends to artificially increase the probability
that the shore would belong to a water label.

To offset this problem of borders and discontinuities, the
images are first segmented to find edges delineating those
discontinuities. Then a data neighborhood that does not
cross the edges is retained for the indicator kriging process.
Interpolation (kriging) is thus limited to homogeneous
neighborhoods, a schematic representation of that adaptive
neighborhood is shown in Figure 1(a).

(a) Adaptive neighborhood (b) Edges detection

Figure 1: In (a), example of an adaptive neighborhood
(dashed ellipse) in presence of an edge (solid line). The
square represents the unknown location to be mapped or
estimated, the empty circle are data outside the search
ellipsoid, hence not considered. The grey points are data
inside the search ellipsoid but on the wrong side of the edge
and are not taken into account. Only the black points are
considered for kriging the square location. In (b) Examples
of edge detection. The edges capture the border of the bay
and the dam at its extremity.

3.4 Posterior probability

The posterior probabilitypk(u, t) for classLk to occur
at location(u, t) is computed by combining the isochro-
nous probabilitypiso

k (u, t) and the time series probability
pT

k(u, t)

pk(u, t) = Pr{Ik(u, t) = 1 | all data}

= ψ( piso
k (u, t), pT

k(loc, t) ), ∀ k

The proposed combination algorithmψ is developed in the
next section.

Finally, the labelL(u, t) is estimated by taking the most
probable class of the posterior distribution:

L∗(u, t) = arg max
k

{pk(u, t), k = 1, ..,K} (9)

The time series,{L(u, t1), ...,L(u, tNt
)} at location u

is generated with a modified cascade approach. The
estimation sequence is not chronological, the time series
is produced by estimating the labels starting from the best
informed time, as measure from the satellite information,
and then sequentially estimating the time before and after
that starting time. The idea is that the starting time is very
consequential for the estimation of the whole time series,
that starting time is thus chosen to reduce the prediction
error. If the first pixel in the time series is misclassified, it
is quite likely that this misclassification will be propagated
to the rest of the time series. The less informed times at
any given location benefit from being conditioned on the
better informed collocated times.

3.5 Combining probabilities

Consider the isochronous probability vectorpiso(u, t) de-
fined in 4 and the time series conditional probability
pT

k(u, t) defined in 2 as two sources of information. Each
of the those two probabilities can be transformed into a
distance related to the likelihood of eventL(u, t) = k



occurring [Journel, 2002]. Let those distances be

xiso
Lk

(u, t) =
1 − piso

k (u, t)
piso

k (u, t)
∈ [0,∞]

xT
Lk

(u, t) =
1 − pT

Lk
(u, t)

pT
Lk

(u, t)}
∈ [0,∞]

Consider also the distance related to the marginal proba-
bilities

x
(0)
Lk

=
1 − Pr{(u, t) ∈ Lk}

Pr{(u, t) ∈ Lk}
, ∀u

The updated distance to the eventL(u, t) = k occurring
accounting for both information (1) and (3) is given by the
“tau model”:

xLk
(u, t) = x

(0)
Lk

·

(

xiso
Lk

(u, t)

x
(0)
Lk

)τiso

·

(

xT
Lk

(u, t)

x
(0)
Lk

)τT

(10)

whereτiso and τT are parameters measuring redundancy
between the two information sources [Journel, 2002,Krish-
nan et al., 2004]. The posterior probability is then retrieved
by inverting from the updates distance (10):

Pr{(u, t) ∈ Lk|Z(u, t)} =
1

1+xLk
(u,t)

1
1+xL1

(u,t) + 1
1+xL2

(u,t) + ...+ 1
1+xLK

(u,t)

∈ [0, 1]

(11)

The integration ofpDN(u, t) and pS(u, t) into piso(u, t)
is also done with expression 11 but using different tau
parametersτS andτDN. This preminilary study assume all
τs equal to 1, corresponding to standardized conditional
independence between the sources [Krishnan et al., 2004].

The tau-model integration has convenient properties. If
one of the prior probabilities is zero or one (no uncer-
tainty), the combined probability is also zero or one.
The combined probability is also always admissible, i.e.
included between zero and one. The previous kriging
in combination with the tau-model (11) assures that no
ground truth (hard data) locations are misclassified. At any
informed locationL(u, t) = k, the kriging estimate returns
a probability of one to belong toLk and zero for all others
labels. The tau model than ensures that the final probability
remains so.

Although mathematically similar to the logarithmic opin-
ion pool from consensual theory [Benediktsson and Swain,
1992] and to the aggregating formula of Bordley [Bordley,
1982], the tau-model is conceptually different. Theτ expo-
nents are not a measure of the reliability of the information
source, but serves to model the redundancy between these
sources. The reliability of the information is assumed to
be already coded into each of the prior probability dis-
tribution related to each source. More details about the
tau-model can be found in [Journel, 2002, Krishnan et al.,
2004,Benediktsson and Swain, 1992].

4 ALGORITHMS

The algorithm proposed proceeds as follows

• Perform a segmentation of the scenes

• ComputepDN(u, t),∀ u, t, see (5)

• Calculate the information content Inf(u) ∀u for all
time series

• For each well-informed time seriesuβ , β = 1, ..., NInf

– Estimate time series withpDN, andpT (see next
algorithm)

• For each remaining uninformed time series

– Estimate time series using all information (pS,
pDN, andpT)

The algorithm to estimate a time series at locationu can be
described as

• Find the timesti most informed by the satellite
measurements

• AssignLu, ti = k such ask = arg maxj p
iso
j (u, ti)

• Estimate sequentially future timesti+1, ..., tNt

– Assign labelsL(u, ti+s), s = 1, ..., Nt−i based
onpiso(u, ti+s) (4) andpT(u, ti+s)

• For all past timesti−1, ..., t1

– Assign labelsL(u, ti−s), s = 1, ..., i + 1 based
onpiso(u, ti−s) andpT(u, ti−s)

5 A CASE STUDY OF URBANIZATION IN SHEN-
ZHEN, CHINA

This study focuses on detecting and mapping changes
between between 1988 and 1996 using a time series of
Landsat TM images. We acquired 6 images of Shenzhen,
dating from 1988,1989, 1992, 1994, 1995 and 1996 all
taken around December. The scene consists of 1 917 870
pixels approximatively covering an area of size 45km by
45 km, with each pixel of dimension 30x30 meters.

The landscape is divided into K=7 classes: water, forests,
agriculture, urban, fish pond, transition (land getting
cleared for urban settlement) and shrub. The ground truth
measurements consists of 1917 locations identified by ex-
pert interpretation or by field reconnaissance. At ground
truth locations the labels are deemed known at all times.
The prediction errors, the expected errors between the es-
timated label and the true label at any location, are esti-
mated by a 5-fold cross-validation procedure [Hastie and
Friedman, 2001]. The known labels are divided five times,
each time into a training set and a testing set such that all
samples are used once for testing purposes. Each split is
done such that 80% of the ground truth data belong to the
training set and the remainder 20% to the test set.



5.1 Results

The results of the proposed method applied to the Shen-
zhen scene are compared to the accuracy resulting from
the maximum likelihood (ML) classifier, see expression 7.
The ML classification is done by assigning to a time-space
location (u, t), the class that has the maximum probabil-
ity pDN

k (u, t). This ML classification considers only the
satellite responses thus ignores the temporal and spatial
correlation between labels. The changes are mapped by
comparing the ML classification performed independently
at each time.

The results are validated using (a) an overall accuracy
criterion, the percent of correctly classified pixels, and
(b) a time series accuracy, the percent of locations which
have their vector of labelsall correct. A time series at
locationu is well classified only if its six labels have been
correctly predicted. For change detection purposes, the
time series accuracy is critical as it measures how well the
changes are mapped in both time and space. This allows
for a correct identification of the time when the landscape
has changed, and from which label to which other label.
Such information is necessary to study the dynamics of the
landscape.

With the ML classifier, the accuracy from a five-fold cross
validation yields an overall accuracy of 78%, but the
temporal accuracy is only 33%. The proposed method
marginally improves the overall accuracy from 78% to
82%. However, the temporal accuracy goes up to 61%,
a considerable improvement.

Tables 1 and 2 show the confusion matrices of the clas-
sification using ML and then using the proposed method
which utilizes both spatial and temporal information. The
producer and consumer accuracy for both cases are shown
in Table 3. For all labels the consumer accuracy is greater
or at least equal when space and time are incorporated in
the classification. The improvement is especially notice-
able for the forest class, the consumer accuracy jump from
44% to 91% as less forest were misclassifed into shrub.
The producer accuracy, however, remains low with both
methods for the forest class. The shrub ground truth data
are almost all correctly identified (a producer accuracy of
0.93), a significant improvement from 0.83 when only the
ML classifier is used. The fish ponds class also greatly ben-
efits from the proposed method as its consumer accuracy
goes from 0.66 to 0.81 and its producer accuracy improves
20 points from 0.72 to 0.92. The proposed method reduced
the misclassification of fish pond into the water class from
56 misclassifications to only 6. Only the producer accuracy
of water and forest decreases with the integration of spatial
and temporal information.

The indicator kriging step decreases the level of speckling
in the images, producing smoother maps. For example, the
ML tend to classify many shadow zones in mountainous ar-
eas as water; the integration of spatial information corrects
many of those misclassified pixels. There is no need to
post-process the classified images to remove the speckles.

labels wat. for. agr. urb. pond tra. shr.
wat. 1584 9 18 12 60 40 9
for. 27 185 12 0 0 0 287
agr. 35 23 988 39 0 24 503
urb. 4 2 30 877 5 292 55
pond 56 0 1 2 165 3 2
tra. 36 1 23 257 9 2535 77
shr. 13 204 215 44 12 57 2670

Table 1: Confusion table for maximum likelihood

labels wat. for. agr. urb. pond tra. shr.
wat. 1503 5 24 81 35 40 44
for. 23 168 26 7 0 0 287
agr. 39 6 1059 15 0 49 444
urb. 0 3 23 938 0 265 36
pond 6 1 5 1 210 4 2
tra. 38 0 23 239 10 2569 59
shr. 6 2 116 34 3 60 2991

Table 2: Confusion table with space/time consideration

Maximum likelihood
wat. for. agr. urb. pond tra. shr.

C. Acc 0.9 0.44 0.77 0.71 0.66 0.86 0.74
P. Acc 0.91 0.36 0.61 0.69 0.72 0.86 0.83

Proposed method

C. Acc 0.93 0.91 0.83 0.71 0.81 0.86 0.77
P. Acc 0.87 0.33 0.65 0.74 0.92 0.87 0.93

Table 3: Consumer and producer accuracy for both meth-
ods

Kriging based on well-informed locations with an adaptive
neighborhood has some advantages over commonly used
post-processing filters such as the majority filter. With
that filter any pixel can be changed according to the
neighboring pixels; hence there is a possibility that a pixel
well informed by the satellite measurement, thus with a
low probability of misclassification, gets changed based
on potentially more uncertain pixels in its neighborhood.
Such scenario cannot happen with our proposed kriging
as the spatial context is created from those well-informed
pixels and propagated to the poorly informed ones, never
the other way.

The maps in Figure 2 show, for each location, the year at
which change first occurred. A comparison between Fig-
ure 2(a) and (b) shows that the proposed method preserves
some spatial relationships for the land cover changes, ex-
hibiting a structured evolution of the landscape. On the
contrary, the ML method produces a salt and pepper texture
where the physical evolution of the landscape is difficult to
discern.

The proposed method considerably reduced the number of
false positives. With the ML prediction, 35% of locations
had changed more than once, a number that expert visual
inspection of the images does not validate. With the
proposed method only 9% of locations are predicted to
change more than once. The ML also predicts that 22% of
locations did not change while that percent goes up to 64%



when both spatial and temporal information are combined
for prediction.

(a) Year of first changes for pro-
posed method

(b) Year of first changes for ML

Figure 2: Map of predicted land cover changes represent-
ing the year at which the first change occurred. Figure
(a) maps the year of change as predicted by the proposed
method. Figure (b) does it for the ML method. Black indi-
cates no changes, lighter tones indicates later times. Note
the greater spatial resolution for the proposed method.

6 CONCLUSION

This paper presents a new methodology that integrates the
spatial and temporal autocorrelation of labels in remote
sensing applications. That integration results in a more
accurate change detection map that better indentifies what,
when, and where landscape changes occurred. This study
uses only 6 images, the extension to longer time series
would be straightforward as the complexity of the algo-
rithm only increases linearly with additional images.

Prior identification of well-informed locations from only
satellite information is shown to work well.

The algorithm is flexible as it can handle any spatial,
temporal or satellite classifier as long as it provides the
probability for a pixel to belong to any label. For example,
the ML classifier could be replaced without any change
to the algorithm by a probabilistic neural networks or any
other suitable algorithm. In the same way, a Gibbs-Markov
RF or multiple points geostatistical algorithm [Strebelle,
2002] could replace the indicator kriging to provide the
spatial context. Furthemore, if integrated with a GIS,
other sources of information ( such as distance to road,
topography) could be integrated if that information can
be coded into probabilities. Optimizing the tau exponents
through some kind of training algorithm could further
increase the classification accuracy.

Most importantly, the new method shows a consider-
able increase in the temporal accuracy with the proposed
method. The evolution of the landscape displays greater
spatial continuity and appears more realistic.
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