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ABSTRACT: 
 
The automatic classification of urban materials from airborne and spatial acquisitions remains difficult today because of two main 
reasons: the spatial resolution of the images and the need for pre-processing algorithms to extract ground surface intrinsic properties. 
This work examines the feasibility of using 8 spectral information distributed in the visible and the near-infrared spectral regions (0.4 
- 1 µm), acquired at a 20 cm spatial resolution, for recognizing the urban materials. The motivation for this study is the development 
of very high spatial resolution sensors which has introduced a promising capability for the study of urban areas. In this study, an 
experiment campaign took place in Toulouse. The airborne measurements were carried out using 8 cameras associated with 8 narrow 
filters (30 nm). Ground spectral measurements of Toulouse's urban materials were performed within the configuration of the airborne 
acquisitions. These measurements allow us to determine and quantify three types of reflectance spatial variability. The results show 
that urban materials have low reflectances with no significant spectral features and are then difficult to discriminate. To determine 
which material classes could be discriminate over the 8 spectral bands of the airborne acquisitions, a statistical analysis was 
performed on the ground measurements. This analysis highlights that 5 material classes could be discriminated from good quality 
measurements. 
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1. INTRODUCTION 

The advent of high spatial and spectral resolutions sensors 
enables the study of urban environment with new precision 
level. Urban area architectures have a very specific man-made 
structure that may introduce complex phenomena. Indeed, in the 
visible and near infrared, shadows and environment effects (like 
scattering of the light on the walls) disrupt the radiance 
incoming the sensor (Miesch, 2004). To be able to discriminate 
urban materials, preprocessings are thus required to extract 
ground surface intrinsic properties from radiance measurements. 
For many years detailed studies have been carried out 
developing automatic classification algorithms using airborne or 
spatial data. Typical urban areas include a wide range of roofs, 
roads, pavements and squares. Due to the limited spatial and 
spectral resolutions of the sensors, algorithms were impeded by 
the abundance of spectrally mixed pixels (Small, 2003). Only 
broad classes such as urban area or vegetation could be 
discriminated. Several recent studies have focused on the 
spectral properties of urban materials from ground 
measurements (Ben-Dor, 2001; Herold, 2004). They analysed 
the spectral signatures of urban materials and discussed the 
relative importance of spectral regions for the classification of 
urban areas. 
The scope of this work is a part of a study which aims to 
determine the spectral ground reflectance of urban materials 
from high resolution acquisitions. An experimental validation 
campaign of this model took place in April 2004. It was 
composed of airborne acquisitions in 8 narrow filters at a 20 cm 
resolution in the visible and near-infrared (PELICAN image 
sensors) and ground truth measurements in Toulouse within the 
same spatial resolution. The goal of the ground measurements 

was to obtain information in three domains: a list of the main 
materials present in the city, their spectral reflectance properties 
and their spatial variability.  
The investigation presented analyses a part of these validation 
measurements and is aimed at evaluating the feasibility of 
discriminating urban materials from the PELICAN 
configuration images. After having described the airborne 
configuration, this paper analyses the spectral variability 
observed for urban materials from ground measurements. A 
statistical analysis is performed with the 8 spectral bands 
reflectance values averaged from the ground measurements. 
 
 

2. EXPERIMENT DESCRIPTION 

2.1 PELICAN airborne acquisitions 

The airborne measurements were performed using two high 
spatial resolution systems (PELICAN) composed of 4 cameras 
each. The flight altitude was 2250 m and the spatial resolution 
at ground level 20 cm. The 8 narrow filters associated to the 
cameras were located in the visible and near infrared from 
420 nm to 917 nm. The description of the 8 filters is shown in 
Table 1. The bands are well distributed in the spectral domain, 
avoiding the main absorption molecular bands (O2, O3 and 
H2O) except the last one. Indeed, the two last bands in the 
infrared are devoted to the water vapour content retrieval: the 
first one located in an atmospheric window, the other centred on 
a water vapour absorption band. 



Centre wavelength 
(nm) 

Width (nm) 

435 30 
485 30 
550 30 
670 30 
740 30 
870 30 
907 20 

Table 1: Description of the 8 filters. 
 
The airborne acquisitions took place in April 2004 during two 
sunny days. Figure 1 shows samples extracted from 8 images 
obtained during one acquisition over the Toulouse centre. 
 

 
Figure 1: Images of Toulouse centre in four spectral bands 

among the 8 ones  
(a: 435 nm, b: 550 nm, c: 670 nm, d: 907 nm). 

 
2.2 Ground measurements 

These measurements were acquired with an ASD-FR 
spectrometer ranging from 350 nm to 2500 nm. Reflectance 
measurements were carried out at a 20 cm resolution, at the 
nadir in reference with a SpectralonTM reference panel. 
Such spectral measurements obviously allow to estimate the 
spectral reflectance of urban materials, but also to quantify their 
spatial variability. They all took place at solar midday (solar 
zenith angle of about 35°) in sunny areas in order to reduce as 
much as possible the irradiance conditions effect. Thus, the 
major origin of the observed spatial variability is the ground 
variability itself. 
Five material classes were arbitrary defined in this experiment: 
tar (road), red asphalt and concrete (pavement), granite paving 
stone (road and square) and slab of granite (square). 
 
 

3. SPECTRAL VARIABILITY ANALYSIS 

When we look at buildings or roads in a street, it seems quite 
simple to discriminate urban materials: they all have specific 
colours and roughness. However, this discrimination remains 
more difficult from airborne acquisitions using automatic 
classification. This is mainly due to illumination conditions and 

especially shaded effects, and also directional properties of 
urban materials (Meister, 2000). Indeed, some urban materials 
such as tiles reflect different amount of energies depending on 
their relative orientation towards light sources and observation 
directions. These phenomena could be nearly corrected by using 
a radiative transfer algorithm (Richter, 2002; Martinoty, 2004). 
On the other hand, some misclassifications could come directly 
from spatial variability of the urban material regardless of 
irradiance conditions. This section addresses this problem by 
analysing and quantifying spatial variabilities of typical urban 
material spectral signatures. 
 
3.1 Estimation of the urban materials’ variability 

Figure 2 shows the averaged spectral reflectance obtained for 
the main analyzed materials. It can be seen that some spectra 
like grass are very specific whereas it is difficult to discriminate 
most materials which have a very low reflectance ranging from 
0.05 to 0.2. Several experiments have been carried out to 
understand and quantify the reflectance variability of these 
materials. Three variability types were identified in this study 
(Table 2): a physical variability which is intrinsic to the 
material, a contextual variability depending on the material use 
and a class definition variability which is the one observed 
inside a chosen class. 

 
Figure 2: Reflectance of urban ground materials. 

 
The physical variability corresponds to a spatial variation of the 
reflectance due to the material’s roughness and texture. In order 
to be representative, the measurement spatial resolution (20 cm 
here) may widely include the scale of the material's roughness 
otherwise the spectral variability may become important. For 
instance, this is the case for a square in granite paving stones for 
which the standard deviation of the measured spectra is 13%. 
On the contrary, a tar road has a smaller structure, and the 
standard deviation is less than half lower. 
 

Variability type Maximum 
standard deviation 

Physical (spatial variation) 13% 

Contextual (material use) 30% 

Class definition 50% 

Table 2: Maximum standard deviation observed for the three 
variability types. 

 
The spectral reflectance depends also on the material use. 
Indeed, granite paving stones are located on roads but also on 
pavements. Cars and people do not degrade or modify ground 



the same way. After months or years, the optical properties of 
the material are affected differently, which produces what is 
called here the contextual variability. For the case of roads and 
pavements initially covered by the same material, the 
measurements show a 30% difference between their respective 
mean spectra.  
Several material classes have been defined depending on the 
material location. But, there is actually a great diversity of 
materials in one class. For example, more than five granite types 
have been found in Toulouse. Each material differs from the 
others in its colour or its roughness. All the reflectance spectra 
have the same shape but differ in their reflectance’s level, which 
ranges here between 0.14 and 0.31 at 1000 nm. We called this 
variability "class definition variability". It is linked to the 
number and the definition level of the chosen (and thus 
arbitrary) classes. 
 
3.2 Discriminant analysis (DA) 

The previous part showed that the maximum standard deviation 
of spectral measurements could reach 50% for the same 
material. The goal of the discriminant analysis was to determine 
if urban materials could be discriminated into predefined 
classes. The discriminant analysis was built on 250 reflectance 
measurements acquired during the ground campaign. The set of 
variables used were the averaged reflectances of the ground 
measurements in the 8 bands defined previously. Figure 3 
shows the two-dimensional scatterplot which plots observations 
by the two first eigenvectors. 
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Figure 3: Discriminant analysis of urban materials plotting 
observations by the two first discriminant functions. 

 
The measurements appear well gathered, class by class. To 
confirm this observation, discriminant analysis pairs were 
calculated according to the Rao's V distance (corresponding to a 
generalized measure of the Mahalanobis distance). 
 

VRao  
(dB) 

Asphalt Con-
crete 

Tar Granite 
slab 

Paving 
granite 

Asphalt - 35.1 33.9 29.3 31.1 
Concrete 35.1 - 36.1 27.1 28.9 

Tar 33.9 36.1 - 27.7 29.9 
Granite 

slab 
29.3 27.1 27.7 - 26.6 

Paving 
granite  

31.1 28.9 29.9 26.6 - 

Table 3: DA pairs for each class. 
 
We can see in Table 3 that the Rao's V value, for each couple of 
classes, is high enough to allow a discrimination of them. Even 

granite slab and granite paving stone which are both made in 
granite could be discriminated at a 20 cm resolution.  
 
 

4. CONCLUSIONS 

This work aimed to evaluate the feasibility of discriminating 
urban materials at 20 cm resolution from 8 spectral bands in the 
visible and the near-infrared. The analysis carried out from 
ground measurements highlights that urban materials show an 
important spectral variability. A statistical approach however 
confirms that the discrimination is still possible when 
considering 5 usual urban classes.  
The next step of this study will consist in considering 
reflectance spectra extracted from airborne measurements and 
corrected from atmospheric and illumination effects. In this 
case, the classification relevancy will also depend on the used 
inversion algorithm and the classification result analysis will 
determine the required correction accuracy. 
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