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ABSTRACT

Rising interest in traffic monitoring applications motivate the analysis of TerraSAR-X data for traffic monitoring applications. In
order to sidestep the limitations of the TerraSAR-X sensor, this paper examines a new approach to improve detection using a priori
information. Using Monte-Carlo Simulation the possibility of improving detectionwith ATI is demonstrated.

1 INTRODUCTION

1.1 Motivation

As increased traffic emerges as one of the major problems in ur-
ban and sub-urban areas, traffic-monitoring has become an in-
creasingly important research topic. Most of the conventional
systems for traffic-monitoring, however, lack of spatial extent.
Hence traffic monitoring from space provides an attractive alter-
native to supplement existing systems. One remote sensing sys-
tem to think about in this context is the upcoming TerraSAR-X
Mission. Its high resolution synthetic aperture radar (SAR) sen-
sor provides the potential for new task in remote sensing. Even
more importantly the sensor can also be operated in an experi-
mental split-antenna mode, which acquires two high resolution
SAR-Images of the same scene within a small time frame. Espe-
cially this split-antenna mode is going to provide data suited for
traffic monitoring. In order to determine how good the TerraSAR-
X data will be suited for traffic monitoring, detection algorithms
with a known measure of accuracy have to be developed.

1.2 Previous Work

The task of detecting moving vehicles with SAR sensors has been
addressed in several scientific publications. In military research
this problem is well known as ground moving target indication
(GMTI). The method of choice in GMTI is to use a SAR sensor
with at least 3 channels and use space-time adaptive processing
(STAP) for target detection. Further reference to that topic can be
found in (Klemm, 1998). Unfortunately space borne SAR sys-
tems with 3 or more channels are currently not available. The up-
coming TerraSAR-X mission is equipped with a single channel
SAR that can be switched to an experimental mode with 2 chan-
nels to enable traffic monitoring. Although the use of a 2-channel
system is not optimal for detecting vehicles, some methods ex-
ist that allow detection under certain conditions. The classical
method to do so is to use the displaced phase center array (DPCA)
method. Along track interferometry (ATI) is another method that
can be used. The issue of detecting moving targets using ATI is
discussed in (Gierull, 2001). In (Gierull, 2002) special empha-
sis is put on the probability density functions associated with this

detection. Traffic monitoring from space is quite rare so far. But
as shown in (Breit et al., 2003) first endeavors have already been
carried out.

1.3 Innovation

There are however a different premises to military GMTI on the
one hand and civilian traffic monitoring on the other hand. In con-
trast to military applications, civilian applications include more
constraints regarding the objects to detect. In the traffic monitor-
ing case we can assume, that vehicles are bound to roads on a
known road-network. This might not be true in military GMTI.
Generally speaking, vehicles in the traffic monitoring case can be
assumed to follow certain rules. These rules provide a priori in-
formation to be used for detection. It is the objective of this paper
to investigate this issue. First the detection strategies are illus-
trated. Here special emphasis is put on the issue of incorporating
a priori information into the detection. Then the possibilities of
how to acquire a priori information are given, followed by a simu-
lation quantifying these more qualitative considerations. Results
of the simulation and the conclusions drawn from these results
conclude the paper.

2 METHODOLOGY / THEORY

2.1 Outline of the detection method

The TerraSAR-X satellite will be equipped with a single SAR an-
tenna of 4.8 m length that can be electronically split in 2 parts of
2.4 m each. Therefore, the sensor can be used as a 2-channel SAR
with 2 antennas arranged in along-track. Both antennas observe
the same surface element on ground from the same orbit position
only separated by a short time lag of about∆t = 0.16 millisec-
onds. When relatively calibrated SAR data from each aperture
are focused to a complex image (using the same matched filter
for each image) and then spatially registered to each other, the
image content will be identical provided the observed scene did
not change within the time interval∆t. Statistical changes of
the scattering properties of the earths surface and thermal noise



in the receiver of the sensor reduce the similarity of the infor-
mation contained in both data sets. A measure for the similar-
ity of the images is the coherence. It ranges from0 (no sim-
ilarity) to 1 (identical images). Due to the short time lag∆t
the changes of the scattering properties are negligible. Ther-
mal noise however reduces the coherency to an expected level
of about|ρ| = 0.95. Objects moving in across-track direction,
however, will have changed in between the two scenes, and these
changes cause the following two effects in the images:

• Due to some assumptions incorporated into the SAR focus-
ing process, an object with non-zero mean across track ve-
locity vy, will appeardisplaced in azimuth by a distance
equivalent to the spatial shift∆azimuth = −Rvlos/vsat,
with vlos = vy cos (θ), θ being the local incidence angle
andvsat being the satellite velocity.

• The across track velocity of the vehicle will also cause a
phase shift ϑ, which is proportional to the targets velocity,
the sensor motion and the time delay∆t

For TerraSAR-X these effects have been analyzed and quantified
in more detail in (Meyer and Hinz, 2004) . These effects can
be exploited in order to detect targets in SAR images. In princi-
ple, two different analytical approaches can be used to find and
measure moving targets: temporal (along-track) SAR interferom-
etry (SAR ATI), and SAR displaced phase center antenna (SAR
DPCA). In this paper we will focus on the along-track interfer-
ometry approach.

2.1.1 Conventional CFAR detection In the case of along-
track interferometry an interferogramI is formed from the origi-
nal complex data setsI1 andI2 by calculating

I = I1 · I
∗

2 = |I1| |I2| exp (j (ϕ1 − ϕ2)) =

= η exp (jψ) (1)

with ϕ1 = arg (I1) andϕ2 = arg (I2)

For all stationary targets the interferometric phase valuesψ =
(ϕ1 − ϕ2) will be statistically distributed around the expectation
valueE [ψ] = 0. The joint probability density function (pdf)
fc (η, ψ) of amplitude and phase of an interferogram has been
derived in (Lee et al., 1994) and (Joughin et al., 1994) using the
underlying assumption of jointly Gaussian-distributed data in the
two images. It is given by:
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wheren is the number of looks,Γ (•) is the gamma function
andKn (•) is the modified Bessel function of thenth kind. As
a precondition for the validity of the pdf it was assumed that
E
�
η2
�

= 1. Multilooking is done by averaging overn pixels
assuming stationarity. For medium resolution SAR the jointly
Gaussian assumption has been validated in most agricultural and
heavily vegetated areas. Figure 1 shows a typical example of the
pdf assuming a coherency of|ρ| = 0.95, n = 1 and a expected
signal amplitude ofE [η] = 1.
Figure 1 illustrates the typical behavior of the clutter that large
phase fluctuations are associated with small amplitudes (destruc-
tive interference in the speckle patterns of the images). The phase
variations are drastically reduced for large amplitudes (construc-
tive interference in the speckle patterns of the images). The pdf
is centered on a phase value ofψ = 0 as expected.

Based on this pdf a constant false alarm rate (CFAR) detector can
be designed that groups all image pixels into two classes. Class 1,
called ’clutter only’, contains all pixels that only carry image in-
formation. Class 2, called ’no clutter’, contains all pixels that are
not part of the image pdf. This class 2 includes pixels that contain
moving vehicles but also all sort of outliers. Since the pdf of this
second class is not known the best thing to do is to assume it be-
ing equally distributed over a large area. With this assumption we
can compute a likelihood ratio. Classification is done by compar-
ing that likelihood ratio with thresholdsα. This provides us with
a curves of separation between the two classes, which are actually
isolines onfc (η, ψ). An example of a possible curves of sepa-
ration is indicated in Figure 1 by black dashed lines. The cho-
sen curve of separation determines the probability of false alarm
(Pfa); sometimes also referred to as ”‘false alarm rate”’ (FAR).
It is simply the integral of the Clutter pdf over the area where
fc (η, ψ) < α. Thus, the FAR describes the rate of ’clutter only’
pixels that are wrongly assigned to the class ’no clutter’.
Applying a CFAR detector of the given design for detecting ve-
hicles is optimal only in cases when amplitude and phase of a
possible moving target in an arbitrary image pixel is uniformly
distributed. This holds for many military applications, where ve-
hicles are not bound to roads and can move in any arbitrary di-
rection. In case of public traffic, where a priori information about
position, velocity and movement direction of vehicles is avail-
able to a certain degree, the use of a simple CFAR detector is
sub-optimal.

2.1.2 Including a priori knowledge in the detection The mov-
ing target signal is assumed to have a peak amplitudeβ and a
phase shiftϑ. The Parameterβ is proportional to the square root
of the radar cross sectionσ. A new class describing the superpo-
sition of moving target signal and clutter, called ’vehicle & clut-
ter’ can be introduced now. The Class ’vehicle & clutter’ is a
subset of the class ’no clutter’. Unfortunately a pdffc+m (η, ψ)
describing the probability density of this class has not been found
yet. An approximation, valid forn >> 1 has been derived by
Gierull (see (Gierull, 2002)). This approximationfc+m (η, ψ) is
given by:
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Using this approximation as an alternative hypothesisfc+m (η, ψ)
allows to define a likelihood ratio. Again thresholds can be ap-
plied resulting in other curves of separation. These lines are not
isolines anymore, but they separate the class ’vehicle & clutter’
much better from the class ’clutter only’. Thus the risk of falsely
detecting an outlier is reduced andPFA is decreased. Figure 2
shows an example of the shape offc+m (η, ψ) and its position
relative to the hypotheses ’clutter only’. An example for curves
of separation is also given. It encloses the class ’vehicle & clutter’
much better than the one in Figure 1. The incorporation of a pri-
ori information into the vehicle detector improves the amount of
detected targets and also reduces the number of false alarms. But,
in order to define the ’vehicle & clutter’ pdf external data sources
are indispensable that allow to obtain the necessary a priori in-
formation about the vehicles impulse responseβ and the vehicles



Figure 1: Theoretical joint probability density functionfc (η, ψ)
of the single-look interferometric phase and a magnitude normal-
ized toE [η] = 1. Coherency is set to|ρ| = 0.95. The dashed
line is an example for a curve of separation.

Figure 2: Theoretical joint PDF of the alternative hypotheses and
its position relative to the hypotheses ’Clutter only’. The dashed
line is an example for an improved curve of separation.

interferometric phaseϑ. The next section shows how to acquire
that information.

2.2 How to determine a priori information

As mentioned above, one obvious and well-studied effect of mov-
ing objects in SAR-images is displacement∆azimuth in along-
track direction due to an object’s across-track motion. In the
worst case, this would mean that a vehicle detector must be ap-
plied to the entire image. Vice-versa, assuming objects being
point scatterers and given the SAR- and platform parameters, this
effect can be predicted when real position, velocity, and motion
direction of the mover are known. Because of the functional re-
lation of interferometric phaseψ and object velocity in across-
track direction, also the interferometric phase of a (displaced)
moving object can be derived. These types of prediction may
be interpreted as a priori knowledge that can be acquired, ana-
lyzed and stored independent of image acquisition. In our case,
road network databases serve as basic source for acquiring a pri-
ori knowledge. Typically, these databases contain road axes in
form of polygons and attributes like road class, road width, max-
imum velocity, etc. attached to each polygon. Using this infor-

Figure 3: Example for the displacement map of a single road
segment. Color is proportional to the vehicles speed.

mation a number of ”maps” representing the a priori information
are derived (i.e. displacement map, velocity map, and interfer-
ometric phase map). Consider a vehicle hypothesis to be tested
at an arbitrary image location with an approach as described in
2.1.1. Then, these maps provide information about the expected
displacement from the corresponding road, the object’s expected
velocity, and the expected interferometric phase, which can be
integrated into the hypothesis-test framework as shown above.
Figure 3 shows an example for the displacement map of a single
road segment. Besides the information about the phaseψ addi-
tional a priori information about the vehicles radar cross sectionη
is necessary for determiningfc+m (η, ψ). This information can
again be derived using the road network. From the orientation of
the corresponding road segment the aspect angle under which the
car is observed by the sensor can be calculated. The dependency
of the radar cross section of a car from the aspect angle is derived
from simulations and experimental measurements. An example
of such a curve is shown in Figure 4. The combination of both
data sets enables to come up with an estimate for the most prob-
ableη that can be expected. When both parameters are derived
for an arbitrary image pixel, the hypotheses ’clutter only’ and
’vehicle & clutter’ can be calculated and the hypotheses testing
framework can be applied.

Figure 4: Radar cross section depending on aspect angle. Nu-
merical simulation of a medium sized car in X-Band. Courtesy
of Erich Kemptner, DLR-IHR.



3 IMPLEMENTATION / SIMULATION

Since the probability density functions are not known exactly for
certain cases, an analytical approach turns out to be troublesome.
Since TerraSAR-X has not been launched yet, there is also no real
data to work with. Hence for a first approach to grasp the prob-
lem a Monte-Carlo simulation was implemented. It was cross-
checked with theoretical results as far as those are known. The
simulation is split into two parts: The generation of a sufficient
number of random samples followed by the evaluation of these
random samples. In all the simulations exact knowledge of phase
and amplitude was assumed.

3.1 Generation of samples:

To generate a random sample, the whole process of data acquisi-
tion is simulated: SAR-Data-Acquisition process, multilooking,
if required, and the generation of interferograms and DPCA im-
ages. Then the pixel of interest is selected and stored in a list
of random samples. Two sets of random samples are created: A
set with samples from a pixel containing clutter only; and a set
of samples from a pixel containing the radar return of a vehicle
embedded in clutter. The simulation is based on the following
assumptions:

• Homogeneous Clutter

• Vehicle is modeled as a point-target

• Vehicle is moving in range with a constant velocity

• SAR-Data-Acquisition process is modeled by low pass fil-
tering

First the parameters required for the simulation are fixed. These
parameters describe the properties of the sensor, the vehicle and
the clutter surrounding it. Sensor parameters were set to match
TerraSAR-X specifications. Some parameters can be varied be-
fore each run of the simulation to compute different scenarios.
These parameters are: Signal-to-clutter ratio (SCR), coherenceρ,
speed of the vehicle consideredvat and the number of looksn.
Then, using these parameters, a pair of SAR-Images (I1, andI2)
are generated. These two SAR-Images resemble the two chan-
nels of TerraSAR-X. For the sake of feasibility this is however
just done for a small section around the pixel considered. When
simulating both the ’clutter only’ and ’vehicle & clutter’ case, a
pair of images containing just clutter is generated first. To do so,
three images (J1, J2, andJ3) containing just complex gassian
white noise are generated by a random generator. For the simu-
lation to meet the right coherenceρ and backscatterer coefficient
σ0 = E

�
η2
�
. They are summed as follows:
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Then the noise is low pass filtered with a filter resembling the
SAR data-acquisition process. See (Bamler and Schättler, 1993)
for further reference on this topic. For the ’clutter only’ case the
simulation of the image ends here. For the ’vehicle & clutter’
case the radar return of the vehicle without any clutter is simu-
lated next. Two images, each containing just a point target are
generated first. The magnitudes of the point targets are chosen
to meet the assumed radar-cross sectionβ of the vehicle. The
phases are chosen randomly, but with a fixed phase shiftψ link-
ing them to each other. This phase-shift depends on the vehi-
cle’s speed. Again a low-pass filter is applied to resemble the

SAR data-acquisition process. Now for each channel the image
containing just clutter is superimposed with the image containing
just the vehicle’s radar return by simply adding each pixel. This
results two images for the ’vehicle & clutter case’.
We now have two simulated radar images either containing ’clut-
ter only’ or ’vehicle & clutter’. To simulate DPCA the two images
are subtracted from each other to form a DPCA-image (Id) For
ATI an interferogram (Ia) is computed by multiplying the cor-
responding pixels of the two images. If required, multilooking
can be done at this point as well. From the resulting images the
samples are then collected. The simulation is repeated until the
desired number of samples is reached.

3.2 Evaluation:

For each set of random samples a histogram is computed first.
The two histograms are treated as a substitute for the probability
density functions. There are two alternative ways of implement-
ing the detection:
To construct a detector with a priori knowledge, a discrete like-
lihood function is computed by dividing the histograms element
wise. Then by determining whether this likelihood is greater or
smaller than a certain threshold, masks for ’clutter only’ and ’ve-
hicle & clutter’ can be determined. The masks are then used to
decide whether a random sample belongs to the Hypothesis ’clut-
ter only’ or the Hypothesis ’vehicle & clutter’.
The detector not considering a priori knowledge ignores the ’ve-
hicle & clutter’ histogram and just makes use of the ’clutter only’
histogram. The concept of this detector follows the principle of a
CFAR detector as described in section 2.1.1 A discrete likelihood
function cannot be computed. Instead the threshold is directly ap-
plied to the ’clutter only’ histogram. Analog to the first detector
masks for both hypothesis are determined.
To evaluate the performance of the two detectors the threshold is
varied and the probability of detection (PD) and probability of
false alarm (PFA) are determined for each step of this variation.
Then the false alarm probabilities are plotted against the proba-
bilities of detection resulting in the so called receiver operating
characteristic curve (ROC-curve).

4 RESULTS

The key question when using a priori information is: ”‘Are im-
provements possible?”’ Based on the simulation explained above
several ROC-curves have been computed for varying parameter
sets and different detection strategies. The performance of dif-
ferent detection methods, namely ATI with a priori information,
ATI without a priori information, DPCA with a priori information
and DPCA without a priori information was evaluated based on
the simulated data sets. To measure the performance, the ROC-
curves of the various detectors were compared. Ideally the ROC-
curve would jump up to a probability of detection of1 right away,
holdingPD = 1 for anyPFA. The opposite case - a detector just
guessing - is indicated by the thin dashed line.
For DPCA the priori information, described above, is not useful
in improving detection. As Figure 5 shows the ROC-curves of
the two detectors are the located on top of one another; the detec-
tors show the same performance. The comparison of the two ATI
detectors shows a clear advantage for the one using a priori know-
ledge. For all the parameter sets examined the a priori detector
yielded better results than the CFAR detector. Especially in bad
detection scenarios the improvements tend to be larger. Figure 6
shows a comparison of different ROC-curves varying the signal
to clutter ratio from -3db to 10db; Figure 7 shows a comparison
of the two detector for different looks.
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Figure 5: Performance of an DPCA-detectors for signal to clut-
ter ratios of -3dB, 0dB, 3dB, 6dB and 10dB (innermost to outer-
most).

5 CONCLUSION

It has been shown, that the use of a priori information about the
phase and radar cross section improves ATI detection. DPCA de-
tection however cannot gain any improvement by this kind of a
priori information. As mentioned before this simulation is just a
first step to grasp the issue. Further work will incorporate inho-
mogeneous clutter into the simulation as well as develop a more
realistic scenario of a priori information(e.g. with a distributed
amplitude instead of a deterministic one).
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Figure 6: Performance of an ATI-detector using a priori infor-
mation (solid line) compared to an ATI-detector using no a priori
information (dashed line) for signal to clutter ratios of (innermost
to outermost) -3dB, 0dB, 3dB, 6dB and 10dB (single look).
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Figure 7: Performance of an ATI-detector using a priori infor-
mation (solid line) compared to an ATI-detector using no a priori
information (dashed line) for different numbers of looks(signal to
clutter ratio fixed at 6db). From outermost to innermost: 1 look,
3 looks, 9 looks.
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