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ABSTRACT: 

Data mining methods have been widely and successfully used in many fields in the last decade. And geographic knowledge 
discovery and spatial data mining also have attracted more attentions recently. This paper presents an ART-MMAP neural network 
based spatio-temporal data mining method to simulate and predict urban expansion. The spatial matrices derived from different 
urban related features, i.e. transportation, land use, topography, were directly used as inputs to the neural network model for 
learning. The trained network was then applied to research region to predict the land use change to urban. The learning and 
prediction process are automatic and free of intervention. The method has been successfully validated with the urban growth 
prediction at St. Louis region at Missouri, USA. 

1. INTRODUCTION

The huge amount of data has posed great challenges to 
traditional data analysis method for information and knowledge 
extraction. Data mining, referring to the application of low-
level algorithms for revealing hidden information in a database 
(Klosgen and Zytkow, 1996), has been emerging as a new 
research field and a new technology in the last decade. Data 
mining represents the interdisciplinary research of several 
fields, including machine learning, neural network, statistics, 
database, visualization and information theory (Koperski et al., 
1996). 

Similar to the fields using relational and transactional 
databases, geography has changed from a data-poor and 
computation poor to a data-rich and computation-rich 
environment. Traditional spatial analytical methods can’t be 
used to discover the hidden information from huge amount 
spatial related dataset. Spatial data mining has attracted   
attentions in recent research (Miller and Han, 2001). It refers to 
the discovery and extraction of implicit information, spatial 
relationships or spatial distribution patterns from spatial 
databases (Koperski et al., 1996). Spatial data mining can be 
used to understand spatial data, discover spatial relationships 
and relationships between spatial data and non-spatial data etc. 
It has wide applications in geographical information systems, 
remote sensing and many other areas related to spatial data. 

Among different spatial data mining algorithms, spatial 
classification aims to assign an object to a class from a given 
set of classes based on both spatial and non-spatial attribute 
values of the object. Decision tree classifiers (Ester et al., 1997) 
and neural networks (Gopal et al., 2001; Liu et al, 2001) have 
been widely used as base classification methods which can 
handle both spatial and non-spatial data. Different to traditional 
classification methods, spatial classification will explicitly 
involve spatial related features or metrics (Koperski et al., 
1996; Ester et al., 2001).  In this paper, we present an ART-
MMAP neural network based spatial classification method to 

process the multi-temporal urban growth data for predicting 
future urban expansion. 

2. URBAN ANALYSIS REVIEW

Urban growth and the resultant sprawling patterns of US 
communities are causing social, economic and environmental 
strain (Schmidt, 1998), which raise great concern from federal 
government to local public sectors. However, urban growth is a 
complex issue, which can be best understood through dynamic 
modelling. While land use change is generally considered as the 
signature of urban growth, land use change modelling has been 
the focus of urban growth research. Very recently, computer-
based urban system simulation models are increasingly 
employed to forecast and evaluate land-use change (Batty and 
Xie, 1994; Birkin, 1994; Engelen et al., 1995; Landis, 1994). 
This spatial dynamic modelling approach enables planners to 
view and analyse the future of their decisions and policies even 
before they are put in action. Therefore, it can help improve our 
fundamental understanding and communication of the 
dynamics of land-use transformation and the complex 
interactions between urban change and sustainable systems 
(Deal, 2001). Nowadays, spatial dynamic modelling techniques 
are considered essential to Planning Support System (PSS) after 
being overshadowed by GIS applications since the 1980s 
(Hopkins, 1999; Kammeier, 1999).

To date, however, spatial dynamic urban modelling is still in its 
infancy. Due to the extreme complexity of urban system, few, if 
any, models have been built which truly represent the dynamics 
of urban growth and which can provide consistent results with 
what we know about such changes (Maria de Almeida et al., 
2003). Consequently, such models are barely operational and 
therefore are rarely used to assist urban planning practice. 
Nevertheless, Cellular Automata (CA) and Agent Based 
Models, representing a different approach to the traditional top-
down approaches, are emerging as promising model tools.  
Agent Based Models possess characteristics that are analogous 
to those of cellular automata. Most of Agent Based Models can 
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be considered as extended CA models with “smart” cells, which 
can communicate with other cells and environment, make 
decisions based on information received and sometimes move 
across the space.  Therefore, there is no essential difference 
between CA models and Agent Based Models. Here we focus 
our reviews on CA based land use change models. 

Cellular Automata are discrete dynamical systems whose 
behavior is completely specified in terms of a local relation. It 
is embedded with a spatial dynamic feature, which makes CA a 
natural tool for spatial modelling.  CA application in 
geographic modelling dates back to the spatial diffusion model 
developed by Hagerstrand (Hagerstrand, 1967), which 
essentially a stochastic CA although he didn’t even use the term 
CA. Geographer Tobler (1979) first defined CA as 
geographical models although he believed that some CA are too 
simple to be usefully applied. Later on, the implication of CA 
to geographic modelling, including advantages and theoretical 
obstacles of applying CA to geographic modelling, was 
explored theoretically (Batty et al., 1997; Couclelis, 1985; 
1987; 1997). CA is very appealing to geographic modellers 
because 1) CA based model is simple and intuitive, yet capable 
to simulate self-organizing complex system; 2) The natural 
born spatial dynamic feature enables modelling spatial dynamic 
system in extreme spatial detail and spatial explicitly; 3) The 
cellular structure of CA has natural affinity with raster data 
format of Remote Sensing images and GIS grid map.  CA 
model can be easily integrated with GIS through generalization 
of map algebra (Takeyama and Couclelis, 1997); 4) The 
bottom-up approach of CA provides a new strategy of 
geographic modelling; 5) CA is computational model running 
in parallel which fits the high-performance geo-computation.
Since then, CA application in geography has been experiencing 
exponential growth, especially in urban land-use simulation. 
Batty was one of the earliest geographer who sketched the 
general framework of CA-based urban models (Batty and Xie, 
1994). An integrated platform, named DUEM, designed for 
geographic CA exploration was also developed by Batty and 
his group (Batty et al., 1999). Engelen used CA to model urban 
land-use dynamics to forecast climate change on a small island 
setting (Engelen et al., 1995). Wu presented a model that also 
included user-decisions to determine model outcomes (Wu and 
Webster, 1998). White’s St. Lucia model (White and Engelen, 
1997) is an example of high-resolution CA modelling of urban 
land-use dynamics and an attempt to use the standard non-
spatial models of regional economics and demographics, as 
well as a simple model of environmental change for predicting 
the demand for future agricultural, residential, and 
commercial/industrial land-uses. An urban growth model of the 
San Francisco Bay Area (Clarke and Gaydos, 1998) is another 
example of using relatively simple rules in the CA environment 
to simulate urban growth patterns. Li and Yeh integrated 
neural-network and CA in GIS platform and successfully 
applied to urban land-use change simulation in Guangdong, 
China (Li and Yeh, 2002). 

Although a large number of models have been proposed and 
built over the last twenty years, CA based land-use modelling 
technique is still far from being mature. Despite the flexibility 
of the CA approach, limitations remain (Torrens and 
O'Sullivan, 2001).  The hypothetical urban forms emerging 
from CA models with surprisingly simple local transition rules 
are certainly plausible. However, urban system evolves in a 
much more complex way in reality. The current CA-based 
urban models are just too simple to capture the richness of 
urban systems. Consequently, very few CA models are 

operational and are used as productive tool to support regional 
planning practice. 

To build useful models, modellers try to extend the concept of 
CA, and also integrate a diversity of models, such as traditional 
regional social-economic models (White and Engelen, 1997; 
Wu and Martin, 2002).  In this paper, instead of using CA 
based models, we present a neural network based model to 
learn the urban growth patterns based on historical urban data 
and predict the future urban growth. 

3. ART-MMAP NEURAL NETWORK

The Adaptive Resonance Theory (ART) family of pattern 
recognition algorithms was developed by Carpenter and 
Grossberg (1991).  ART is a match-based learning system, the 
major feature of which is its ability to solve the ‘stability-
plasticity dilemma’ or ‘serial learning problem’, where 
successive training of a network interferes with previously 
acquired knowledge.  Among the ART family models, fuzzy 
ARTMAP is a supervised learning system that has been used 
widely in many fields.  A comprehensive description of the 
model is detailed in Carpenter et al. (1992).   

ART-MMAP, an extension of ARTMAP, decreases the effect 
of category proliferation in the testing process for mixture 
analysis. The ART-MMAP model keeps the learning process of 
the ARTMAP model and changes the testing process.  During 
the testing process, ARTMAP selects a category to each test 
sample using the Winner-Take-All (WTA) rule.  Instead of 
picking one winner, ART-MMAP selects winners (ARTa) 
based on one predefined threshold parameter - τ . The 
categories with activation value larger than the threshold value 
are selected. If none of them are selected, the WTA rule is 
activated. This winner selection strategy provides an enhanced 
interpolation function which is based on a weighted summation 

operator. ART-MMAP model overcomes the limitation of class 
category of the ARTMAP model and increases the prediction 
accuracy as well (Liu et al., 2004).

4. DATA

4.1 Study area description

Spanning parts of the states of Missouri and Illinois on both 
side of Mississippi Rive, the great St. Louis metropolitan region
(Figure 1) includes ten counties. This area is about 120 miles 
from east to west and about 90 miles from north to south. It 
accounts for a little more than 30 million grid cells at 30m * 
30m spatial resolution.  Like most other older metropolitans, St. 
Louis faces great challenge of sustainable growth. With 
relatively slow population growth, even negative growth in 
urban core, city is continuing to sprawl. St. Louis metropolitan 
region is already the third largest in the amount of land that it 
covers while ranks 14th in term of population. Under such a 
condition, the prediction and planning of urban growth 
becomes very important for St. Louis region. 

4.2 Land Use Factors

To simulate the urban growth and then make a prediction, we 
need several important spatial related features extracted from 
land use factors, also called land use drivers, consisting of 
social, economic, transportation and biophysical factors 
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affecting land use change. In reality, there are numerous factors 
affecting urban land use change more or less. Apparently, it is 
impossible to incorporate all these factors in one land use 
model. Some most significant factors, which can be varied in 
different study areas, are selected. Besides the non-spatial 
factors including most of social economic factors, which define 
the regional demand, the following factors are incorporated in 
our model to describe the land use transition possibility of each 
cell:

1. Cities Attractor: A gravity model is used to emulate 
the cities attractiveness. 

An attractiveness index of each cell is calculated as:

i
cities

ii

PopA TT=∑                                           (1)

Where Acities is the attractiveness index of a cell; Popi is the 
population of city i; TTi is the travel time from a cell to 
city i. 
2. Employment Attractor: Similar to cities attractor, 

employment attractor represent the attractiveness 
impact of employment centers. 

3. Neighbour: It describes the number of urbanized cells 
in the neighbourhood (i.e. 3X3 window).  The new 
growth more likely happens near developed or 
developing neighbourhood. 

4. DEM/Slope: Suitability of development differs on 
various degrees of slope. 

5. Water Proximity: distance to lakes, rivers.
6. Forest Proximity: distance to forest area.
7. Transportation Proximity Factors: travel times to 

transportation facilities.
a. Proximity to interstate ramps
b. Proximity to state highways
c. Proximity to major roads
d. Proximity to major road intersections

With the extracted spatial features, each cell of the study area 
was assigned one vector that consists of the spatial value of 
each factor, land use type in 1992 and land use type in 2000 
(urban or non-urban land use type). The vectors will be used to 
describe the urban growth pattern through space and time. For 
the purpose of learning, we first selected 15931 samples from 
whole study area with a sample ratio 900:1. Then whole 
research area was used as testing data. 

5. RESULTS AND DISCUSSION

With this dataset, the parameters of the ART-MMAP model 

were set as: aρ =0.9, bρ =1.0 and τ = 0.98 (threshold value 

for selecting winning F2 nodes). After learning the 15931 
training samples, the ART-MMAP network was applied to the 
whole research area for prediction accuracy validation. 

5.1 Model performance and validation

The ART-MMAP network based predictive model assesses the 
likelihood of urbanization by assigning individual pixels a score 
ranging from 0 to 100.  Higher scores correlate to an increased 
probability of changing from other land use type to urban. The 
predicted class label can be assigned through setting a score 
threshold for the model.  Scores equal to or greater than the 
score threshold are flagged as urbanized pixels.  The choice of 
score threshold determines the number of pixels to be predicted 
as urban.  As the score threshold is lowered, both the total 
number of pixels predicted as urban and the number of urban 
pixels predicted correctly increases.  The performance of a 
predictive model is characterized by plots of the percentage of 
urban pixels detected versus the false positive ratio. Here the 
false positive ratio is calculated as the ratio between the number 
of non-urbanized samples who were classified as urban and the 
number of detected urbanized samples at certain score 
threshold.
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Figure 2. Score vs. percentage of urbanized pixels detected
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Figure 3. Urbanized pixel false positive ratio vs. percentage of 
urbanized pixel detected

Figure 1. Study area: large metropolitan ST. Louis
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Figure 2 shows the relationship between the cutting off score 
threshold and the percentage of urbanized samples detected. 
For example, if we set up the threshold score for urbanization is 
12, approximately 50% of urbanized pixels are detected. Figure 
3 shows the relationship between the percentage of detected 
urbanized samples and false positive ratio. 

Combining Figure 3 and 2, we can figure out that at curtain 
score threshold, the percentage of detected urbanized pixels and 
the number of false classified non-urbanized pixels. To view 
the performance with traditional way, the classification error 
matrix built at score threshold 12 is shown in Table 1.  With a 
total prediction accuracy of 94%, the ART-MMAP based data 
mining model successfully predicted 50% of urbanized pixels 
with a false prediction of similar number of non-urbanized cells 
(437027). Changing the cutting off score threshold, we can get 
different accuracy.  In order to detect more urbanized pixels, we 
may reduce the cutting off threshold score. However, this will 
introduce more misclassified non-urbanized pixels as urban.  

Class Urbanized Non-urban
Total 
pixels

Producer’s 
accuracy

 Urbanized    402520    396410 798930    0.504

 Non-urban    437027    12632090 13069117    0.967

 Total pixels    839547    13028500
 User’s
 Accuracy   0.479    0.970

Total Accuracy: 0.94

Table 1. Classification error matrix of the whole study area

(a) Regional urban growth overview

(b) Urban growth zoom in

Figure 4.  Model simulation result (2000-2008)

5.2 Simulation results of year 2008 

Based on the land use map of year 2000, we applied the trained 
ART-MMAP neural network model to predict the urban growth 
of year 2008 to evaluate its predictive performance. Since 
transportation, social and economic factors did not change 
much from year 1992 to year 2000, we keep the same value of 
these relative factors for each cell.  The neighborhood value of 
urbanized pixels was recalculated with land use data of year 
2000.

Figure 4 displays the predicted urban growth area in year 2008. 
The overall spatial pattern of the projected urban growth is 
quite reasonable. Most growth takes place around city 
peripheral region, and is clustered around highway and major 
road intersections. Those areas are under growth pressure 
according to the local planners. 

The transition statistics (in Table 2) shows the number of pixels 
of each non-urban class changing to urban area from year 2000 
to 2008.  Approximately 5% of herbaceous planted area 
changes into urban area, which is the majority of the urbanized 
pixels. Land use type Barren and Forested upland are another 
two important types changing into urban. 
each cell was recalculated with land use data of year 2000.  

Class Name ClassID
Total 
pixels

Pixel 
changed

Change 
percent

Water 1 404567 3141 0.78%

Urban 2 2650997 0 0.00%

Barren 3 102742 19161 18.65%

Forested Upland 4 4151988 87335 2.10%

Shrubland 5 11 0 0.00%
Herbaceous Upland 
Natural/Semi-natural 
Vegetation 6 161269 7809 4.84%
Herbaceous 
Planted/Cultivated 7 7690045 378031 4.92%

Wetland 8 578757 2132 0.37%

Table 2. Land use transition statistics (year 2008)

6. CONCLUSION

Along the changing from poor-data to rich-data environment in 
the field of geography, spatial data mining has become more 
interesting to many researchers. In this paper, we present an 
ART-MMAP neural network based sptatio-temporal data 
mining method to simulate the future urban expansion and 
further to predict urban growth. With the training based on the 
multi-temporal urban growth data, the ART-MMAP model can 
automatically predict the probability of urbanization of each 
pixel in the near future. Since the prediction is score based, we 
can get different urban expansion maps with setting different 
cut-off score threshold. Considering the goal of the urban 
prediction, the prediction accuracy of the St. Louis data set is 
pretty good although the model only detected 50% of urbanized 
pixels and also misidentified the similar amount of non-urban 
pixels. Realistically, no model will very accurately predict the 
urban growth of the future. The predicted urbanized area with 
this model will provide a base probability map for urban 
planning. The goal of this model is to help planners answer 
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what-if questions by implementing planning scenarios. By 
exploring these scenarios, it will significantly enhance 
planners’ insights into future land use and its impact. Although 
this model probably will not make decisions for planners, 
neither will make planners smarter, it certainly will help them 
make smarter decisions.  

In this research, the training and testing data set were selected 
at the same time periods (1992 – 2000). To understand the 

model performance more accurately, the trained ART-MMAP 
network with one time period data (1992-2000) will be applied 
to later time period, i.e. 2000-2004, for performance validation 
in the future research. Also, the integration of the prediction 
model and Cellular Automata based models or Agent based 
models will be more interesting for realistic urban planning. It 
may also shed some lights on urban simulation and urban 
modeling research. 

REFERENCES:

Batty, M., Xie, Y., 1994. From Cells To Cities. Environment 
and Planning B-Planning & Design, 21, S31-S38.

Batty, M., Couclelis, H., Eichen, M., 1997. Urban systems as 
cellular automata. Environment and Planning B-Planning 
& Design, 24, 159-164.

Batty, M., Xie, Y., Sun, Z., 1999. Modelling urban dynamics 
through GIS-based cellular automata. Computer, 
Environment and Urban Systems 23, 205-233.

Birkin, M., 1994. Urban Landscape Dynamics - A Multilevel 
Innovation Process - Montanari,A, Curdes,G, Forsyth,L. 
Environment and Planning A, 26, 1480-1480.

Carpenter, G.,  Grossberg, S. (1991). Pattern Recognition by 
Self-organizing Neural networks. Cambridge, MA: MIT 
Press.

Carpenter, G., Grossberg, S., Markuzon, S., Martens, N., 
Reynolds, J.,  Rosen, D. (1992). Fuzzy ARTMAP: a neural 
network architecture for incremental supervised learning 
of analog multidimensional maps, IEEE Transaction on 
Neural Networks, 3, pp.698-713. 

Clarke, K.C., Gaydos, L.J., 1998. Loose-coupling a cellular 
automaton model and GIS: long-term urban growth 
prediction for San Francisco and Washington/Baltimore. 
International Journal ff Geographical Information 
Science, 12, 699-714.

Couclelis, H., 1985. Cellular Worlds - A Framework For 
Modelling Micro-Macro Dynamics. Environment And 
Planning A 17, 585-596.

Couclelis, H., 1987. Cellular-Dynamics - How Individual 
Decisions Lead To Global Urban Change. European 
Journal ff Operational Research, 30, 344-346.

Couclelis, H., 1997. From cellular automata to urban models: 
New principles for model development and 
implementation. Environment and Planning B-Planning & 
Design, 24, 165-174.

Deal, B., 2001. Ecological urban dynamics: the convergence of 
spatial modelling and sustainability. Building Research 
and Information, 29, 381-393.

Engelen, G., White, R., Uljee, I., Drazan, P., 1995. Using 
Cellular-Automata For Integrated Modelling Of Socio-
Environmental Systems. Environmental Monitoring and 
Assessment, 34, 203-214.

Ester, M., Kriegerl, H. P.,, Sander J. (1997). Spatial data 
mining: a database approach, in Proceedings of the fifth 
international symposium on large spatial databases, 
Berlin, Germany: 47:66.

Ester, M., Kriegerl, H. P.,, Sander J. (1997). Algorithms and 
applications for spatial data mining, in Miller and Han 
(eds) Geographic data mining and knowledge discovery. 
Taylor and Francis, London and New York. Pp.161-187.

Gopal, S., Liu, W.,, Woodcock, C., 2001. Visualization based 
on the Fuzzy ARTMAP neural network for mining 
remotely sensed data, in Miller and Han (eds) Geographic 
Data Mining and Knowledge Discovery, Taylor & Francis, 
London, United Kingdom, pp.315-336.

Hagerstrand, T., 1967. Innovation diffusion as a spatial 
process. University of Chicago Press, Chicago.

Kammeier, H.D., 1999. New tools for spatial analysis and 
planning as components of an incremental planning-
support system. Environment and Planning B-Planning & 
Design, 26, 365-380.

Hopkins, L.D., 1999. Structure of a planning support system for 
urban development. Environment and Planning B-
Planning & Design, 26, 333-343.

Klosgen, W., Zytkow, J. M. (1996). Knowledge discovery in 
databases terminology, in Fayyar, E.M., Piatetsky-Shapiro, 
G., Smyth, P. and Ulthurusamy, R. (eds) Avances in 
Knowledge discovery and data mining. Combridge, MA: 
MIT Press. Pp.573-592.

Koperski, K., Adhikary J., Han, J. (1996). Knowledge 
discovery in spatial databases: progress and challenges. In 
Proceedings of the SIGMID workshop on research issue in 
data mining and knowledge discovery, Technical report 
96-08. University of British Columbia, Vancouver, 
Canada.

Landis, J.D., 1994. The California Urban Futures Model - A 
New-Generation Of Metropolitan Simulation-Models. 
Environment and Planning B-Planning & Design, 21, 399-
420.

Li, X.,, Yeh, A.G., 2002. Neural-network-based cellular 
automata for simulating multiple land use changes using 
GIS. International Journal of Geographical Information 
Science, 16, 323-343.

Liu, W., Seto, K., Wu, E., Gopal, S., Woodcock, C., 2004. 
ART-MMAP: a neural network approach to subpixel 
classification, IEEE Transactions on Geoscience and 
Remote Sensing, 42(9), pp.1976-1983. 

Liu, W., Gopal, S., Woodcock, C., 2001. Spatial data mining 
for classification, visualization and interpretation with 
ARTMAP neural network, in R. Grossman (eds) Data 
Mining for Scientific and Engineering Applications, 
Kluwer Academic Publishers, Netherlands, pp.205-222.

Maria de Almeida, C., Batty, M., Vieira Monteiro, A.M., 
Camara, G., Soares-Filho, B.S., Cerqueira, G.C., 
Pennachin, C.L., 2003. Stochastic cellular automata 
modelling of urban land use dynamics: empirical 
development and estimation. Computers, Environment and 
Urban Systems, 27, 481-509.

Miller, H., Han, J. (2001). Geographic data mining and 
knowledge discovery. Taylor and Francis, London and 
New York. pp.1-31.

Schmidt, C.W., 1998. The Specter of Sprawl. Environmental 
Health Perspectives, 106, 274-279.

Takeyama, M., Couclelis, H., 1997. Map dynamics: Integrating 
cellular automata and GIS through Geo-Algebra. 
International Journal of Geographical Information 
Science, 11, 73-91.

Tobler, W., 1979. Cellular geography. In: Gale, G., Olsson, S. 
(Eds.), Philosophy in geography, Reidel, Dordrecht, pp. 
379-386.

Torrens, P.M., O'Sullivan, D., 2001. Cellular automata and 
urban simulation: where do we go from here? Environment 
and Planning B-Planning & Design, 28, 163-168.



6

Von Neumann, J., 1966. Theory of Self-Reproducing Automata. 
University of Illinois Press, Urbana, IL.

White, R., Engelen, G., 1997. Cellular automata as the basis of 
integrated dynamic regional modelling. Environment and 
Planning B-Planning & Design, 24, 235-246.

Wolfram, S., 2002. A New Kind of Science. Wolfram Media, 
Inc., Champaign, IL.

Wu, F., Webster, C.J., 1998. Simulation of land development 
through the integration of cellular automata and 
multicriteria evaluation. Environment and Planning B-
Planning & Design, 25, 103-126.

Wu, F.L., Martin, D., 2002. Urban expansion simulation of 
Southeast England using population surface modelling and 
cellular automata. Environment and Planning A, 34, 1855-
1876.


