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ABSTRACT:

Commercially available high-resolution satellite imagery from sensors such as IKONOS and QuickBird are important data sources
for a variety of urban area applications including infrastructure feature extraction and land cover mapping. Land cover maps from
medium and high-resolution imagery are typically generated through supervised spectral classification of multispectral imagery.
Supervised classification algorithms require training data as input and are thus semi-automated approaches. However, by automating
the generation of training data, these supervised classifiers can be utilized in a fully automated, or self-supervised fashion to perform
urban land cover classification. In this paper, we present a self-supervised approach for fully automated urban land cover
classification of high-resolution satellite imagery. Automated feature extraction techniques are utilized to generate training data that
are then input into supervised classification algorithms, thereby producing a self-supervised urban land cover classifier. These
feature extraction techniques do not seek to extract all features present in the imagery. Instead, they are used to identify very high
confidence instances of the different urban land cover classes. In this way, we limit the amount of incorrect training data that is input
into the classifier. Because labeled training data is generated internally by the system, this classification approach is referred to as
self-supervised. Self-supervised classification systems differ from unsupervised classifiers in that unsupervised classifiers output an
unlabeled classification, requiring further analysis to determine the class labels, whereas the output of a self-supervised classifier is a
labeled classification. Initial test results indicate that the overall accuracy of the self-supervised classification is 87-93%. There is

only a 2% increase in overall accuracy when manually supervised classification is performed on the same test site.

1. INTRODUCTION

High-resolution satellite imagery became commercially
available in late 1999 with the launch of Space Imaging’s
IKONOS satellite. In subsequent years, several other high-
resolution commercial satellites were launched (DigitalGlobe’s
QuickBird and ORBIMAGE’s OrbView-3).  The spatial
resolution and spectral information provided by these sensors
make them well-suited for urban area applications. In
particular, the high spatial resolution (0.6 — 1 m) allows for the
delineation of fine-scale features in the urban environment, such
as individual roads and buildings, which is not possible when
utilizing imagery from medium resolution sensors (e.g.
Landsat). The large volume of data collected by these sensors
exceeds the human capacity of training image specialists to
analyze. Currently, there are several additional high-resolution
satellite sensors in the developmental stage, and when they
become operational the problem will be further exacerbated.
Automated upstream processing is needed to exploit the vast
quantities of high-resolution commercial satellite imagery
available from current and next generation sensors.

The generation of urban land cover maps from remote sensing
imagery is typically accomplished through the use of supervised
classification techniques, such as maximum likelihood.
Supervised classification techniques require human generated
training data and are thus only semi-automated. However, if the
generation of training data is automated, supervised classifiers
can be utilized in an unsupervised, or self-supervised fashion to
perform urban land cover classification. In this paper, a fully
automated approach for classification of urban land cover is
presented. Feature extraction techniques are utilized to generate
training data that are then input into the supervised

classification algorithms, thereby producing a self-supervised
urban land cover classifier. These feature extraction techniques
do not seek to extract all features present in the imagery.
Instead, they are used to identify very high confidence instances
of the different urban land cover classes so as to minimize the
amount of incorrect training data input into the classifier.

2. FULLY AUTOMATED TRAINING DATA
GENERATION

Utilization of classification algorithms in an unsupervised or
self-supervised fashion requires that the training data be
generated automatically. Fully automated feature extraction
techniques are used for this purpose. Because our goal here is
to generate training data, not produce a complete extraction of
the features of interest, the correctness of the extracted features
is much more important than the completeness of the features.
If incorrectly extracted features are used as training data, the
errors will propagate through the classification process and lead
to poor classification accuracies. The only concern in terms of
the completeness of the extracted features is that a
representative sample of the different spectral and spatial
characteristics of the feature classes are obtained from the
extraction. The strategy adopted here for generating training
data for each urban land cover class is to output a fuzzy
membership value for each extracted feature. The membership
value represents a confidence level that the extracted feature is a
valid member of the particular land cover class. Using these
membership values, features with high confidence are selected
and used as training data for each land cover class.



The urban land cover classes used in this study are: Road,
Building, Grass, Tree, Water, and Shadow. To generate
training data for the Road, Building, and Shadow classes, the
automated feature extraction algorithms described in
(Shackelford and Davis, 2003a; Shackelford and Davis, 2004)
have been modified to output confidence values for each of the
extracted features. The training data for the vegetation classes
are generated by first identifying vegetation areas in the image
with the NDVI (Jenson, 1996), followed by texture analysis to
discriminate between Grass and Tree land cover classes.
Confidence values are then assigned to the identified vegetation
pixels. Training data for the Water class are generated through
analysis of the DMP and the NDVI. The training data
generation for each of the urban land cover classes is discussed
in greater detail in the following subsections.

2.1 Road Training Data Generation

The fully automated road network extraction algorithm
presented in (Shackelford and Davis, 2003a) was modified to
output a fuzzy membership value for each extracted road,
indicating the level of confidence in the validity of the extracted
road. The road network extraction algorithm is an iterative
process that first identifies and then grows road segments using
several features extracted from the imagery and knowledge of
the general characteristics and topology of a road network.
Roads are initially identified as long linear segments of non-
vegetation pixels, with longer segments having a higher
confidence as being part of the road network than segments with
short length. The algorithm begins by examining the longest
length line segment present in the imagery, progressing to
smaller length line segments as it iterates. Once a potential road
segment has been identified, the algorithm examines the
endpoints of the line segment and attempts to track the segment
through small gaps and around curves in the road network. As
road segments are iteratively added to the road network, a
buffer is set up around them to exclude any line segments that
are similar in angle and close to previously identified road
network segments. This helps avoid overestimation of the road
network and also eliminates multiple responses originating from
a single road. The algorithm continues to iterate, adding new
line segments to the road network until no line segments larger
than a minimum length can be found.

The fuzzy membership confidence values are based on the
length of the initial line segment detected for each road and the
percentage of non-vegetative pixels present in the extracted
road, as measured by the NDVI. Roads consisting of long line
segments and low percentages of vegetation receive high
confidence values.

2.2 Building and Shadow Training Data Generation

The fully automated 2-D building footprint extraction algorithm
presented in (Shackelford and Davis, 2004) has been modified
to output confidence values for the extracted building footprints
and shadows. The building extraction algorithm is based on a
multi-detector fusion strategy where buildings and their
shadows are extracted from the Differential Morphological
Profile (DMP) of panchromatic imagery and a segmentation of
the pan-sharpened multispectral imagery. The DMP is a multi-
scale image analysis technique where a morphological profile of
the image is constructed through the use of morphological
opening and closing by reconstruction operations while varying
the size of the structuring element (SE) (Pesaresi and
Benediktsson, 2001; Vincent, 1993). The DMP provides
information about both the size and contrast of multi-scale

structures in the image, with bright structures having a strong
response in the opening portion of the DMP and dark structures
having a strong response in the closing portion of the DMP. A
multi-detector fusion approach is utilized for building extraction
to accommodate the spatial and spectral variability in the
appearance of urban buildings in high-resolution imagery.
Buildings with a bright spectral response are extracted from the
opening portion of the differential profile, while shadows are
extracted from the closing portion of the differential profile.
The extracted shadows are used to define search areas where the
presence of buildings is likely. The search areas are then
overlaid onto a segmentation of the multispectal imagery to
identify building objects.

Fuzzy membership confidence values are computed for each
extracted building footprint and shadow based on the geometric
properties of the extracted objects. Building objects with
rectangular shape and area similar to typical urban area
buildings receive high fuzzy confidence values.

2.3 Vegetation Training Data Generation

Training data for the Grass and Tree classes are generated using
the NDVI statistic in conjunction with the first order entropy
texture measure (Gonzalez and Woods, 2002). First, the NDVI
is used to identify pixels with vegetative land cover. Then, the
entropy texture measure is utilized to identify high confidence
instances of Grass and Tree from within the pixels identified as
containing vegetative land cover. The first order entropy
texture measure is calculated using an 11x11 pixel window.
Pixels with both high NDVI values and high entropy values
receive large membership values in the Tree class, whereas
pixels with high NDVI values and low entropy values receive
large membership values in the Grass class.

2.4 Water Training Data Generation

While the appearance of different bodies of water such as rivers,
streams, lakes, and ponds varies significantly in high-resolution
imagery, if one of these types of water bodies can be
automatically identified, the extracted pixels can be used to train
the classifier. Of the above-mentioned water body types, small
lakes and ponds have the least variability in appearance,
typically appearing as large, dark compact objects with no
vegetation present. Objects fitting this profile are easily
identified in the closing differential profile. Confidence values
are computed based on the strength of the DMP response, the
amount of vegetation present in the object, and the area of the
object.

2.5 Training Data Generation

The fully automated feature extraction algorithms described
above output a fuzzy confidence value for each extracted
feature.  Extracted features with high confidence values,
indicating valid features, are utilized as training data, and the
rest of the extracted features are discarded.  This is
accomplished by thresholding the fuzzy confidence value of
each extracted feature. The thresholds are chosen such that they
produce training data that is both accurate and representative of
the variability within each land cover class. The training data
generated for the Road and Building classes in a dense urban
area, as well as the fuzzy confidence values for the extracted
features, are shown in Fig. 1. The training data generated for
the Grass and Tree classes for an area with suburban land cover,
as well as the fuzzy confidence values for the extracted features,
are shown in Fig. 2.



3. SELF-SUPERVISED URBAN LAND COVER
CLASSIFICATION

Once high confidence instances of each urban land cover class
have been identified, this data can then be utilized to train a
supervised classification system. Because labeled training data
is generated internally by the system, systems of this type can
be referred to as self-supervised. Self-supervised classification
systems differ from unsupervised classifiers in that
unsupervised classifiers output an unlabeled classification,
requiring further analysis to determine the class labels, whereas
self-supervised classifiers output a labeled classification. The
supervised classification scheme utilized here follows that
described in (Shackelford and Davis, 2003b, Shackelford and
Davis, 2003c), where the data is passed sequentially through
three classifiers: a maximum likelihood classifier, followed by a
pixel-based fuzzy classifier, and finally an object-based fuzzy
classifier. A brief summary of the fuzzy -classification
approaches is provided below.

3.1 Supervised Fuzzy Classification

Due to the large numbers of spectrally similar land cover types
present in the urban environment, traditional classification
approaches such as maximum likelihood often result in
significant numbers of misclassifications, especially between
the Road and Building classes, and the Grass and Tree classes.

By utilizing spatial features in addition to the spectral
information, the fuzzy pixel-based classifier is able to more
accurately classify high-resolution imagery of urban areas. This
classifier uses the results of an initial maximum likelihood
classification of the imagery to group the classes where
significant misclassifications occur together into sets.
Subsequent processing using spatial features is then performed
to differentiate between the spectrally similar classes. This
approach allows for different groups of classes to be classified
using the features best suited for discrimination between those
classes. This alleviates the problem of features simultaneously
decreasing the confusion between one set of classes and
increasing it for another set.

The fuzzy pixel-based classification technique is significantly
more accurate than maximum likelihood classification.
However, more detail is needed to accurately represent the land
cover types present in dense urban areas. A non-road, non-
building Impervious Surface class is also needed to represent
features such as parking lots, concrete plazas, etc. To
distinguish between these urban land cover classes, an object-
based classification approach is used to examine features such
as object shape and context (neighborhood) and then classify
the image objects using a fuzzy logic rule base. To facilitate
object classification, the imagery is first segmented with a
region merging segmentation technique. Several features are
extracted from the image objects and used by the object-based
classifier along with the fuzzy pixel-based classification. These
features are the class labels of each segment’s constituent
pixels, shape information from the image objects, neighborhood
analysis, and spectral statistics of the object. A shape model for
the Building class, based on the skeleton of the image objects, is
constructed using fuzzy membership functions, and the
neighborhood analysis consists of examining the relationship
between Building and Shadow segments. The image objects are
then classified by a fuzzy logic rule base.

Figure 1. Automatically generated training data
from a) dense urban area for b) Road class, and c)
Building class. Training data shown in red, high
confidence features shown in dark gray, and low
confidence features shown in light gray.
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3.2 Unsupervised Clustering

Because of spectral variation within individual land cover
classes, it is necessary to train the supervised classifier on
multiple sub-classes within each urban land cover class.
Following classification, the sub-classes from each land cover
class are combined. To accommodate within class spectral
variation, the automatically generated training data from each
class is divided into sub-classes via unsupervised clustering
before maximum likelihood classification is performed. After
maximum likelihood classification, the sub-classes are
combined into the urban land cover classes of interest and the
classification process continues through the fuzzy pixel-based
and object-based approaches.  Unsupervised clustering is
performed utilizing the standard k-means clustering algorithm
(Theodoridis and Koutroumbas, 1999).

4. TEST RESULTS

The fully automated self-supervised classification scheme was
applied to an IKONOS image of Columbia, Missouri. The test

Figure 2.

Automatically generated training data
from a) residential area for b) Grass class, and c)

Tree class. Training data shown in red, high
confidence features shown in dark gray, and low
confidence features shown in light gray.

site is shown in Fig. 3 and consists primarily of dense urban
land cover.  An accuracy assessment of the resulting
classifications was performed making use of reference pixel
datasets. Accuracy assessments were performed for each of the
classification outputs (maximum likelihood, fuzzy pixel, and
fuzzy object) produced by the self-supervised classification
scheme. The individual class accuracies and the overall
classification accuracy for each output, as well as the
corresponding results from the semi-automated supervised
classifiers requiring human input of the training data, are
displayed in Tables 1 through 3.

Table 1
Accuracies of Maximum Likelihood Classifications

Supervised Self-Supervised

(%) (%)

Road 84.4 80.2

Building 83.1 63.7

Grass 92.8 93.8

Tree 83.5 91.9

AOV””” 85.9 82.4
ccuracy




Table 2

Accuracies of Fuzzy Pixel-Based Classifications

Supervised Self-Supervised
(%) (%)
Road 97.9 97.2
Building 90.7 93.2
Grass 94.5 100.0
Tree 96.2 79.6
onem” 94.8 92.5
ccuracy
Table 3
Accuracies for Fuzzy Object-Based Classifications
Supervised Self-Supervised
(%) (%)
Road 99.2 95.0
Building 76.1 70.1
Imp. Surf. 81.0 72.2
Grass 91.3 100.0
Tree 99.9 99.1
Overall 89.5 87.4
Accuracy

For each of the classifier outputs, the overall accuracy of the
fully automated self-supervised classification is only 2-3%
lower than that of the semi-automated supervised classification.
There is a significant decrease in the Building class accuracy of
approximately 20% between the self-supervised and manually
supervised maximum likelihood classification, as can be seen in
Table 1. This is due to over classification of the Road class.
However, the problem is solved by the hierarchical fuzzy pixel-
based classification stage, where the average accuracies of the
Road and Building classes exceed that of the manually
supervised classification. There is a 17% decrease in the Tree
class between the manual and self-supervised fuzzy pixel-based
classification due to over classification of the Grass class. This
error is unexpected and believed to be due to the fact that all of
the automatically generated training data for the Tree class is
extracted from highly textured areas. While appropriate for the
majority of this class, there are areas within the 7ree land cover
class that are not highly textured, possibly due to trees with very
large and homogeneous crowns. Because the texture of these
instances of Tree land cover matches that of Grass, they are
misclassified.  The problem of misclassification of Tree
reference pixels as Grass is solved in the object-based stage of
the self-supervised classification. As seen in Table 3, the self-
supervised classifier produces a classification with virtually no
errors in the reference data of the vegetative classes. The
object-based classifier is able to correct this problem because
the proportions of each class present in the object are used as
features, resulting in a majority filtering type operation within
the object. The regions where Tree land cover are incorrectly
identified as Grass in the self-supervised pixel-based
classification are all quite small and are removed by the
majority filtering effect of the object-based classifier.

There are 4%, 6%, and 9% decreases in the accuracies of the
Road, Building, and Impervious Surface class accuracies,
respectively, between the semi-automated and self-supervised
object-based classifiers. It is believed that the decrease in the
accuracy of the Building and Impervious Surface classes is
partially due to errors in the classification of the Shadow class,

which is used in the identification of the Building class. The
self-supervised fuzzy object-based classification of the urban
test site is shown in Fig. 4.

5. CONCLUSION

A fully automated self-supervised classification approach for
urban land cover classification of high-resolution multispectral
satellite imagery is presented in this paper. The classifier is
based on supervised classification approaches presented in
(Shackelford and Davis, 2003b, Shackelford and Davis, 2003c).
However the training data is automatically generated using
feature extraction techniques that identify high confidence
instances of the urban land cover features. The automated road
network and 2-D building footprint extraction algorithms
described in (Shackelford and Davis, 2003a; Shackelford and
Davis, 2004) have been modified to output a fuzzy confidence
value for each extracted feature. Other spatially and spectrally
based feature extraction algorithms have been developed to
identify training data for the other urban land cover classes.
After feature extraction and selection of high accuracy training
data, the extracted features are subdivided into spectrally
coherent sub-classes by unsupervised spectral clustering. The
training data are then used to train a maximum likelihood
classifier, followed by the hierarchical fuzzy pixel-based
classifier, and finally the object-based classifier. Test results
indicate that the self-supervised classification approach is able
to produce urban land cover maps with overall accuracies that
are only 2-3% less than that of the semi-automated supervised
classifiers that require human input of training data.
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Figure 3. Pan-sharpened multispectral IKONOS Figure 4. Self-supervised object-based classification
image of dense urban area. of dense urban area test site.



