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ABSTRACT

The aim of this paper is to study the use of cross-correlation for radargrammetric applications. Two other criteria derived from Mean
Square Error analysis are proposed. These three criteria are studied using two sets of tests on real data (high resolution, one-look image
of a semi-urban area). The £rst test is based on the analysis of the heights of a set of buildings (the heights being obtained using the
thresholded disparities computed by one of the criteria). Then the performances are analyzed for each building using the available
ground truth. The second test is based on the matching of a set of points. These points are manually associated and the displacement is
compared to the one given by the matching criterion. Eventually, the ROC curves are computed to compare the 3 criteria in different

situations.

1 INTRODUCTION

SAR images are nowadays widely used for Digital Elevation Model
(DEM) production. The interferometric potential of the Synthetic
Aperture Radar (SAR) data permits to obtain accurate DEM and
the recent SRTM mission is a new proof of this capability. Never-
theless, SAR data are also able to produce height information us-
ing the classical stereo-vision principle (Rosen£eld, 1968). How-
ever, rather few works have been done in this domain (Toutin,
1995). One of the main difEculties in radargrammetry is the
matching step which associates the pixels of both images. Due
to the speckle phenomenon, this step is particularly difEcult with
SAR images. The normalized centered cross-correlation coefg-
cient, which is widely used for optical images gives noisy results
with SAR data. Among the proposed solutions, pre-processing
like edge detection or post-processing like clever £ltering of the
associated pairs can be used.

The aim of this paper is to analyze correlation criteria and study
their behaviors when applied on real SAR images. We £rst de-
scribe 3 criteria which will be studied in the paper. Then we de-
scribe the two sets of tests that have been done to do the compari-
son. The £rst test is based on the analysis of the heights of a set of
buildings (the heights being obtained using the thresholded dis-
parities computed by one of the criteria). Then the performance
are analyzed for each building using the available ground truth.
The second test is based on the matching of a set of points. These
points are manually associated and the displacement is compared
to the one given by the matching criterion. Eventually, the ROC
curves are computed to compare the 3 criteria in different situa-
tions.

2 URBAN SAR IMAGES AND RADARGRAMMETRY

SAR image interpretation in urban areas is known as very dif-
£cult task because of many phenomena: speckle, distance sam-
pling, lay-over areas, and shadows. As pointed out in (Hardaway
et al., 1982) (Tupin et al., 2002) the appearance of an object is
strongly related to its geometrical properties in regards to the
along track direction and the incidence angle. It is also depending
on its roughness compared to the wavelength. Because of mul-
tiple bounce scatterings, many very bright features correspond-
ing to dihedral or trihedral conEgurations are present in the data

(Franceschetti et al., 2002). They correspond to wall / ground
corners, balconies, chimneys, posts, street lamps, etc. Therefore
SAR images in urban areas are usually composed of very bright
features on a darker background with speckle. An example is
shown in £gure 1. Since some roofs are quite smooth compared to
the wavelength (9cm in S band), their mean radiometry is rather
close to ground radiometry.

a) ptical image b) SAR image

Figure 1: Appearance of a building on the SAR image. Most of
the information is given by very bright features (points or lines)
corresponding to dihedral or trihedral confgurations.

For these reasons, classical stereovision algorithms based on the
correlation coefEcient between the two acquisitions are not very
successful. The phenomenon has been observed for satellite data
and therefore many £gural approaches have been developed for

radargrammetric applications (Ansan and Thouvenot, 1995) (Marinelli

et al., 1998) (Paillou and Gelautz, 1999). We study here the use
of dedicated correlation measures adapted to multiplicative noise
(Tupin, 2002).

3 CORRELATION CRITERIA

The problem to solve is to test the correspondence between two
signals. In radargrammetric applications, the £nal purpose is to
recognize if the £rst signal is present in the second one, each
signal being a small part of the two images.

This £rst part is dedicated to the presentation of the three cri-
teria that will be tested in the following of the paper. The £rst



criterion is the classical normalized centered cross-correlation,
widely used for optical images. The second one called “varia-
tion coefEcient criterion” has been proposed in a previous work
(Tupin, 2002) and is a mixture of the classical cross-correlation
coefEcient and the variation coefEcients (standard deviation nor-
malized by the mean). The third one is a new criterion called
“logarithmic criterion” in the following which is derived using
the multiplicative noise model of the SAR images. These three
criteria are de£ned in the following three sub-sections.

3.1 Cross-correlation criterion

The cross-correlation coefEcient is usually presented using a prob-
abilistic approach. Let X; and X2 be two real random variables,
the centered normalized correlation p is defned by:
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with E the expectation, u; and o; the mean and standard deviation
of X,;. It measures the linearity of the relationship between X,
and X5. For normalized centered random variables, it reduces to
E(X1X2).

Having p defned by eq.1 and IV real® samples of X; and X>
denoted by z1; and x2; for i € {1,..., N'}, there are many esti-
mators p of p.

The moment estimator is given by:
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Another estimator which can be used to estimate the correlation
coefEcient is the maximum likelihood (ML) estimator.

For the binormal distribution, the ML estimator is the same as
the one obtained by the moment method and is given by eq.2
(Kendall and Stuart, 1969). The bias and variance of this usual
sample correlation coefEcient can be derived in the case of binor-
mal distribution assumption.

Another way of deriving the correlation coefEcient is the use of
the Mean Square Error (MSE) to compare the X and X2 pop-
ulations: MSE=E[(X; — X2)?]. This quantity is minimized to
search the best correspondence. To allow radiometric variations
between the two signals, the MSE is applied to the centered nor-
malized random variables which corresponds to MSE= 2(1 — p).
Thus the minimization of the MSE for normalized random vari-
ables is equivalent to the maximization of the cross-correlation
coefEcient.

I Note that in the case of SAR images, many different data can be used
(complex £eld Z, intensity measure I = |Z|2, amplitude data A = | Z|).
There have been many works on the coherence estimation, specially in
the interferometric framework addressing the interest of using complex
or intensity data (Guarnieri and Prati, 1997) and studying the bias and
variance of various estimators. But the aim is totally different in the radar-
grammetric context, since we are here interested in the correlation of the
underlying scene of the 2 images. The speckle is for us de-correlated
and thus a disturbing phenomenon, whereas in interferometry speckle is
the “real” signal and the scene is the disturbing phenomenon (Guarnieri
and Prati, 1997). Therefore, there is no interest in our context of using
complex images instead of amplitude or intensity ones.

3.2 Variation coef£cient criterion

The probabilistic approaches which have been developed for SAR
data strongly rely on scene and speckle assumptions. Since they
are rarely verifed for un-natural areas, we preferred to use the
Mean Square Error approach, to derive new criteria adapted to
multiplicative noise. To keep the criterion increase in the case of
a good match, we use the inverse of the MSE.

Using this idea, the criterion v has been derived keeping a ra-
diometric difference to defne the error, but using a ratio based
normalization and integrating the variation coefEcient ~; of the
random variables X ; to favor featured areas (Tupin, 2002):
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In fact, we can see that v has also the following expression:
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It means that this coeffcient has a global behavior similar to the
one of the classical correlation, but tends to select windows with
the same variation coefEcients (v is maximized when p = 1 and
v1 = 7y2). This criterion is referenced as “variation coeffcient
criterion” in the following.

It has been shown in (Tupin, 2002) using simulated data with the-
oretical Gamma distributions of different patterns and with differ-
ent contrasts that:

e the variation coeffcient gives better results in terms of de-
tection probability and false alarm rates on the original SAR
data; results are only slightly better if a preliminary averag-
ing is applied on the data;

e the localization accuracy of the match is better with the vari-
ation coef£cient criterion than with cross-correlation.

3.3 Logarithmic criterion

Since the speckle is modeled by a multiplicative noise (Good-
man, 1975), a natural idea would be to use the logarithmic trans-
formation to defne adapted criteria. A £rst test has been to apply
the correlation coef£cient on logarithmically transformed images.
But this criterion is not adapted to urban areas. Indeed, after log-
arithmic transformation, the small size bright targets are more
difcult to detect. Since they are very important features in real
urban scenes, the logarithm should not be used in practice.

Instead of using normalized centered variables % we propose
to introduce the variable X’ = (%)“ and to de£ne the criterion
by:

1/w = E[(log X| — log X5)] @)

Using the multiplicative noise model, X = R.S with R the scene
rezectivity, and S the normalized speckle, with « = 1 we ob-
tain the following relationship (supposing that the two scenes are
equal (R1 = Ra2):
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This expression is not satisfying in a radargrammetric application

since there is no way to distinguish homogeneous areas and pat- =
tern areas. Therefore, we introduced the scene variability in the *

« defnition by taking:
1

Vo2 — p2od

o and p being the standard deviation and mean of the image (X),
os being the standard deviation of the speckle given by the look
number of the SAR image (cs = ﬁ for intensity images). In
this case, we have:

o=
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and the intrinsic variability of the scene is taken into account by
the standard deviation of the scene o g.

3.4 Examples of application

An example to show the different behaviors of the three criteria is
presented in £gures 2 and 3 for a punctual target. The “correlation
images” are displayed which means that the correlation value for
each displacement around the true match (in the center of the
image) is displayed. Itis away to see the decreasing of the criteria
around the good match and to see other maxima.

In £gures 4 and 5 another result is presented. This time, in each
pixel the correlation value for the best match is displayed. As
usual, the higher correlation values are obtained for patterns (spe-
cially the bright lines here).

A quantitative analysis is given in the two following sections us-
ing two HR SAR images on a semi-urban areas.

Figure 2: Left and right SAR images used for the correlation

Figure 3: Correlation images for the three criteria: from left to
right: values of cross-correlation coeffcient, the variation coeff-
cient criterion, and the logarithmic criterion.

Figure 4: Left and right SAR images used for the correlation

A quantitative analysis is given in the two following sections us-
ing two HR SAR images on a semi-urban areas.

Figure 5: Correlation results for the three criteria: from left to
right: cross-correlation coef£cient, variation coef£cient criterion,
the logarithmic criterion (in negative display: the darker the pixel,
the best the correlation value)

4 TEST ON BUILDING HEIGHTS

In this section, the comparison of the three criteria is done using
a building map. For each building, we have a ground truth giving
its true height (obtained by stereo-vision with optical images).
For the SAR images, they are in epipolar geometry?. For each
criterion, for each match above a £xed threshold, the associated
disparity is converted in an height associated to the point.

The £rst step of this comparison is the study of the dynamic of
each criterion to defne an adapted threshold. This value is of
course crucial since it inauences the match selection. For the
three criteria the value distributions have been empirically com-
puted on a real SAR image. Then the mode of the probability
density function has been selected, and will be used as a thresh-
old value in the following tests. On the ground truth 10 buildings
have been selected and subdivided into two sets: textured build-
ings and un-textured ones. We have used two criteria to study
the performance of a correlator. The £rst criterion is the percent-
age of points which have been matched to the right height. The
second criterion is the mean square error of the computed height
(compared to the real one).

% DE BONS APPARIEMENTS
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Figure 6: Percentage of good matchings (top) and mean square
| errors (bottom) for textured buildings (left) and untextured ones
(right) for the three correlators (pink: cross-correlation; blue:
variation coeffcient criterion; red: logarithmic criterion; green:

1 fusion of the three correlators).

The fusion of the three correlators is done by selecting pixels for
which the three matches are above the thresholds and giving the
same disparity.

2Thanks to Thales for the epipolar geometry computation.



Using £gure 6, the following conclusions can be given:

o results are better for both criteria for the textured buildings
and this is true whatever the correlator is;

e The two £rst correlators (cross-correlation and variation co-
efEcient criterion) have similar performances (with a slight
advantage to the variation coefEcient criterion) whereas the
logarithmic criterion is worst than the two other ones.

To complete this analysis, £gure 7 presents a classi£cation of the
pixels depending on their accordance to the theoretical height of
the building.
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Figure 7: Colored classifcation of the pixels depending on their
error compared to the theoretical height (in red: with errors less
than 2m; in blue: with errors less than 4m; in grey: with errors
more than 4m -from top left to bottom right: cross-correlation,
variation coefEcient criterion, logarithmic criterion, fusion of the
three correlators-).

On this £gure 7, it seems that the logarithmic correlator gives
right matches accurately located on the bright targets, whereas the
two other ones give spread responses, thus increasing the percent-
age of well classifed pixels. This correlator is this more adapted
to cross-shaped targets. This point is investigated in the second
part.

5 TEST ON A SET OF POINTS

In this section, we are interested in the ROC curves computed for
a set of manually selected points.

The test is done in the following way. The pair of points (P1, P-)
in each image is selected manually. This selection is done in a
very accurate way using visual criteria (contextual knowledge,
etc.). Two sets of points have been defned. The £rst one cor-
respond to bright punctual isolated targets and the second one to
“L” shape corners (usually corresponding to ground/wall corner
reaectors). For each point P; the best match in image 2 for a
given correlation window and a given search area is computed.
This match is localized in P; with value v. Three situations are
considered for a given threshold ¢k on the correlation value:

o if d(P,, P;) < 2 pixels and v > th: good detection;

o if d( P2, Py) > 2 pixels and v > th: false alarm;
e if v < th: point not taken into account.
Using these de£nitions, for each threshold on the correlation cri-

terion, a probability of detection and a false alarm probability is
computed. The ROC curves are then deduced for each criterion.

5.1 Results for the punctual bright targets

An example of a manually selected pair of points is shown on
£gure 8. The results of the correlation values in the search area
for a 9x9 window are presented £gure 9.

Figure 8: Pair of points manually selected in the two images
(bright punctual target.

Figure 9: Correlation images for the three criteria (from left to
right: cross-correlation, variation coefEcient criterion, logarith-
mic criterion) applied on the pair of £gure 8.
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Figure 10: Percentage of good matchings (on the left) and false
alarms (on the right) versus the size of the search area (in pink:
cross-correlation; in blue: variation coefEcient criterion; in red:
logarithmic criterion; in green: merged criterion).

Figure 10 shows the behavior of the 3 correlators when the search
area is increased. As expected, the percentage of good matches
decreases when the search area increases, whereas the false alarm
percentage increases. A radius of 40 pixels for the search area has
been eventually chosen to compute the ROC curves.

On this £gure, it can be observed that the variation coefEcient
criterion has better performances than the others.

This result is conErmed on the £gure 11 (ROC curves) showing
that the best performance is obtained for the variation coefEcient
criterion.
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Figure 11: ROC curves for the punctual targets (in pink: cross-
correlation; in blue: variation coeffcient criterion; in red: loga-
rithmic criterion; in green: merged criterion).

5.2 Results for the “L” shape corners

Once again, an example of a manually selected pair of points in
the set of “L shape” points is shown on £gure 12. The results of
the correlation values in the search area for a 9x9 window are
presented £gure 13.

Figure 12: Pair of points manually selected in the two images
(“L” shape corner).

Figure 13: Correlation images for the three criteria (from left to
right: cross-correlation, variation coeffcient criterion, logarith-
mic criterion) applied on the pair of £gure 12.

Once again, a radius of 40 pixels for the search area has been
chosen.

For the case of “L-shape” pattern, the results are very different,
since this time the best performances are given by the logarith-
mic criterion, whereas the variation coef£cient criterion gives the
worst performances.
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Figure 14: Percentage of good matchings (on the left) and false
alarms (on the right) versus the size of the search area (in pink:
cross-correlation; in blue: variation coefEcient criterion; in red:
logarithmic criterion; in green: merged criterion).
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Figure 15: ROC curves for the “L-shape” targets (in pink: cross-
correlation; in blue: variation coeffcient criterion; in red: loga-
rithmic criterion; in green: merged criterion).

6 CONCLUSION

In this paper a new logarithmic based criterion has been proposed.
A study of the behaviors of 3 correlators has shown that the per-
formances depend on the kind of buildings on the one hand (£Erst
set of tests), and on the kind of considered targets (corners or

§ punctual targets) on the other hand (second set of tests).

" The best way to process SAR images would be to use the logarith-

mic criterion for “L shape” pattern and the variation coeffcient
criterion for punctual targets, but to the price of a higher compu-
tational complexity.
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