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ABSTRACT: 
 
Remote sensing (RS) data acquired by satellite have wide scope for agricultural applications owing to their synoptic and repetitive 
coverage. On the one hand, spectral indices deduced from visible and near-infrared RS data have been extensively used for crop 
characterization, biomass estimation and crop yield monitoring and forecasting.  On the other hand, extensive research has been 
conducted using agrometerological models to estimate soil moisture to produce indicators of plant-water stress.  This paper reports 
the development of an operational spectro-agrometeorological yield model for maize using a spectral index, the Normalized 
Difference Vegetation Index (NDVI) derived from SPOT-VEGETATION, meteorological data obtained from the European Centre 
for Medium-Range Weather Forecast (ECMWF) model and crop-water status indicators estimated by the Crop Specific Water 
Balance model (CSWB). Official figures produced by the Government of Kenya (GoK) on crop yield, area planted and production 
were used in the model. The statistical multiple regression linear model has been developed for six large maize-growing provinces in 
Kenya. The spectro-agrometerological yield model was validated by comparing the predicted province-level yields with those 
estimated by GoK.  The performance of the NDVI and land cover weighted NDVI (CNDVI) on the yield model was tested. Using 
CNDVI instead of NDVI in the model reduces 26% of the unknown variance.  Of the output indicators of the CSWB model, the 
actual evapotranspiration (ETA) performs best.  CNDVI and ETA in the model explain 83% of the maize crop yield variance with a 
root square mean error (RMSE) of 0.3298 t/ha.  Very encouraging results were obtained when the Jack-knife re-sampling technique 
was applied proving the validity of the forecast capability of the model (r2= 0.81 and RMSE= 0.359 t/ha).  The optimal prediction 
capability of the independent variables is 20 days and 30 days for the short and long maize crop cycles respectively. The national 
maize production during the first crop season for the years 1998 to 2003 was estimated with a RMSE of 185 060 tons and coefficient 
of variation of 9 %.  
 
 

                                                                 
* This is a preprint of an article whose final and definitive form will be published in the INTERNATIONAL JOURNAL OF 

REMOTE SENSING ©  http://journalsonline.tandf.co.uk

1. INTRODUCTION 

Crop-weather models had long been used for crop monitoring 
and yield forecasting before the advent of remote sensing 
products, like the Normalized Difference Vegetation Index 
(NDVI). More than 50 years have passed since the first paper 
on mathematical modeling of photosynthesis and productivity 
in plant communities was published in Japan (Monsi and Saeki, 
1953) and these kinds of studies  were later continued by 
research groups formed in Netherlands (de Wit et al., 1970; de 
Wit and Goudriaan, 1974).  In the USA, McCree (1970), Curry 
(1971), and Loomis et al. (1979) published outstanding papers 
along the same lines. Interesting research was undertaken in 
Poland by using statistical empirical models (Górski et al., 
1994).   
 
In 1975, during the major world food crisis produced by 
climatic events, including the Sahelian droughts of 1972 and 
1973, FAO established the Global Information and Early 
Warning System for Food and Agriculture (GIEWS). The 
absence of low-cost methods applicable to large regions 
oriented FAO to use the Crop Specific Water Balance (CSWB) 
model (Frère and Popov, 1979; Gommes, 1993) as a tool for 

monitoring and yield forecasting in African countries. In those 
countries, the insufficient information on weather and crops 
precluded applying more complex models.   
 
In Europe, the crop-weather model, WOFOST, was adapted for 
monitoring and yield forecasting in European countries; the 
model represents the engine of the Crop Growth Monitoring 
System established in 1998 by the Monitoring Agriculture with 
Remote Sensing (MARS) project at the Joint Research Centre 
(JRC) (Meyer-roux and Vossen, 1994). WOFOST is a member 
of the family of models developed in Wageningen by the C.T. 
de Wit school (de Wit et al., 1970; de Wit and Goudriaan, 
1974).  
 
The introduction of remote sensing and the derived vegetation 
indices in the early 80’s was considered a potential tool to 
improve simulations by objective observations in real-time. 
NDVI has been used as an indicator of the vigour of vegetative 
activity as represented by indirectly observable chlorophyll 
activity (Hastings and Emery, 1992). Low values of NDVI have 
been associated with the lack of vegetation, dormant states of 
existing vegetation or stress caused by drought, over-irrigation, 
or diseases (Hastings, 2005). Remote sensing products alone 
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have been used in different parts of the world to estimate crop 
yield (Lewis, et al, 1998; Hochheim and Barber, 1998, Wang, et 
al, 2005).     
 
Potdar et al (1999) observed for some cereal crops grown in 
rain-fed conditions that rainfall distribution parameters in space 
and time need to be incorporated into crop yield models in 
addition to vegetation indices deduced from remote sensing 
data. Such hybrid models show higher correlation and 
predictive capability than the simple models (Manjunath and 
Potdar, 2002). The agro-meteorological models introduce 
information about solar radiation, temperature, air humidity and 
soil water availability while the spectral component introduces 
information about crop management, varieties and stresses not 
taken into consideration by the agro-meteorological models 
(Rudorff and Batista; 1990). The purpose of this research is to 
improve the spatial estimation of yield by combining crop-
weather models and satellite observations.  
 
Using Kenya as an Eastern Africa case study, this paper 
presents the methodological approach employed to build and 
validate a maize yield model using remote sensing data from 
SPOT VEGETATION and the outputs of the FAO-CSWB 
model. Kenya was chosen as a trial study area for developing 
the model because Kenya is relatively rich in data, and 
agriculture is practiced in coastal, low land, and high land areas 
which have diverse climates and are representative of most 
regions in Eastern Africa.  Maize is a major food crop 
cultivated in Kenya. It represents 90% of national cereal 
production.  Between 1998 and 2003, the average area 
cultivated with maize was 1 574 370 hectares with a total 
national production of above 2 475 947 tons and a national 
average yield of 1.57 tons by hectare. Maize is mainly 
cultivated in the South-Western part of the country, in the 
provinces of Rift Valley, Nyanza and Western.  The three 
provinces together produce more than 80% of the national 
maize production.  Nyanza, Western and Rift Valley provinces 
have a mono-modal rainfall distribution while Central, Eastern 
and Coast provinces exhibit on average a bi-modal distribution 
of rainfall with the possibility of having two crop seasons each 
year.  The first crop season historically extends from February 
to August, producing more than 82% of the national maize 
production, while the second crop season, from September to 
January, represents 18%. 
 

2. MATERIALS AND METHODS  

2.1 

2.1.1 

                                                                

Real-time input data 

Meteorological data  
The rainfall and potential evapotranspiration (PET) data used in 
this study are products of the European Centre for Medium-
Range Weather Forecast (ECMWF model) at Reading in the 
UK. The data were interpolated from the original 1-degree grid 
to a final resolution of 0.5 degree (approximately 55 km).   
Dekadal rainfall and ETP were then spatially averaged for each 
area comprised in the maize crop mask using ArcMap GIS 
tools. 
 
2.2.2 Remote-sensing data 
The products of SPOT VEGETATION acquired by MARS are 
10-day NDVI (Normalized Difference Vegetation Index) 
synthesis (S10) images, obtained through Maximum Value 
Compositing (MVC).   The images are corrected for radiometry, 
geometry and atmospheric effects. The 10-day images are 
delivered to the JRC with a delay of around 2-3 days. 

 
2.2. The CSWB model 
The FAO CSWB is a very simple but physically sound soil 
water balance model which is used to assess the impact of 
weather conditions on crops (Frère and Popov, 1979; Gommes, 
1993, Rojas et al., 2005).  The water balance of the specific 
crop is calculated in time increments, usually 10-days.  The 
equation of the water balance is: 
 

Wt = Wt-1 + R – ETA – (r + i)  (1) 
 
Where, 
Wt:   amount of water stored in the soil at the time t. 
Wt-1:  amount of water stored in the soil at the end of the 
previous period (t-1). 
R:   cumulated rainfall during the dekad or t-period of time. 
ETA:   actual evapotranspiration in the t-period time 
r: represents the water losses due to runoff in the t-period time 
i: represents the water losses due to deep percolation in the t-
period time 
 
Two main outputs of the CSWB model are demonstrated to be 
positively correlated with the crop yield: the Actual 
evapotranspiration (ETA) and the Water Satisfaction Index 
(WSI).  ETA has the advantage to include the radiation, which 
is an important climatic variable susceptible to influence the 
crop yield in the region.  The influence of factors other than 
water stress which can reduce crop yields such as water 
logging, mechanical damage produced by strong winds, or 
biological factors, such as locusts, birds, insects or plant 
diseases are not considered by the CSWB model.  The WSI is 
an index of the CSWB model to assess the amount of water 
received by the crop during any time of the season.  Normally, 
the WSI is used for defining qualitative yield classes (i.e. good, 
average, and poor) or in relative figures (percent of an optimal 
yield crop).  When the WSI is equal to 100, it indicates no 
water stress and good crop yields, while a WSI of 50 
corresponds to poor crop yield or crop failures.  The estimation 
of the actual evapotranspiration (ETA) was done using 
Agromet-Shell2 (Hoefsloot, 2005). The crop information 
needed to run the water balance model (water holding capacity 
and cycle length) was taken from the Crop production system 
zones database (CPSZ) (Van Velthuizen et al, 1995). 
 
2.3 Planting date estimation model  
 
To start the simulation, the CSWB model requires the current 
planting date of each crop season. The criterion followed to 
define the planting dekad was the 1st dekad with at least 20 mm 
of rainfall followed by two dekads with at least 20 mm of total 
rain.   The same planting date was used to start accumulating 
NDVI values up to the end of the crop cycle (Table 1).   

 
2 AgrometShell is a software that integrates the main tools used 

in the Early Warning System such as SUIVI 
(agrometeorological database), FAOINDEX (Crop specific 
water balance), and the most common tools of data 
interpolation.  Agromet-Shell was designed for storing 
agrometeorological information on meteorological stations 
base.  In the present study the information from the crop 
mask units (spatially averaged of the polygon) was inserted 
in lieu of meteorological stations with the objective to run 
the water balance model. AgrometShell has been developed 
by the Agrometeorological Group at FAO and programmed 
by Peter Hoelsloot. 
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2.4 Crop statistics  
 
The Kenyan government started collecting disaggregated 
agricultural statistics by crop season in 1997.  However, since 
the SPOT VEGETATION sensor was launched on board the 
SPOT 4 satellite later, in 1998, crop data was analyzed between 
1998 and 2003. The statistics are collected at district level and 
aggregated by province∗.  
 
Table 1. Maize crop cycle length and phenological phases in dekads
Province crop cycle Initial Vegetative Flowering Ripening

dekads* dekads dekads dekads dekads
Central 16 3 3 7 3
Coast 11 2 2 5 2
Eastern 9 2 2 3 2
Nyanza 13 3 2 5 3
Rift Valley 16 3 3 7 3
Western 16 3 3 7 3

*10-days  period

 

 
 
2.5 Maize crop mask 
 
In this study, two levels of maize crop mask were defined.  The 
first level, the ‘general’ maize crop mask was created using 
only statistical information; the second one is the result of 
intersecting the first level of crop mask with the Africover land 
cover information (Di Gregorio et al, 2000).  The first level of 
crop mask was used for area-averaging of the meteorological 
and NDVI information.  The second one was used for extracting 
the land cover weighted NDVI (CNDVI) (see point 2.7).  To 
define the first level of crop mask the statistical information 
about the area planted with maize at district level was used. For 
each district, we calculated the percentage of the total 
provincial area planted with maize.  The districts with no maize 
planted and those with less than 6% of the area planted with 
maize were masked-out from each province.  As a result a 
general maize crop mask was used, constituting all the districts 
with more than 6% of area planted with maize for each 
province. The final resolution of this crop mask is at province 
level.  To obtain a more precise maize crop mask we used two 
classes from the Africover land cover database: the isolated 
small fields and continuous small fields that were considered to 
better represent the traditional maize farms of Kenya. The first 
maize crop mask at province level was intersected by 
AFRICOVER classes.  The result is a better delimitation of the 
areas cultivated with maize in each province. Unfortunately, the 
polygons resulting are too small to be used for extracting 
meteorological information at 0.5 degrees resolution. 
 
2.6 NDVI  
 
The Normalized Difference Vegetation Index (NDVI) has been 
the most frequently used vegetation index within 
agrometeorological analysis. It is defined as: 

NDVI= (NIR–RED)/(NIR+RED)    (2) 

                                                                 
                                                                ∗ MARS-FOOD received the Kenya statistics of area planted, 

yield and production aggregated at national level of maize 
and sorghum for the period 1985-2003, and disaggregated by 
crop season (‘Long rains’ and “Short rains”) at district level 
for the period 1997-2003 from Nancy Mutunga, FEWS-NET 
Country Representative of Kenya.   

NIR and RED are, respectively, the reflectance (%) in the near-
infrared and in the red channels. It is easy to understand the 
index when the characteristics of absorption and reflection of 
the radiation by green leaves is studied. The chlorophyll of the 
plant absorbs the majority of the radiation in the visible part of 
the spectrum, principally the red portion (0.6-07 μm), and is 
highly reflective in the near-infrared. Thanks to this property of 
green vegetation, NDVI is a direct indicator of the plant’s 
photosynthetic activity. Therefore parameters such as water 
stress can be monitored successfully by analysing the NDVI 
values. The NDVI values were spatially averaged for each area 
comprised in the maize crop mask. Three variables were created 
when aggregating the NDVI values on a temporal scale:  
cumulated NDVI values starting from planting date up to the 
end of the length of the crop cycle (NDVIc), maximum NDVI 
during the crop cycle (NDVIx) and 3 dekad-averages around 
the maximum NDVI (NDVIa) to smooth the curve when an 
isolated peak represents the maximum. 
 
2.7 CNDVI methodology 
 
Despite the fact that it is not possible to eliminate all spectral 
responses from non-agricultural vegetation in the African 
parcels, any improvement of the crop mask will reduce the 
influence of natural vegetation and show a higher correlation of 
the remote sensing indices with crop yield. Therefore, it was 
decided to include the Land cover weighted NDVI method 
(CNDVI∗) using Africover land cover (Di Gregorio et al, 
2000). The CNDVI method has been developed to extract 
NDVI profiles from low resolution satellite imagery.  It is 
currently in use for agricultural monitoring in Europe, with two 
main objectives: a) to aggregate NDVI information by 
administrative regions in order to give synthetic and 
manageable information; b) to focus on agricultural land only, 
owing to the integration of land cover information.  The 
CNDVI method is fully documented by Genovese et al, 2001. 
The method was originally designed and tested for NOAA- 
AVHRR (with a 4.4 km resolution) and CO-ordination of 
Information on the Environment (CORINE) land cover data 
(Perdigao and Annoni, 1997), but can theoretically be applied 
to all combinations of low resolution images and higher 
resolution land cover data.  Negre et al, 2001, have adopted the 
methodology to work in Africa using SPOT-VEGETATION 
instead of NOAA-AVHRR and AFRICOVER land cover 
classes (Di Gregorio et al, 2000) instead of CORINE Land 
cover.  For the CNDVI extraction itself, the regrouped 
agricultural classes are re-scaled to the same resolution as the 
VGT images (1km), creating so called abundance images.  In 
these images the value of each 1 km pixel expresses the 
percentage which is covered by an Africover class.  The NDVI 
of each 10-day image pixel is weighted following the 
abundance image and the final NDVI profiles are class specific.  
Aggregation is done at a regional level to obtain a single 
CNDVI value per region, through a weighted average of NDVI 
values.  The agricultural AFRICOVER classes are not crop 
specific but provide information about field size and field 
distribution. In this study two classes were selected: the isolated 
small fields and continuous small fields that were considered to 
better represent the traditional maize farms of Kenya. 

 
∗ CNDVI:  ‘C’ for Land cover information that in the case of 

Europe represents CORINE land cover and in Africa mainly 
AFRICOVER land cover and ‘NDVI’ for Normalised 
Difference Vegetation Index. 
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AFRICOVER classes were used to refine the crop mask by 
province, by selecting specific agricultural areas, supposed to 
be maize areas within each district.  As done with the NDVI, 
three variables were created aggregating the CNDVI values on 
a temporal scale: using cumulative CNDVI values starting from 
planting date up to the end of the crop cycle (CNDVIc), 
maximum CNDVI during the crop cycle (CNDVIx) and 3 
dekad-averages around the maximum CNDVI (CNDVIa) to 
smooth the curve when an isolated peak represents the 
maximum. 
 
2.8 Crop yield model development and validation  

A multiple linear regression analysis was used in the 
development of the crop yield model testing the following 
independent variables:  WSI, cumulated ETA during the whole 
maize cycle, ETA cumulated by phenological phase (initial, 
vegetative, flowering and ripening), cumulated soil water 
deficit and surplus, NDVIc, NDVIx, NDVIa, CNDVIc, 
CNDVIx, CNDVIa and total cumulated rainfall during the crop 
cycle. To increase the number of observations and hence the net 
degree of freedom, the model was developed considering all the 
observations from all regions together. The Jack-knife re-
sampling technique (leaving one data value out each time) was 
applied to test the forecast capability of the model.  To avoid a 
strong influence of climatic conditions given by a specific year 
each time it excluded a set of observations belonging to the 
same year. To assess the prediction capacity of the model, a 
correlation matrix with the independent variables accumulated 
during the phenological phase of maize was tested.  To study 
the evolution of the r-square and RMSE,  4 multiple linear 
regression models were built at provincial level whereby each 
model represents a 
phenological phase 
of maize (initial, vegetative, flowering and ripening) using the 
most correlated variables. The Jack-knife technique was applied 
to each model to validate its forecasting capability. 

The methodology flow chart describing briefly the steps 
involved in digital data analysis, the agrometeorological model 
outputs and the development of the spectro-agrometeorological 
yield model is given in Figure 1.  

 
 
2.9 Estimation of national maize production during the first 
crop season 
 
Although our main scope was the development of a crop yield 
forecasting model, due to the fact that the area planted with 
maize has a strong time-trend in Kenya, it is possible to obtain 
an estimate of the national maize production during the first 
crop season. The maize crop yield was estimated by province 
using the spectro-agrometeorological yield model.  To obtain 
the national maize yield average, the provincial yields obtained 
by the spectro-agrometeorological model were weighted by the 
percentage of contribution of each province to the total national 
area planted with maize. The national area planted with maize 
was estimated using the time-trend equation of Figure 3 (b). 
Between 1998 and 2003, the area planted with maize during the 
first crop season represented above 71% of the national area 
planted with maize. A correction factor from the statistics of 
71% was applied to estimate the area planted during the first 
crop season. The weighted national yield was multiplied by the 
estimated area planted during the first crop season with maize 
to obtain the national production figures for the first crop 
season. Finally, comparison was made between the estimated 
production and the observed national production figures of 
Kenya. 
 
3. Results 
3.1 Maize crop masks 
 
Figure 2 (a) shows the districts in each province that represent 
more than 6% of the area planted with maize. The districts with  

 

Figure 2. (a) Maize crop mask done based on the percentage of area planted with maize at district level (districts with less than 
6% of area planted with maize have been masked-out). (b) In black the isolated small fields and continuous small fields from  the 
Africover database; in gray the maize crop mask done based on the percentage of area planted with maize at district level. The 
Africover classes outside the general maize crop mask have been masked-out. 
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Figure 1 Methodology flow chart describing input data, process and tools for the development of the spectro-
agrometerological yield model. 
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less than 6% have been masked-out. This crop mask was used 
in order to extract the NDVI and the meteorological values 
needed to run the CSWB model.  Figure 2 (b) shows the two 
classes of Africover land cover considered in this study: 
isolated small fields and continuous small fields. The Africover 
classes outside the general crop mask were not considered 
during the extraction of the CNDVI values.  

R2 = 0.013

1000000

1500000

2000000

2500000

3000000

3500000

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

M
ai

ze
 p

ro
du

ct
io

n 
(t)

Maize production (t) Linear (Maize production (t))

(a)

yield = -0.0239(year) + 49.316
R2 = 0.37

area planted = 16675(year) - 31791221
R2 = 0.74

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

A
re

a 
pl

an
te

d 
(h

a)

-

0.5

1.0

1.5

2.0

2.5

M
ai

ze
 y

ie
ld

 (t
/h

a)

Area planted Yield Linear (Yield) Linear (Area planted)

(b)

 

 
3.2 Trend analysis 
 
The trend in rainfall, area planted, yield and production of 
maize during the first crop season was studied. The results of 
the analysis carried out at the province level are presented in 
Table 2. The maize yield exhibits a negative trend in Coast, 
Nyanza and Western provinces; the data was not de-trended due 
to the fact that this tendency can be explained by the trend in 
rainfall.  Considering the objective of the study, we de-trend 
when the tendency is explained by variables other than climate, 
such as technological improvements. Nyanza and Rift Valley 
have a very positive trend in area planted during the ‘Long 
rains’ crop season. Due to the fact that 6-years is a short series 
to have a conclusive trend analysis, we used the longest series 
of national aggregated data of Kenya (1985-2003) and analyzed 
the production, area planted and yield of maize at national 
level. 
 
The statistics shown in Figure 3 (a) illustrate that maize 
production has no trend.  The average production is above 2.5 
million tons with a minimum production of 1.7 million tons 
which occurred in 1993 followed by a maximum production of 
3.0 million tons in 1994. Figure 3 (b) shows that the area 
planted has a strong positive trend while maize yield has a 
negative one. Kenya has increased the area planted to 
compensate for decreased productivity and the growing demand 
for maize.  The results of our trend analyses undertaken during 
the first crop season suggest that the increase in area planted 
has been concentrated mainly in the Nyanza and Rift Valley 
provinces, and less extensively in the Coast province.  Eastern 
is the only province that shows a negative trend in area planted 
during 1998-2003 period (Table 2).     Figure 4 shows the trend 
in annual rainfall (1989-2005), first crop season (1989-2005) 
and maize yield aggregated at national level (1985-2003). 

Table 2. Trend analysis in rainfall, area planted and yield (1998-2003) and  rainfall
                   (1989-2005)  by provinces during the first crop season in Kenya
Province 1998-2003 1989-2005

Rainfall r2 area plante r2 yield r2 Rainfall r2 

Central no trend - no trend - no trend - no trend -
Coast negative 0.56 positive 0.30 negative 0.87 no trend -
Eastern no trend - negative 0.23 no trend - no trend -
Nyanza negative 0.61 positive 0.84 negative 0.52 negative 0.49
Rift Valley no trend - positive 0.79 no trend - negative 0.20
Western negative 0.58 no trend - negative 0.52 negative 0.37

 
The trends of all three figures are negative. The trend in annual 
rainfall shows a small coefficient of determination (r2= 0.13) 
when compared with the coefficient of the first crop season 
(r2=0.34). The accumulated rainfall from September to January, 
second crop season (1989-2005) has no trend, signifying that 
the decrease in maize yields is due to reduced water availability 
during the main cropping season in Kenya.  
 
 
 
 

 
Figure 3  (a) Maize production for the period 1985-2003. (b) Area 
planted and yield for maize during the period 1985-2003. Data from 
Government of Kenya. 

3.3 NDVI and CNDVI 
 
Figure 5 shows the difference between the spatially-averaged 
NDVI and CNDVI for the different provinces and years.  The 
differences are smaller in Coast and Eastern province, 
suggesting little impact on the model.  Meanwhile, the rest of 
the provinces have large differences.  Negative differences 

could be explained by the addition of 
dry areas with low NDVI values in 
the general maize crop mask; 
meanwhile positive differences 
indicate that the general crop mask 
includes very dense natural vegetation 
with high NVDI values within the 
agricultural areas.  We conclude that 
there is a difference between NDVI 
and CNDVI that spans from 0.01 to 
1.08 when the variables are 
accumulated for the whole crop cycle. 

To assess the impact of such differences on the statistics of the 
model we calculated the reduction in per cent of the unknown 
variance using 1-r2 (r from Table 3). The unknown-variance has 
been reduced by 26% when CNDVI is used in the model 
instead of NDVI. We conclude that the CNDVI gives a better 
spectral signal of maize crop areas than NDVI spatially 
averaged by the general crop mask.  
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Figure 4 Negative trend in annual rainfall (1989-2005) and in the 
cumulated rainfall (February-August), first crop season, compared 
with the negative trend of the national maize yield.    
 

Figure 5 Difference between the spatially-averaged cumulated NDVI 
from planting dekad up to end of the crop cycle (NDVIc) and 
cumulated CNDVI for the same period (CNDVIc) by province.  
 

Table 3 Correlation Matrix of maize yield and the independent variables
WSI WEXt WDEFt ETAi ETAv ETAf ETAr ETAt Rain CNDVIc CNDVIx CNDVIa NDVIc NDVIx NDVIa

WSI 1
WEXt 0.130 1
WDEFt 0.921 0.283 1
ETAi 0.298 -0.278 0.164 1
ETAv -0.402 -0.142 -0.382 0.107 1
ETAf 0.852 0.265 0.795 0.309 -0.285 1
ETAr 0.818 0.339 0.812 0.328 -0.278 0.764 1
ETAt 0.860 0.275 0.811 0.386 -0.175 0.976 0.858 1
Rain 0.381 0.947 0.494 -0.135 -0.215 0.502 0.551 0.517 1
CNDVIc 0.237 0.290 0.122 0.585 0.144 0.517 0.408 0.560 0.405 1
CNDVIx 0.395 0.320 0.361 0.613 0.148 0.433 0.505 0.523 0.423 0.700 1
CNDVIa 0.383 0.268 0.338 0.610 0.081 0.381 0.463 0.462 0.358 0.675 0.954 1
NDVIc 0.176 0.312 0.060 0.582 0.125 0.437 0.340 0.477 0.403 0.979 0.700 0.670 1
NDVIx 0.186 0.253 0.161 0.560 0.092 0.170 0.278 0.244 0.288 0.582 0.901 0.868 0.656 1
NDVIa 0.216 0.205 0.190 0.540 -0.011 0.141 0.248 0.200 0.238 0.512 0.825 0.829 0.602 0.960 1
Yield 0.511 0.350 0.463 0.574 0.057 0.663 0.649 0.731 0.525 0.869 0.782 0.771 0.818 0.594 0.525

 

Table 4. Multiple regression coefficients, Standard Error, t-Stat, P-value and 95% Confidence Inte

Coefficients Standard Error t Stat P-value Lower 95% Uppe
Intercept -1.4429 0.2324 -6.2094 0.00000052164 -1.9157
ETAt 0.0030 0.0007 4.2611 0.00015945560 0.0016
NDVIc 0.2498 0.0312 8.0022 0.00000000312 0.1863
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3.4 Correlation matrix 
 
Table 3 presents the correlation matrix of maize yield and the 
independent variables. There are three groups of independent 
variables: variables derived from remote sensing, climatic 
variables derived from the ECMWF model and variables 
derived from the CSWB model.  The CNDVIc shows the 
highest value of correlation coefficients amongst remote 
sensing variables (r = 0.87).  The average of 3-dekads around 
the maximum NDVI doesn’t give a better correlation than the 
maximum itself, which means that smoothing the peaks of the 
NDVI curve does not improve the correlation with yield. 
Rainfall accumulated from planting date up to the end of crop 
cycle gives a correlation coefficient of 0.52 which is higher 
than some of the indicators produced by CSWB model such as 
the Water Satisfaction Index (WSI) and accumulated water 
excess (WEXt) and deficits (WDEFt).  Amongst the CSWB 
model variables, the ETA shows a high correlation coefficient (r 
= 0.73).  It is interesting to highlight that the results of ETA by 
phenological phases show good correlation during the initial, 
flowering and ripening phases and low correlation during the 
vegetative one.  These results are in agreement with 
international research about impact of water stress on crop yield 
during different phenological phases (Doorenbos and Pruitt, 
1977).  Finally, we selected the two most correlated variables, 
ETA (total) and CNDVIc, to create the multiple linear 
regression model. 
 
3.5 Spectro-agrometerological model 
 
Figure 6, shows the comparison between the estimated maize 
yields by the model and the observed ones.   Table 4 shows the 
multiple regression coefficients of the intercept and independent 
variables, the t-Stat and the interval of confidence of the 
coefficients at 95% of probability of occurrence.  The adjusted 
r-squared is 0.83.  The root mean square error (RMSE) of the 
model is 0.3298 t/ha and the coefficient of variation is 21%∗. 
[Insert table 4 about here]  The following equation of the 
spectro-agrometeorological model was found: 
 
 

                                                                 
∗ Root mean square error (RMSE) examines the size of our 
forecast error.  This measure assumes that larger forecast errors 
are of greater importance than smaller ones; hence they are 
given a more than proportionate penalty. The root mean square 
error (RMSE) is defined as: 

 

where: T = number of observations, Ft = forecast of component 
At = actual outturn  

The coefficient of variation (CV) is a measure of relative 
dispersion and is given by (CV=standard deviation/mean). It is 
generally expressed as a percentage. In this study it was 
calculated using the standard deviation of the residual divided 
by the mean of the observed variable. 

 

 

Yield = -1.4429 + 0.2498 ∑ =

=

EOCCt

PDi
tCNDVI )(  + 0.0030 

∑ =

=

EOCCt

PDi
tETA )(         (3) 

 
Adjusted r-square = 0.83, n = 36, where t is dekad number;  
EOCC = End of maize crop cycle; 
PD = Planting dekad; 
Yield = Maize crop yield expressed in tons by hectare; 
CNDVI= Weighted NDVI using Africover land cover by 
dekad; 
ETA= Actual Evapotranspiration in millimetres by dekad 
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Figure 6 Comparison between the maize yield estimated by 
the spectro-agrometerological model and the observed 
yields for the different provinces. 

3.6 Jack-knife re-sampling technique 
 
To validate the forecast capability of the model the Jack-knife 
re-sampling technique was used. The impact of the difference 
on climatic conditions of each province was reduced leaving out 
each time a set of observations belonging to the same year. 
Figure 7 shows the comparison between the maize yields’ 
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Observed maize yield (t/ha)Figure 7 Comparison between maize yield estimated 
by the model using the Jack-knife re-sampling 
technique and the observed yield.  The Root mean 
square error (RMSE) = 0.359 t/ha, coefficient of 
determination (0.81) and coefficient of variation of 
23%. 
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estimates done by the model using the Jack-knife re-sampling 
technique and the observed yields. The r-square is 0.81, the root 
mean square error (RMSE) of the model is 0.359 t/ha and the 
coefficient of variation is 23%.  Our results are encouraging 
when compared with those reported by Lewis et al (1998). 
They used a simple regression model with NDVI from NOAA-
AVHRR for estimating maize production in Kenya and they 
obtained a Jack-knife r-square of 0.56.  
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3.7 Prediction capability of the independent variables 
 
To study the prediction capability of the independent variables 
the correlation coefficient of CNDVI and ETA with maize yield 
was calculated.  Figure 8 (a) shows the evolution of the 
correlation coefficient accumulated during the whole cycle and 
accumulated by phenological phases. CNDVI has a very strong 
correlation during the whole cycle.  ETA shows low correlation 
only during the vegetative phase.  The high correlation found in 
both variables requires further study.  During the initial phase 
CNDVI has higher correlation than ETA, which can be 
explained by the fact that CNDVI integrates information about 
the pre-planting condition (“long memory”) and is therefore 
better than simulations by the CSWB model. Also the spectral 
signal contains information about the characteristics of different 
soils that is difficult to introduce into the CSWB model. During 
the vegetative phase, the correlation of both variables by 
phenological phase decreases, this confirms the well-known 
low sensibility of yield when some stress happens during this 
phase (Doorenbos and Pruitt, 1977). The flowering phase shows 
a high correlation followed by the ripening phase. It was 
decided to build a multiple regression model using the CNDVI 
and ETA accumulated from the initial to ripening phases (that 
means by phenological phases).  The Jack-knife re-sampling 
technique was used to avoid any strong influence of climatic 
conditions of a specific year.  Figure 8 (b) shows the evolution 
of the adjusted r-square and RMSE after the Jack-knife 
technique had been applied.  Even if the correlation during the 
initial phase is high in both variables, the adjusted r-square for 
this phase is 0.59. The variables at the early stage of the crop 
explain 59% of the variability of maize yields.  Since the 
adjusted r-square is very high at the beginning of the crop 
season it should be tested once a longer time series is available 
to see if r-square remains high. Using the model at this early 
stage has a lot of uncertainty. Uncertainty decreases during the 
flowering period in which the adjusted r-square increases to 
0.74 with a RMSE of 0.42 t/ha.  We suggest that using the 
variables CNDVI and ETA accumulated from planting up to the 
end of flowering as a preliminary forecast and to refine it when 
the crop cycle reaches the end. The CNDVI and ETA 
accumulated for the whole crop cycle explains 81% of the 
maize yield variance with a RMSE of 0.36 t/ha when the Jack-
knife technique is applied.  

Adjusted R square RMSE

(b)

 
3.8 Estimation of national production during the first crop 
season 
 
Although our main scope was the development of a crop yield 
forecasting model, due to the fact that the area planted with 
maize has a strong time-trend in Kenya, it is possible to obtain 
an estimate of the national maize production during the first 
crop season.  We estimated the total area planted using the 
equation of time-trend (Figure 3 (b)).  Using the spectro-
agrometeorological model, the maize-yield was estimated at 
province level.    Figure 9 shows the comparison of the 
observed production with the estimated production for the years 

1998 to 2003.  The RMSE is 185 096 tons with a coefficient of 
variation of 9%.  

Figure 8 (a) Variation of the correlation coefficient (r) with the 
independent variables cumulated during the whole cycle and 
cumulated by phenological phases. (b)  Variation of adjusted r-
square and root mean square error in t/ha of the spectral-
agrometeorological model using the cumulated CNDVI and 
ETA when applying the Jack-knife re-sampling technique. 
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Figure 1 Comparison of the observed national maize 
production and the estimated maize production during the 
first crop season. 
 
4. Conclusions and recommendations 
 
It has been shown that it is possible to conduct operational 
maize yield forecasts using CNDVI derived from SPOT 
VEGETATION and ETA from the FAO CSWB model.  
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CNDVI showed to improve the spectral signal of the maize 
crop areas when compared with the simple spatially averaged 
NDVI using the general crop mask. CNDVI proved to be a 
simple and valid method for NDVI extraction with low 
resolution satellite images and highly fragmented high 
resolution land cover classes. However, significant 
improvements in extracting pure agricultural time profiles were 
primarily due to spatial refinements of the crop masks. The 
model showed a suitable prediction capability of 20 and 30 days 
before harvest for the short and long maize crop cycles, 
respectively.  Thanks to this prediction capacity it is possible to 
obtain an early forecast using the CNDVI and ETA 
accumulated from planting dekad to the end of the flowering 
phenological phase. A more accurate estimate will be possible 
when the maize crop cycle reaches the end using the CNDVI 
and ETA accumulated for the whole length of the maize crop 
cycle.  Even the second forecast using the variables 
accumulated up to the end of the crop cycle makes it possible to 
have reliable predictions 3 to 4 months earlier than the official 
estimates provided by national authorities and based on 
traditional field sampling surveys. As the time-series of the 
yield data was limited, some reservations for the model must be 
made, until a longer series of yield data will become available. 
The simplicity of the proposed regression yield model should 
allow an operational implementation in developing countries.  
Based on these encouraging results, regression models could be 
developed by MARS-FOOD for other geographical areas in 
Eastern Africa.  
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