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ABSTRACT: 
 
Monitoring phenology at a regional, national or at a global scale is recognized by the scientific community as very important for 
many practical applications and notably for climate change studies. Phenological observations are classically realised for specific 
plant species in botanical garden or in small study areas or fields all over the world and sometimes date back to the 19th century. 
Although these observations are very interesting for studying the trends in phenology over time and their drivers, they are punctual 
and provide therefore only little information on its spatial variability.   In this context, remote sensing information and especially low 
resolution sensors through their broad spatial resolution can provide additional information on phenology and allow creating dynamic 
maps of vegetation development. Different remote-sensed indicators for assessing vegetation phenology, for the most part based on 
smoothed NDVI curves, have already been proposed in various studies. These indicators are computed on moving averages, NDVI 
thresholds, logistic curves or maximum rate of changes. The phenological metrics directly derived from RS information are generally 
the start and the end of the growing season and also the moment of maximum greenness. Other RS phenological indicators are often 
derived from these metrics as, for example, the length of the growing season. RS phenological metrics can also be used as input 
variables in dynamic simulation models. These models unfortunately failed in non-optimal conditions (e.g. in case of damaging frost, 
hail, drought…). Remote sensing data could possibly be used to re-calibrate and re-adjust these models. 
 

1. INTRODUCTION 
 
Monitoring phenology at a regional, national or at a global scale 
is recognized by the scientific community as very important for 
many practical applications and notably for climate change 
studies. Analysis of spatial and temporal variations in the 
beginning and the end of the growing season can be used for 
example to determine regional variations and trends of the 
change in temperature and precipitation regimes. In agriculture, 
the accurate monitoring of crop development patterns represents 
an important component of farm management since it allows 
assessing if the most critical stages of growth occur during 
periods of favourable weather conditions. 
 
Phenological observations are classically realised for specific 
plant species in botanical garden, in small study areas or fields 
all over the world and sometimes date back to the 19th century. 
Although these observations are very interesting for studying 
the trends in phenology over time and their driving factors, they 
are punctual and provide therefore only little information on the 
spatial variability.   
 
In this context, remote sensing information can provide valuable 
information on phenology and allow creating dynamic maps of 
vegetation development.  
 
Monitoring phenology through remote sensing is not a novelty. 
The idea was already suggested more than 25 years ago by 
Tucker et al. (1979). Since that time, different techniques have 
been proposed in literature. These different techniques can be 
arbitrarily classified in different categories.  A distinction can be 
indeed made between techniques based on thresholds (Justice et 
al., 1985; Runtunuwu & Komdoh, 200; White et al., 2002; 
Wang & Tenhunen, 2004), derivatives (Kaduk & Heiman, 1996; 
Xin et al., 2002; Viña et al., 2004) logistic curves (Badhwar, 

1984; Zhang et al., 2003), moving averages (Reed et al., 1994; 
Brown et al., 2002; Schwartz et al., 2002) and empirical 
equations (Moulin et al., 1997). 
 
These different techniques derived from literature are based, for 
the most part, on NDVI time series (Swets et al. 1999). These 
NDVI time series needs to be smoothed prior to the use of these 
techniques in order to reduce at the most the remaining noises in 
remote sensing products. 
 
The aforementioned techniques have been applied for different 
vegetation types as field crops (Xin et al., 2002; Viña et al., 
2004), forests (Zhang et al., 2003; Schwartz et al., 2002) or  as 
savannah, shrublands… (Runtunuwu & Komdoh, 2001; Wang 
& Tenhunen, 2004). 
 
This paper will present first of all briefly the different possible 
techniques used to smooth vegetation index (VI) time series 
(mainly NDVI). The different indicators that can be derived 
from these time series in order to monitor will be then presented 
as well as the different techniques proposed in literature to 
derive these indicators.  

2. SMOOTHING METHODS TO REDUCE NOISE IN 
NDVI TIME SERIES 

 
There are many complications, limitations and causes of error 
associated with satellite data, including sensor resolution and 
calibration, digital quantization errors, ground and atmospheric 
conditions as well as orbital and sensor degradation. NDVI data 
sets are generally well-documented and quality-controlled data 
sources that have been pre-processed to reduce many of these 
problems. 
 
However, some noise is still present in the remote sensing data 
sets and, therefore, NDVI time-series need to be smoothed 
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before being exploitable. Such noise is mainly due to remnant 
cloud cover, water, snow, or shadow. These sources of errors 
tend to decrease the NDVI values. False highs, although much 
less frequent, can also occur at high solar or scan angles (in 
which case the numerator and denominator in the NDVI ratio 
are both near zero) or because of transmission errors, such as 
line drop-out. To minimize the problem of false highs, the 
remote-sensed products are generally based on low-angle 
observations wherever possible. 
 
Most errors thus tend to decrease NDVI values. This unusual 
error structure, with high NDVI values being more trustworthy 
than low ones, breaks the assumptions of many standard 
statistical approaches. Further complications can arise because 
the error structure can vary in time and space (Pettorelli et al., 
2005). 
 
Different smoothing methods exist to reduce noise in NDVI 
data. Some of these techniques are presented below. 
 
Maximum value compositing (MVC) method 
 
The maximum value compositing method (Holben, 1986) is 
certainly the easiest one. NDVI value for a compositing period 
is the highest NDVI value observed during this period 
(generally 1 decade or 1 month). The time period is a trade-off: 
a longer period decreases the amount of cloud interference, but 
it means missing short-term variations. 
 
This method minimises data gaps in any particular composite 
image due to cloud interference or missing data and overcomes 
some of the systematic errors that reduce the index value. 
However, the procedure would be biased by a single false high 
(Pettorelli et al., 2005) 
 
Curve-fitting method 
 
The curve-fitting method, initially develop by van Dijk et al. 
(1985), aims at fitting a polynomial or Fourier function to the 
NDVI time-series. The shortcoming of the polynomial and 
Fourier smoothers is that they only determine the general shape 
of the curve, rather than pinpointing particular cycles. The 
Fourier series smoother must also be rerun over the entire time 
series each time a new data point is added.  
 
Step-wise logistic regression method 
 
This method was initially developed by Zhang et al. (2003). 
These authors pretend that the bell-shaped NDVI curves can be 
represented using a series of piecewise logistic functions of time.  
 
Best Index Slope Extraction (BISE) method 
 
Initially developed by Viovy et al. (1992), this method is based 
on the slope of increasing and decreasing data values referred to 
as the “best index slope extraction”. The method accepts a point 
if it has a higher value than the previous observation. Where the 
NDVI value decreases, the decrease is only accepted if there is 
no point within the next n periods with a value greater than 20 
percent of the difference between the first low value and the 
previous high value.  
 
The method is dependent on both the 20 percent threshold and 
the predefined period of time (i.e. n). The resulting profiles tend 
to lose some of the nuances of the NDVI profile and, in some 
cases, appear to be insensitive to the timing of NDVI increases.  
 

Weighted least-squares linear regression  
 
This method was developed by Swets et al. (1999). This 
approach uses a moving window operating on temporal NDVI 
to calculate a regression line.  The window is moved one period 
at a time, resulting in a family of regression lines associated 
with each point; this family of lines is then averaged at each 
point and interpolated between points to provide a continuous 
temporal NDVI signal.  Also, since the factors that cause 
contamination usually serve to reduce NDVI values, the system 
applies a weighting factor that favors peak points over sloping 
or valley points. A final operation assures that all peak NDVI 
values are retained.  
 
Savitzky-Golay smoothing method 
 
This time-domain method of smoothing is based on least 
squares polynomial fitting across a moving window within the 
data. The method was originally designed to preserve the higher 
moments within time-domain spectral data.  
 
Savitzky-Golay smoothing filters, also called least-squares or 
DISPO (digital smoothing polynomial) filter are particular types 
of low-pass filters, well-adapted for data smoothing. Rather than 
having their properties defined in the Fourier domain, and then 
translated to the time-domain, Savitzky-Golay filters derive 
directly from a particular formulation of the data smoothing 
problem in the time domain (Press et al., 1992).  
 
4253H, twice smoothing method 
 
The 4253H, twice (or T4253H) smoothing method (Tukey, 
1977; Velleman & Hoaglin, 1981) belongs to a family of 
smoothers based on the use of running medians to summarize 
overlapping segments. Indeed, as the fitted curves are intended 
to be robust to any outlying observations in the sequence, 
techniques as T4253H make use of medians rather than means. 
 
The 4253H, twice smoothing method consists of a running 
median of 4, then 2, then 5, then 3. This is then followed by a 
method known as “Hanning”. Hanning is a running weighted 
mean, the weights being ¼, ½ and ¼. The result of this 
smoothing is then ‘reroughed’. This involves computing 
residuals from the smoothed curve, applying the same smoother 
to the residuals and adding the result to the smooth of the first 
pass (NAG, 2005). 
 
5RX, twice and 7RY, twice smoothing methods 
 
These two smoothing methods have been proposed by Ladiray 
& Roth (1987) and are in a way an adaptation of the smoothing 
techniques proposed by Tukey (1977) and Velleman & Hoaglin 
(1981) and are notably based on iterative processes. Indeed, for 
moving medians of odd order (only), Tukey had proposed to use 
a smoother as much as necessary until the moment when the 
smoothed series become invariant to the smoothing procedure. 
In many situations (Ladiray & Roth, 1987), convergence is 
reached quite rapidly (after 4 or 5 iterations).  
 
Ladiray & Roth (1987) propose to run median of 5 (5RX) or 7 
(7RY) using this iterative process and to use then a method 
similar to “Hanning” except that the weights are here 
(1/8,1/4,1/4,1/4,1/8) and (1/8,1/8,1/8,1/4, 1/8,1/8,1/8) 
respectively for 5RX and 7RY. 
 
The result of this iterative smoothing is afterwards “reroughed” 
(see “4253H, twice” smoothing method). 

 32



ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote sensing support to crop yield forecast and area estimates 
 

 
According to Ladiray & Roth (1987), these 2 smoothing 
methods (5RX and 7RY) are more efficient than 4253H 
smoothing method in many situations. However, the iterative 
process lead to a loss of data at the end of the series especially if 
the smoothing order is high and if the iterative process has 
difficult to convergence.  
 
However, for many purposes, the choice of smoothing method 
might not be crucial. For example, in a recent ecological study, 
similar estimates of spring phenology were obtained using 
either locally weighted regressions or a simple cumulative 
maximum throughout the season (Loe et al., 2005). 

3. PHENOLOGICAL KEY INDICATORS DERIVED 
FROM REMOTE SENSING 

 
Different key phenological events can be derived from NDVI or 
more generally from Vegetation Index (VI) time series. 
Whatever the technique used, three phenological key indicators 
called “basic” can be derived from vegetation index time series, 
as aforementioned most of time NDVI time series (Figure 1): 
the onset and the end of greenness and the maximum NDVI 
value. Let’s note that the onset/end of greenness is not 
necessarily linked to the beginning/end of the growing season 
especially if VI time series monitor two crops during the same 
growing season. 
 

 
Figure 1.  Phenological metrics derived from a NDVI curve  

(From http://www.terrametricsag.com/DataSets.html)  
 
According to the spatial resolution and under some site-specific 
conditions (as the possibility to have pure pixels), phenological 
metrics could be associated to species-specific events or not. 
 
For example, Xin et al. (2002) working in the Huang-Huai-Huai 
plain (China) with NOAA-AVHRR images have linked on the 
basis of field data the peak of greenness (maximum of NDVI 
value) to heading of winter wheat and tasseling of summer 
maize. In the same way, Thiruvengadachari and Sakthivadivel 
(1997) consider that the peak of greenness of a seasonal NDVI 
profile (for pure pixels in rice) corresponds to heading stage of 
rice. For Schwartz et al. (2002), the onset of greenness can be, 
to a certain extent, associated in deciduous American forest to 
bud-break.  
 
From these basic phenological key events, other phenological 
indicators (figure 1) can be derived as for example the length of 
the growing (LOG) and brown (LOB) days i.e. the time between 
the moment of maximum (ND)VI and respectively the onset 
and the end of greenness, the rates of green-up (ROG) and 

senescence (ROS) i.e. the rate of  VI increase during 
respectively the growing and the brown days or the length of the 
growing season (LOS) corresponding to the time between the 
onset and the end of greenness (LOS = LOG + LOB).  

4. TECHNIQUES TO DERIVE PHENOLOGICAL KEY 
EVENTS FROM REMOTE SENSING 

 
Techniques based on thresholds 
 
These techniques are certainly the most simplistic. The 
philosophy of these approaches is based on the definition of a 
VI threshold. The onset/end of greenness is defined as the 
moment when the VI values become higher/lower than the 
defined threshold 
 

 
Figure 2. Determination of the start and the end of greenness 

based on VI threshold. 
 

Different threshold values have been proposed in literature e.g. 
0.17 (Fischer, 1994), 0.09 (Markon et al., 1995) or 0.099 (Lloyd, 
1990). These values are however specific to a given vegetation 
type and/or to a given area. 
 
The seasonal midpoint NDVI (SMN) methodology is another 
method, more complex, based on threshold. This method was 
initially developed by White et al. (1997) and subsequently 
modified by White et al. (1999) and White et al. (2002).  
 
In the SMN methodology, the annual cloud-screened minimum 
and maximum NDVI are selected and the midpoint (average) 
between them is computed. This operation is repeated for X 
years of the NDVI time series. The average of the X midpoint 
NDVI values (SMN value) is finally computed and used as a 
threshold to identify the start and the end of the growing season.  
 
Parameters derived from this SMN method has been shown to 
be related to initial leaf expansion of the broad leaf forest 
overstory in New England (White et al., 1997) and deciduous 
forests in France (Bondeau et al., 2000).  
 
According to Schwartz et al. (2002), the SMN method has the 
advantage to be sensitive to site-specific NDVI amplitude but, 
with its dependence on a time-constant NDVI threshold, an 
additional sensitivity to time-dependent drift in sensor 
calibration. 
 
Techniques based on moving averages 
 
This category of techniques involves applying a moving average 
filter to the VI time series which essentially creates a new time 
series with a time lag. The moving average time-series (MATS) 
then can serve as a predicted VI based on the n previous 
observations. When the actual (smoothed) values are greater 
than the value predicted by the MATS, then a trend change 
(onset of greenness) is occurring (Figure 3). The end of 
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greenness can be found similarly except that the moving 
average runs in the opposite direction. 
The number n of previous observations to select in order to 
compute delayed moving averages is user-defined. For example, 
Brown et al. (2002) suggest 5 periods. 

 

 
Figure 3. Illustration of a delayed moving average (DMA) 

approach (from Reed and Sayler, 1997) 
 
Techniques based on first derivatives  
 
In many situations and especially for annual species and 
broadleaved trees, vegetation indices as NDVI presents a bell 
shape as the one presented in figure 1. 
 
With the first derivatives of the vegetation indices, it can be 
therefore possible to identify the onset and the end of greenness 
considering that these moments correspond to inflexions points. 
This category of techniques aims therefore to identify precisely 
the moment when the VI time series start increasing or stop 
decreasing. 
 
In other words, according to these techniques, the onset of 
greenness is signalled by the x (generally 1 or 2) first positive 
VI increments in a given possible time window in which the 
event is supposed to occur. Similarly, the end of greenness is 
signalled by the x last consecutive decrements also in a given 
time window.  
 
At the beginning of the growing season (which can be different 
from the onset of greenness), small increases and decreases of 
the signal simply due to residual noise are sometimes observed. 
In order to make the distinction between true onset of vegetation 
and these signal variations due to residual noise, a threshold of 
acceptable VI increase is used. As far as the end of the growing 
season is concerned, different studies (e.g. Xin et al., 2002 ; De 
Wit & Su, 2004) have demonstrated that this event is generally 
poorly defined. In order to overcome this problem, a threshold 
corresponding to the VI value at the onset of greenness is used. 
The end of the growing season is then defined as the time step 
(for example the decade or the week) below or above this 
threshold. 
 
Some practical applications of this category of techniques can 
be found for example in Xin et al. (2002) or Viña et al. (2004). 
 
Variants in these techniques exist. For example, Zhang et al. 
(2003) have represented their NDVI time series by a series of 
piecewise logistic functions of time (figure 4). Periods of 
sustained VI increase or decrease are identified through the use 

of a moving window by a change from positive to negative 
slope and vice-versa. 

 
Figure 4. An idealized trajectory of vegetation index values with 
multiple growth periods described using several logistic models 

(from Zhang et al., 2003) 
 
Zhang et al. (2003) have afterwards identified what they have 
called transitions dates on the basis of the rate of change in the 
curvature of the fitted logistic models. Transition dates 
corresponds to the onset/end of greenness but also here the 
onset/end of the maximum of NDVI value (linked in their study 
to the maximum of leaf area index).  
 
These transition dates correspond to the times at which the rate 
of change in the curvature presents local minima and maxima 
(black dots in figure 5). 
 

 
Figure 5. Schematic representation of how transition dates are 
estimated using time series of VI data (the solid line is an time 
series of vegetation index data and the dash line is the rate of 

change in curvature from the VI data). 
 
Techniques based on empirical equations 
 
Approaches based on empirical equations are certainly the most 
complex ones. An example of algorithm is for example 
provided in Moulin et al. (1997).  In this study, the authors have 
used an algorithm in order to detect three transition dates 
(beginning, maximum and end of the vegetation cycle) through 
the analysis of NDVI temporal series.  
 
With this algorithm, Moulin et al. (1997) does not determine an 
instantaneous phenological stage of the vegetation but rather the 
timing of the change from one state to the other that they call 
transition dates. 
 
Determination of the start and end dates is done by finding the 
minimum of two criteria b and e computed for every week 
(Figure 6). The determination of the maximum of the vegetation 
cycle corresponds, once again, to the date of maximum value of 
NDVI time series.  
 
The criterion bi used to determine the beginning of the cycle 
(b_date) is based on the following considerations: (i) NDVI 
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value is close to a value of bare soil; (ii) the time derivative 
before b_date (left derivative) should be zero or close to zero, 
NDVI being almost constant; and (iii) on the opposite, the time 
derivative after b_date should be positive as the signal increases 
when the vegetation appears. For smoothing purposes, left and 
right time derivatives were computed with xi+2, xi−2 and not xi+1, 
xi−1, such that  
 

b  = |x  − x | − λ[(x  − x ) − |x  − x |]   (Eq. 1) i i 0 i+2 i i−2 i
 
where bi is b_date criterion for week i (from week 5 to week 50), 
xi is radiometric signal value for the date i, and x0 and λ are 
empirical parameters. As the beginning of the time series cannot 
be filtered (boundary effect), the first two values are not 
significant, so the detection begins on week 5 instead of week 3.  
 

 
 

Figure 6. Detection algorithm of transition dates: NDVI time 
profile (solid), time profiles of criteria b and e allowing 

respectively the detection of start (dash-dash) and end (dash-dot) 
dates. Start and end dates (* circled in black) where obtained 

when criteria time profiles are minima (from Moulin et al., 1997) 
 

The date at which vegetation cycle ends is calculated similarly 
to the beginning date. The NDVI value must be close to the soil 
threshold, and the left derivative is negative as the signal 
decreases during the senescence phase and equals zero on right, 
such that 
 

e  = |x  − x | + γ[|x  − x | − (x  − x )]   (Eq. 2) i i 0 i+2 i i−2 i
 
where ei is e_date criterion for week i.  
 
Each equation includes a term accounting for the mean level of 
the signal (“mean term”) and a term accounting for the shape of 
the signal (“derivative term”). A soil threshold (x0) is used in the 
mean term of the equation, whereas a slope coefficient (λ or γ) 
is used in the derivative term. Thresholds and coefficients used 
in the algorithm were empirically set. 
 
With the mean term, variations of soil color and texture can 
induce variations of NDVI even if there is no vegetation. 
Among two dates leading to the same derivative term, the mean 
term helps the algorithm to select the one that has the lowest 
value (i.e., which is the closest to the soil or constant green 
background). For pixels covered with bare soil during a part of 
the year, the mean term in Eq. 1 allows to detect the beginning 
date of the cycle when the NDVI is close to bare soil threshold. 
For pixels with a constant background vegetation (and then a 
constant level of NDVI always above the soil threshold), the 

algorithm also detects the beginning of the cycle (when the 
NDVI level is close to, but larger than, the background level). In 
Moulin et al. (1997), x0 corresponds to NDVI values observed 
for the Matthews (1983) desert class. 
 
For the derivative term, the factors λ and γ weight the derivative 
term of Eqs. 1 and 2. Hence, if λ and γ are too large, the 
algorithm may fail for pixels with a large part of the year with 
no vegetation (i.e., arid or cold regions). Indeed, in that case, the 
detection may be confused by short-term signal variations due 
to residual noise (e.g., soil color, directional effects). On the 
other hand, if the values are small, the algorithm may fail for 
pixels, which remain partly green during the year. According to 
this, λ and γ were empirically set to 3 and 5 in Moulin et al. 
(1997), respectively, in order to obtain a compromise between 
the two terms (mean and derivative). Due to the shape of 
seasonal profiles, the factor γ is larger than λ in Moulin et al. 
(1997). In fact, for a large number of grid cells, the decrease of 
the radiometric signal is slower than the increase. So, the weight 
of the derivative term must be amplified to detect the ending 
date. 
 
An other example of algorithm can be found in Kaduk & 
Heiman, (1996). 

e 

b 
5. CONCLUSIONS AND DISCUSSIONS 

Different techniques aiming to derive agrophenology indicators 
from remote sensing information have been presented in this 
paper.  

It would be unwise however to pretend that one method is better 
than the other. None of them are really ideal. 

Indeed some of them, as the ones based simply on thresholds, 
are clearly specific to certain area and/or to certain species or 
vegetation types. In the same way, in techniques based 
empirical equations, proposed coefficients are always specific to 
the study conditions.  

These methods, based mainly on NDVI time series, present also 
some restrictions. For example in boreal regions, it is well 
known that snow melting tend to increase NDVI values. 
Considering that in these regions the onset of vegetation and 
snow melting occurs globally at the same period, there is 
therefore a risk of confusion between an increase of NDVI due 
to snow melting and an increase of NDVI due the onset of 
vegetation, which is the event that must be detected.  In other 
words, It is difficult in these conditions to distinguish, 
especially with the methods based on first derivatives or 
delayed moving average, the part of the NDVI increase due to 
snow melting from the NDVI increase due to the vegetation 
greening-up. Same kind of problems occurs of course also at the 
end of the growing season when snow reappears. Detection of 
the different key phenological indicators is however improved 
by using other VI as the Normalized Difference Water Index 
NDWI instead of NDVI (Delbart et al., 2005). 

These techniques are not also very efficient in situations as 
equatorial evergreen forests. Indeed the small magnitude of the 
vegetation cycles compared to the effects of the important cloud 
contamination over these regions make the interpretation of the 
NDVI time profile very difficult (Moulin et al., 1997).    

It seems also that the end of growing season is often poorly 
defined. 

 35



ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote sensing support to crop yield forecast and area estimates 
 

An other important point to consider is that these techniques and 
methodologies proposed in literature are not always validated 
with ground control observations. Questions also remain on 
some parameters used as for example the ideal size of the 
moving window used in techniques as the delayed moving 
average techniques. 

There is therefore a need for compromise and it seems obvious 
that these different techniques should be adapted according to 
the context/situation. 

Concerning the final uses of these phenological key indicators 
derived from remote sensing imagery, they are numerous.  

First of all, considering that these phenological indicators are 
derived from RS information, it allows a global coverage of the 
different phenological events and provide more information on 
the spatial variability of the phenological events. It will be 
therefore possible to map and monitor phenology on a large area 
as Europe for example with a view to detect possible trends in 
phenology that can be linked to climate changes. This kind of 
study is underway in the frame of COST action 725 
(www.cost725.org). In this kind of study, long time series are 
needed. Moreover, trends in phenology are generally not 
monitored for a particular species (which should be ubiquist in 
order to be monitored on a large area) but for global vegetation 
or a vegetation class according to the size of the area monitored. 
Therefore in this kind study, low resolution images are 
generally preferred. 

Phenological information derived from satellite could be also 
very useful to recalibrate / readjust crop growth models (as 
CGMS or B-CGMS) which tend to fail in non optimal 
conditions (low models sensitivity to LAI evolution…). Remote 
sensing information could be therefore used to 
recalibrate/readjust some of the parameters of these models. As 
these models are crop specific, extraction of phenological 
parameters should be done on pure pixels and therefore in this 
case (very-) high resolution images are needed.     

The choice of the images spatial resolution is therefore linked to 
the targeted objectives.  
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