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ABSTRACT:

Timber volume is an important parameter in forestry and with the position of each individual tree together with its size this parameter
can be estimated with higher accuracy than from estimations made at stand level. In this paper, three existing methods for individual
tree crown extraction are compared for different types of forests. The types of forests range from planted forests to dense forests. None
of the three methods can alone handle all types of forests with satisfactory result. The most obvious remark is that there is a separation
between the methods that can handle dense forests and those which can handle sparse forests. None of the three methods compared in
this paper can handle both categories in a satisfactory manner.

1. INTRODUCTION

Most of today’s silviculture methods are oriented towards opti-
mising the timber volume in the forest. Since many forest com-
panies also care about the nature value, parts of the forest might
need to be saved, for instance, to protect a certain habitat. In or-
der to get a good survey of the forest, remotely sensed images
are often used. These images are most often manually interpreted
in combination with field measurements in order to estimate the
forest parameters that are of importance in the decision of how to
optimally maintain the forest. Among the most common parame-
ters are the stem number, stem volume, and tree species (Walter,
1998). Interpretations of images are often labour and time con-
suming. Thus, automatic or semi-automatic methods for inter-
pretation can lower the work load and speed up the interpretation
time.

The interpretation is often done using images captured from a
far distance from the ground in order to capture as large areas
as possible. However, this lower the accuracy of the estimates
since the estimation must be done stand wise. Knowledge of the
position of each individual tree in the forest together with its size
not only increases the accuracy but also makes it possible to better
plan the cutting. With this knowledge in mind, research about
finding automatic methods for extracting individual tree crowns
in aerial or high resolution satellite images has been developed
for the last decades.

Different methods for individual tree crown delineation have been
presented and different techniques have been used. These tech-
niques include template matching (Pollock, 1996; Larsen and
Rudemo, 1998; Olofsson, 2002), region based methods (Pinz,
1989; Culvenor, 2002; Pouliot, King, Bell, and Pitt, 2002; Erik-
son, 2003; Erikson, 2004; Erikson, 2006), probabilistic meth-
ods (Descombes and Pechersky, 2006; Perrin, Descombes, Zeru-
bia, and Boureau, 2006), and contour based methods (Gougeon,
1995; Brandtberg and Walter, 1998).

It is most likely that none of today’s methods are alone able to
handle all types of forests. Comparative studies of different seg-
mentation methods with different types of forests are therefore
of importance in order to clarify how much a method is reli-
able with respect to a certain type of forest. This knowledge

can, for instance, be used to build up an expert system which
is supposed to be able to extract individual tree crowns in any
type of forests. Comparative studies among the existing meth-
ods are rare so far. A comparison between two region growing
methods (Erikson, 2003; Erikson, 2004) and a template match-
ing based method (Olofsson, 2002) was made in Erikson and
Olofsson, (2005). The comparison was made on plantations of
two pine stands and two spruce stands in Sweden. Besides that
the results varied among the methods, the conclusion was that
none of the methods could capture the correct number of trees in
forest (stem diameter> 10 cm) since many trees were not visible
in the images due to the fact that they were shaded.

In this paper, an evaluation of three existing delineation methods
is made using three images covering different types of forests.
The types of forests that are included in the study ranges from
equally spaced planted forest, to dense forest, which is naturally
regenerated (i.e. the trees have variable size).

2. EXTRACTION ALGORITHMS

2.1 Markov Random Fields

We define a Markov Random Field (MRF)X = (Xs) on the
latticeS. A random variablexs = (ls, as, bs, θs) ∈ Λ is asso-
ciated to each sites ∈ S, with Λ = {0, 1, 2} × [amin, amax] ×
[bmin, bmax]×[0, π]. The labels refer to background pixels (ls =
0), vegetation pixels (ls = 1) and tree centres (ls = 2). An el-
lipse is associated to each tree which represents its crown. The
ellipse is defined by its two axesas andbs together with its ori-
entationθs. We embed the problem into a Bayesian framework
which consists in maximising the posterior or equivalently the
productP (X)P (Y |X), whereP (X) is the prior andP (Y |X)
is the likelihood associated to the dataY .

To define the prior, we consider pixelss = (i, j) representing
tree centres, i.e. those withls = 2. For such a pixels, the ellipse
representing the tree template is defined as follows:

D1(s) =

{
t = (u, v) ∈ S, f(as,bs,θs)(t) =

U2

a2
s

+
V 2

b2
s
≤ 1

}
,

(1)



where:

U = (u− i) cos θs + (v − i) sin θs

U = (u− i) sin θs − (v − i) cos θs

We define the tree neighbourhood as follows:

D2(s) =
{
t = (u, v) ∈ S/D1(s), f(as+e,bs+e,θs)(t) ≤ 1

}
,
(2)

wheree is a parameter defining the neighbourhood size. We then
define some interactions which favour label1 inside the templates
and label0 in their neighbourhood. Besides, templates overlap-
ping is penalised. The resulting potential is written as follows:

∀t ∈ D1(s), Vs(t) = βa

1− f(as,bs,θs)(t)∑
r∈D1(s)

1− f(as,bs,θs)(r)
sgn1(lt)

+ βrδlt=2 (3)

∀t ∈ D2(s), Vs(t) = βa

f(as,bs,θs)(t)− 1∑
r∈D2(s)

f(as,bs,θs)(r)− 1
sgn2(lt)

wheresgn1(0) = 1, sgn1(1) = −1, sgn1(2) = 0 andsgn2(0) =
−1, sgn2(1) = 1, sgn2(2) = 0. To define the likelihood, we as-
sume the dataY is independently distributed conditionally onX
and Gaussian (the data distribution for tree centres and vegeta-
tion classes is identical). The Gaussian distribution parameters,
(µ0, Σ0) and(µ1,2, Σ1,2), are empirically estimated from the re-
sult of a K-means algorithm. We then have:

∀s ∈ S, p(ys|xs = l) =
1

(2πdet(Σl))3/2

× exp

{
−||(ys − µl)

t × (ys − µl)||Σl

2

}
. (4)

The posterior is then written as follows:

P (X|Y ) ∝ exp−

 ∑
s∈S:ls=2

∑
t∈D1(s)∪Ds(s)

Vs(t)

+
∑
s∈S

p(ys|ls)

]
. (5)

The optimisation is performed using a Metropolis dynamics em-
bedded in a simulated annealing scheme. Further details can be
found in Descombes and Pechersky, (2006)

2.2 Marked Point Processes

The Marked Point Processes (MPP) method consists in modelling
the stands as configurations of geometric objects (the trees are
represented by ellipses or ellipsoids). These objects are defined
on a state spaceS = P ×K by their location and their mark (i.e.
geometric attributes). The associated marked point processX is
a random variable whose realisations are random configurations
of objects. This approach yields an energy minimisation problem,
tackled with a Reversible Jump Markov Chain Monte Carlo algo-
rithm and simulated annealing (Perrin, Descombes, and Zerubia,
2005). The energy of the processU(x) embeds a regularisation
term (prior densityUp(x)), which introduces some interactions
between the objects, and a data termUd(x), which links the ob-
jects to the features to be extracted :

U(x) = Up(x) + Ud(x) (6)

The prior energyUp(x) gathers the knowledge we have about
the configuration we would like to extract. This includes prior
information about the location or the distribution of the marks
of the objects for example, but also interactions between a group
of objects. We cope with Gibbs processes with pairwise inter-
actions (cliques of order 2), by taking into account a repulsion
between overlapping objects (Strauss process), and an attraction
to special patterns such as alignments in plantations (see Perrin,
Descombes, Zerubia, and Boureau, (2006) for more details).

The data energyUd(x) is calculated at the object level :

Ud(x) = γd

∑
xi∈x

Ud(xi) (7)

whereγd > 0 andUd(xi) ∈ [−1, 1]. An object will be attractive
and therefore favoured if its data energy term is negative. On the
contrary, a positive data energy will yield a repulsion for the re-
lated object. In practise, we favour a difference of infrared value
distribution between the pixels inside the object and the pixels in
the shadow area (all around the tree in the 2D model with ellipses
in dense areas, or just in the direction of the sun in the 3D model
with ellipsoids in sparse vegetation), because high reflectance in
the near infrared and the shadow are the two main criteria to ex-
tract the trees (see Perrin, Descombes, and Zerubia, (2006) for
further details).

2.3 Region growing

The region growing method (RG) needs seed points for each re-
gion before growing. To find these points, the first band of the
image is thresholded with a chosen threshold (20% of max) and
a distance transform (Borgefors, 1986) is performed on the re-
sulting image. The resulting distance image is smoothed with
a Gaussian filter and local maxima in the smoothed image are
found. These maxima constitute the seeds.

Each seed is then grown to become a region. The order each pixel
connects to a region is decided by the pixel value if the pixel is a
border pixel of a region. If it is not a border pixel it has to wait
until that is the case before it is connected to a region. The higher
the value of the border pixel the faster it is connected to a region.

However, the pixel values are not taken from the original image,
f . Insteadf is transformed into a new image, calledIrw, which is
the image used in the growing step. The transformation is made
by simulating “random walks” for each seed point. Each pixel
value ofIrw represents the number of times the simulated par-
ticles have reached the pixel. The particles are only allowed to
move inside a certain neighbourhood,N(p), of the current posi-
tion, p. At time t = 0, the position of one particle is a seed point
and at timet = 1, the particle is at a positionq ∈ N(p) and thus
the pixel value forIrw(q) is increased by one. The size of the
neighbourhood,N(p), depends on the sum of the included grey
levels (fromf ) in the neighbourhood. Thus, if the sum is less
than a certain threshold the neighbourhood is grown by one pixel
in each direction until the sum exceeds the threshold.

The positionq ∈ N(p) is selected randomly and each pixel in
N(p) has the same probability to become the next position. How-
ever, the particle may not be allowed to move toq due to the
fact that another random number,z, uniformly chosen in[0, N ],
whereN is the number of different grey levels, is larger than the
grey level atq, i.e. if z < f(q) the move is taken otherwise ran-
domise again. The last constrain prevents the particle to move to
a dark background. A fixed number of iterations,Niter, for each
seed point is used to constructIrw. Further details can be found
in Erikson, (2006).



This method produces different resulting images compared to the
other two methods. Instead of having a position and a size of
each tree crown (an ellipse) as for the MRF and MPP methods,
RG techniques produce regions with contours corresponding to
the visible tree crowns in the image. In order to make the com-
parison between this method and the other two, the segments are
converted into points representing the crown centre by calculat-
ing the centre of mass of the segment. As the radius of the tree
crown the maximum distance from the centre of mass to all other
points in the segment is used.

3. RESULTS AND DISCUSSION

Three images were used in this study. The first image,planta-
tion, contained equally spaced planted forest, the second image,
dense, contained a dense forest with one species while the last
image,mixed, covered a dense naturally regenerated forest with
mainly four species and with tree crowns of different sizes. The
first two images captured French forests (with 50 cm resolution)
while mixedcaptured Swedish forests (with 10 cm resolution).
All images were captured from an aircraft with an analog camera
using a colour infrared film. Even though all the three meth-
ods used here can produce an estimation of the sizes of the tree
crowns only the locations of the trees were used in the compari-
son.

Results onplantationare shown in Fig. 1 for MRF, in Fig. 2 for
MPP, and in Fig. 3 for RG. The positions of the tree crowns are
shown by white crosses which overlaid the original image.

Figure 1. 934 positions (white crosses) found by MRF forplan-
tation. c© IFN/INRIA.

Figure 2. 865 positions (white crosses) found by MPP forplan-
tation. c© IFN/INRIA.

Figure 3. 1023 positions (white crosses) found by RG forplanta-
tion. c© IFN/INRIA.

For theplantation the three methods found more or less all the
tree crowns. What differed was that RG had more difficulties
with non-forested areas than the other two methods. The shape
template embedded into the MPP and MRF avoids false alarms in
vegetation areas, where the radiometry is close to the radiometry
of the trees, by the lack of shadows in the vegetation areas.

Fig. 4 shows the result fromdenseusing MRF, Fig. 5 shows the
result using MPP, while Fig. 6 shows the result using RG. Again,
the positions of the tree crowns are shown by white crosses which
overlaid the original image.

Figure 4. 376 positions (white crosses) found by MRF fordense.
c© IFN/INRIA.

In densethe results differed quite a lot. Both MRF and MPP had
tendencies to underestimate the number of tree crowns in the real
dense areas. This is due to both the lack of shadows and the shape
template, which does not match the tree geometry in this case.
On the other hand, RG seemed in some cases to overestimate the
number of crowns due to bad seeds.

The results frommixedare shown in Fig. 7 for MRF, in Fig. 8 for
MPP, and in Fig. 9 for RG. Recall that the resolution is different
for this image than for the other ones (10 cm instead of 50 cm).
The results shows that MRF found too many tree crowns, many
of them corresponding to subcrowns or branches of tree crowns.



Figure 5. 673 positions (white crosses) found by MPP fordense.
c© IFN/INRIA.

Figure 6. 800 positions (white crosses) found by RG fordense.
c© IFN/INRIA.

RG and MPP gave similar results as long as the crowns were not
connected to each other. In the most dense cases the result was
similar as fordense, that is, MPP estimated the crown location as
being in the outer part of the real crown. Further more, MPP had
a tendency to miss the smallest tree crowns which RG found.

4. CONCLUSIONS AND FUTURE WORK

None of the three delineation methods could alone handle all the
types of forests used for this comparison. With the results in
mind, the guidelines are that if a forest is so sparse that ground
patches are present in between the crowns one should use MPP as
the best extraction method among the three. For planted forests it
does not matter which method is chosen as long as only the loca-

Figure 7. 494 positions (white crosses) found by MRF formixed.
c© CBA/INRIA

Figure 8. 328 positions (white crosses) found by MPP formixed.
c© CBA/INRIA

tion of the crowns matters, i.e. neither the computer time is taken
into account here nor the non-forested areas around the forest that
caused the problem for RG in this case. For dense forests the best
choice is to use RG.

However, there can be problems if an image captures a forest
which has different stands according to the sparseness/denseness.
In the most difficult cases, such as when there are both sparse
stands with lots of space in between the tree crowns and dense
stands in the same image, it is necessary to do a pre-segmentation
of the forest. The pre-segmentation should then divide the forest
into different stands according to the sparseness/denseness before
it is possible to apply the best delineation method for each type
of stand. Thus, further comparison between the existing delin-
eation methods must be done as well as developing segmentation
methods for stand delineation together with classification of each
stand according to sparseness/denseness.



Figure 9. 424 positions (white crosses) found by RG formixed.
c© CBA/INRIA
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