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ABSTRACT: 
 
Professionals of various backgrounds have recognized the value that the use of geospatial imagery can add to their analysis. They 
take advantage of the widespread availability of data in vast image collections. Images in these collections are of various quality, 
which should be communicated to the users to prevent misuse of information. Visualization of data quality has itself proven to be a 
valid method to communicate the quality of images to users conducting geospatial analysis. In order to visualize quality, researchers 
have identified data attributes that hold quality information, and several quality visualization projects followed in its wake. This 
work concentrates on investigating the dependencies between data quality attributes in geospatial image data. We develop a binary 
dependency matrix that illustrates dependencies between quality attributes. Then a second, qualitative matrix is populated to 
describe the dependencies between the attributes in more detail. From this we derive the impact that the discovered dependencies 
have on quality visualizations. These visualizations would benefit from a formal description of dependencies between data quality 
attributes, enabling the automatization of the data quality visualization process. The conclusions drawn from the exploration of 
dependencies can enhance the communication of data quality when they are incorporated into the visualization design. 
 
 
KURZFASSUNG: 
 
Durch moderne Datenerfassung steht eine  große Zahl von Luft- und Satellitenbildern zur Verfügung, die sich zur räumlichen 
Datananalyse anbieten. Diese Bilder unterscheiden sich in ihrer Qualität. Für eine optimale Nutzung sollten GIS Nutzer auf  die 
jeweiligen Qualitätsmerkmale aufmerksam gemacht werden,  da die Verwendung von Daten mit ungeeigneter Qualität die Resultate 
der Analyse negativ beeinflussen kann. Die Fachwelt ist sich einig, dass sich die Methode der Visualisierung besonders zur 
Kommunikation der Datenqualität eignet. Zur erfolgreichen Visualisierung müssen Datenattribute identifiziert werden, die 
Qualitätsinformationen vermitteln. Unsere Arbeit untersucht diese Attribute der Datenqualität auf ihre Abhängigkeit. In einem ersten 
Schritt entwickeln wir eine binäre Abhängigkeitsmatrix die zeigt, zwischen welchen Attributen eine Abhängigkeit besteht. Der 
zweite Schritt  besteht aus einer Erweiterung der Abhängigkeitsmatrix, in der die Details der Abhängigkeiten qualitativ beschrieben 
werden. In der darauffolgenden Analyse diskutieren wir die Konsequenzen, die diese Abhängigkeiten zwischen Datenattributen auf 
die Qualitätsvisualisierung haben. Das Wissen, das durch die Analyse der Abhängigkeitsmatrix gewonnen wird, kann die 
Kommunikation der Datenqualität verbessern, was zu der Verwendung von geeigneteren Bildern und somit zu verbesserten 
Resultaten der Bildanalyse führt. 
 
 

1. INTRODUCTION 

Today’s advances in remote sensing give us more data about 
our world than ever before. The lower cost of acquisition and 
abundance of storage space makes it possible to store these 
satellite images in geospatial image collections that can be 
remotely accessed. This situation enables a variety of users to 
take advantage of images in geospatial image databases. 
Professionals with backgrounds as varied as forestry, city 
planning, and disaster management, just to name a few, rely on 
geospatial images to assist in finding the solution to their 
problems.  
 
The advantages that the abundance of geospatial images offer 
are offset by the problems that this same abundance causes. Due 
to the sheer volume of images users might become 
overwhelmed. Image databases may contain multiple data of the 
same area that differ in quality attributes such as resolution, 
currency, and others. It becomes difficult to choose appropriate 
data for various tasks. Especially professionals that are not 
experts on geospatial imagery, but use images only as a 

supporting tool for their analyses can become confused in 
choosing the images that are best suited for their task. Choosing 
images that do not have the correct attributes can lead to sub-
par results and can even cause errors in the outcome of the 
analysis.  
 
We need to educate users, make them aware of the problem, 
and assist them in selecting the right images. For this we have 
to communicate the image quality to the user in an easily 
understandable way.  Multiple ways to communicate data 
quality exist, such as tabular listings of metadata, narrative 
descriptions, and visualization. Of these methods, visualization 
has often been hailed as a valid and proven tool for quality 
communication especially useful for geospatial data (Beard and 
Mackaness, 1993; van der Wel et al., 1994). The advantages of 
using visualization are that the visual channel can transport a lot 
of information at the same time, and it is the primary sensory 
input channel for most people (Beard and Buttenfield, 1999). 
This is especially true of users working with satellite images, 
since they are skilled in absorbing information from images.  
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In order to visualize image data quality one has to follow these 
steps: First one has to decide on data attributes that convey 
quality information. Discussion on which data attributes show 
valid quality information specifically for geospatial data can be 
found in the literature, and we are discussing relevant pieces in 
the next section.  Secondly, one has to decide on the 
visualization method. A successful method helps users to see 
the quality of the available data at one glance and shows it 
clearly enough for everybody to understand. One example is 
previous work on developing visualization methods for 
geospatial image quality (Schlaisich et al., 2004). When 
working on these two points, researchers have to take care to 
not overlook the dependencies between selected quality 
attributes. Interactions between attributes can influence the 
outcome of the data quality visualizations which makes them 
inaccurate or incorrect and might confuse the user or send a 
wrong message.  
 
The core of this paper provides a description of attribute 
dependencies, specializing on quality attributes in geospatial 
imagery. This will help to visualize image data quality, 
especially enabling the automatization of the generation of 
visualizations. The value that our research on quality attribute 
dependencies contributes lies in the formal description of these 
dependencies, which will enable researchers to incorporate 
them into their quality visualizations and consequently produce 
more accurate visualization models. In addition, the 
formalization of the dependencies contribute to making an 
automatization process possible, that will make it easier for 
users to perceive the data’s usefulness and applicability. 
 
Our approach to the problem is as follows: First we identify the 
attributes that are most useful for conveying image data quality. 
We base our selection on attributes that were listed as valid 
geospatial data quality attributes in other projects in the 
literature and in the US Spatial Data Transfer Standard’s 
(SDTS) section on data quality (NIST, 1992). The quality 
attributes that we chose to convey the overall image data 
quality are: positional accuracy, scale, resolution, 
completeness, consistency, and currency. Then we formalize the 
dependencies between the attributes and draw conclusions on 
the impact these dependencies have on quality communication. 
A binary matrix introduces dependencies between quality 
attributes. In a qualitative matrix we explore these dependencies 
in greater depth, and derive the consequences for quality 
visualization. 
 
This work is not concerned with determining or deciding on the 
quality of geospatial images in image collections. We assume 
that this information is given, since it would exceed the scope 
of this work to produce quality information. A considerable 
body of literature is available on this topic. As  an  introduction 
the following collections of articles are recommended: (Foody 
and Atkinson, 2002; Zhang and Goodchild, 2002) 
 
The remainder of this paper is structured as follows: section two 
discusses literature that is relevant to our work. In section three 
we introduce data attributes that communicate data quality, and 
argue why we chose the ones that we use to show geospatial 
image quality. Section four introduces and discusses the 
dependency matrices that show the dependencies between 
quality attributes and derives consequences from these 
interactions. Conclusions and future work follow in section 
five. 
 
 

2. RELATED WORK 

Recent years have shown a substantial rise in literature on data 
quality in general and specifically in geospatial data quality. In 
the 1990ies researchers recognized that data quality issues 
influence the outcome of GIS and other spatial analysis and that 
some form of quality information should be conveyed to end 
users (Beard, 1997; Buttenfield and Beard, 1994; 
McGranaghan, 1993). Soon it became obvious that the nature of 
spatial data lends itself perfectly to the communication of 
quality parameters by visualization in the form of images and 
graphics. As a result, the call for visualization of data quality 
surfaced (Beard and Mackaness, 1993; van der Wel et al., 
1994). The US National Center for Geographic Information and 
Analysis devoted a lot of energy to explore this area and 
spearheaded a research initiative on  “Visualization of the 
Quality of Spatial Information” (Beard et al., 1991), and work 
on improving the communication of spatial data quality has 
been ongoing until now (Devillers and Beard, 2005).  
 
Data quality visualization is a multi-disciplinary research effort. 
Along with professionals in the fields of geography and GIS, 
researchers in computer science, statistics, and others are 
working on developing suitable ways to communicate data 
quality. Even though a lot of progress has been made, the 
results are not satisfactory yet and additional research in the 
area of visualizing geospatial data quality has to be done. This 
was shown in a recent interdisciplinary workshop titled 
‘Toward Improved Visualization of Uncertain Information’ 
(Board on Mathematical Sciences and Their Applications, 
2005), where the importance of research in the field of 
uncertainty visualization was emphasized. Furthermore, the 
participants of the workshop concentrated on quality 
communication of large data sets such as the image collections 
that we deal with in this work. In a valuable survey paper 
MacEachren et al. (2005) discuss various approaches to 
visualizing uncertainty in different research fields, tie together 
the work that was done, and identify research challenges that 
present themselves today, which have to be solved in order to 
convey geospatial data quality in a way that is easy to 
understand. 
 
To work with image quality, the term quality itself and related 
terminology has to be investigated. In the literature a substantial 
number of expressions are used to describe data quality, 
including quality, error, reliability, uncertainty, validity, 
accuracy, vagueness, precision, and fitness for use. Sometimes 
these terms are applied ambiguously. In the following we list 
how various terms are used in relevant publications. 
 
 The term quality is used as an umbrella-term that covers all 
aspects of the issue. It is used by practically everybody in the 
field (Beard, 1997; Veregin, 1999). The use of the term error is 
also widely used, and there is broad consent on what the word 
describes when used for image data, namely the difference 
between true value and the value stored in the database (Hunter 
and Goodchild, 1995). Reliability can be defined as the level of 
confidence a data provider has that the data are correct (Evans, 
1997). 
 
The term uncertainty is used in various ways, one being that the 
resolution of the data does not allow a user to make an assured 
decision about the content of the data. For example, pixels in 
remotely sensed images might contain uncertain information 
because of sub-pixel mixing or sensor sampling bias (Bastin et 
al., 2002). Worboys and Duckham (2004) use the term 
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uncertainty to describe the doubt that users have about the right 
use of data. In this sense it is a measure that describes the state 
of mind of the user.  
 
Other terms that are used to describe different outlooks on data 
quality are validity (Goodchild et al., 1994), and accuracy 
(Veregin, 1999). Vagueness describes the impossibility to 
determine the exact location or boundary of an object in space 
(Duckham et al., 2001). For example ‘the East of Maine’ is a 
vague area in that its boundaries are not exactly determinable. 
Precision denotes the exactness with which the measurement is 
made that led to the entry in the database (MacEachren, 1992). 
An overall phrase that is used frequently is fitness for use. It 
indicates whether the data has the specifications that the users 
need to solve their task (Paradis and Beard, 1994). 
 
 

3. QUALITY ATTRIBUTES 

This section discusses the data attributes that we identified as 
being pertinent to quality communication for geospatial image 
data. Since the goal of our research is to visualize geospatial 
image data quality, we select attributes that are specific for 
raster data. Most work in the area of quality attribute selection 
has been geared towards vector data.  
 
Metadata contain a wealth of information about the data at 
hand. From the attributes that are typically described by 
metadata information we selected the ones that convey data 
quality, and more specifically, those which pertain to geospatial 
image quality. Our goal has been to display the optimum 
number of essential data attributes, avoiding redundancies 
which could confuse the user. We based our selection on the US 
Spatial Data Transfer Standard’s (SDTS) section on data quality 
(NIST, 1992), which is quite consistent with the data quality 
parameters that are used by the GIS community (Veregin, 
1999).  
 
A lot of research has been done on the quality of vector data. 
This a laudable development, but the work on raster data 
quality has lagged behind. Our work wants to counterbalance 
this trend. In the selection of quality attributes we started with 
the ones that proved valid for vector data, but adjusted them for 
raster data. Consequently, we do not use lineage, one data 
attribute that is relied on heavily for vector data, since it 
describes how the data was modified over the course of its 
existence, but raster data are normally not heavily modified. On 
the other hand, we added the attribute of resolution to our 
selection, since it is a very important quality measure for raster 
data. 
  
Accordingly, to visualize the quality information of geospatial 
image data we selected the following data attributes: positional 
accuracy, logical consistency, completeness, scale, resolution, 
and currency, which we describe in the following:  
 
Positional Accuracy: In the generally accepted definition, 
accuracy of spatial data describes how much the data deviates 
from a certain model or from reality. A point in an image does 
not necessarily lie exactly in the place where it is shown, but 
depending on its positional accuracy it can lie 
anywhere within an area around its displayed position.  
 
Resolution: For geospatial image data resolution is an 
important quality measure. Digital images are stored in the form 
of raster data of a certain resolution, e.g. a single pixel can 

cover a ground area of 1x1km, 30x30m, or 0.6x0.6m. 
Resolution is hardware-dependent. It relates to sensor 
specifications in the case of digital images, and the granularity 
and settings of the scanner in the case of digitized photographs. 
The difference in information detail and quality that images of 
various resolutions offer is clear. Different resolutions are 
useful for different tasks, but users have to be aware of the 
impact that resolution has on the usability of the data.  
 
Scale: The scale of an image describes the correspondence 
between image space and the captured ground area.  This 
geometric relationship is dependent on the selected flight 
mission parameters such as flying height and camera focal 
length. It is primarily applicable to aerial photographs on film. 
In digital images with the ability to zoom in and out, it is a 
measure of the detail of features that is recognizable in the data. 
 
Completeness:  Completeness communicates whether data is 
present. Data might be missing completely for some areas, for 
example in cases where there have been no flight missions to 
produce aerial photographs. Also, parts of a picture can be 
missing due to cloud cover.  
 
Currency: The currency of data is defined as the time between 
the production of images and the date of a query. Information 
on currency can be a decision factor for users. Several 
applications ask for the most recent available data, while other 
users may be looking for older data or specific time series for 
change detection.  
 
Logical Consistency:  Logical consistency checks if data are 
contradicting each other. The visualization of the results of 
these checks can be a powerful warning sign for users. For 
example, a satellite image with 5m resolution and a currency of 
1972 should raise an inconsistency flag.  
 
 

4. DEPENDENCIES BETWEEN ATTRIBUTES  

This section introduces the dependency matrix that we 
developed. It lists the dependencies that exist between the 
attributes and discusses the impact that these dependencies have 
on the visualization of data quality. As a first step we populate a 
binary dependency matrix. Subsequently, we expand the matrix 
by qualitatively describing the dependencies between attributes. 
This qualitative dependency matrix is discussed and in the end 
of the section we describe how the dependency matrix can help 
in the generation of quality visualizations.  
 
4.1 Binary Dependency Matrix 

 The matrix in Table 1 describes the dependencies between the 
selected quality attributes logical consistency, positional 
accuracy, completeness, scale, resolution, and currency, in a 
binary way, i.e., it only denotes if a dependency between two 
attributes exists or not. The X in the main diagonal denote 
attribute dependencies on themselves, which are naturally 
given, and which are of no interest to us. The matrix is 
symmetric and the table lists only the upper half to avoid 
duplication. 
 
 
We determined dependencies between: 
 
• positional accuracy – scale 
• positional accuracy – resolution  
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• scale – resolution  
• resolution – currency 

 

 
Table 1. Binary Dependency Matrix 

 
The other pairings of quality attributes do not entail 
dependencies. Logical consistency per se does not depend on 
any of the other attributes. In some instances inconsistencies 
can arise when values of quality attributes are in disaccord with 
each other, such as in the aforementioned example of an older 
satellite image with impossibly low resolution. But these cases 
do not warrant defining a general dependency between logical 
consistency and one of the other attributes.  
 
The fact that there are no images available for a certain area or 
that parts of images are obstructed does not have any influence 
on the positional accuracy of features in the image, therefore 
positional accuracy and completeness have no dependencies. 
Furthermore, completeness does not depend on the scale, 
resolution, or currency of an image. Unlike resolution, the scale 
of an image is not dependent on the time it was taken, since 
advances in technology over time did not make a difference in 
the scale in which an image can be taken. 
 
A dependency is entered into the matrix only if it exists directly 
between the two attributes. In some instances the dependencies 
between two attributes can make other attributes dependent on 

each other, but the second pair of attributes is still listed as 
independent. An example for this would be that there is no 
direct dependency between positional accuracy and currency, 
but there is dependency between positional accuracy and 
resolution, and resolution and currency.  
 
Developing the binary dependency matrix is a valuable first 
step to understanding dependencies between quality attributes. 
It shows where dependencies arise and warns of combinations 
of attributes that might cause problems. 
 
 
4.2 Qualitative Dependency Matrix  

Table 2 shows the dependency matrix with a short version of 
the qualitative dependency descriptions. As in the binary 
matrix, only the upper half of the symmetric matrix is 
populated. In the following we elaborate on the dependencies 
between the quality attributes. 
 
Positional Accuracy – Scale: It is a long-known truth of 
cartography that the smaller the scale of a map is, the lower is 
the positional accuracy of features that can be observed on a 
map. The same holds true for spatial data in digital form, 
including geospatial images. For digital data one has to note 
that the scale, and therefore the positional accuracy of the 
displayed image, can be manipulated on-screen by zooming, but 
there is still a specific scale and positional accuracy inherent in 
the stored data. 
 
Positional Accuracy – Resolution: The dependency between 
these two attributes is very similar to the one between positional 
accuracy and scale. An image of high resolution can naturally 
show high positional accuracy. The lower the resolution of an 
image is, the lower is the positional accuracy of features that 
can be detected.  

 

 
Table 2: Dependency matrix with qualitative descriptions 

 

logical 
consistency

positional 
accuracy

completeness scale resolution currency

logical 
consistency X no no no no no

positional 
accuracy X no yes yes no

completeness X no no no

scale X yes no

resolution X yes

currency X

logical consistency positional accuracy completeness scale resolution currency

logical consistency X no no no no no

positional accuracy X no lower accuracy at 
smaller scale

lower accuracy at 
lower resolution no

completeness X no no no

scale X

resolution implies 
certain scale - 

scanning of photo 
introduces 
resolution

no

resolution X

higher resolution 
possible in newer 

images

currency X
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Scale – Resolution: The attributes of scale and resolution both 
describe similar characteristics of an image. As was stated 
above, resolution is hardware dependent, and scale is dependent 
on the characteristics of the flight mission. In digital images 
these two attributes are intertwined in the following way: the 
notion of scale was originally used as an attribute for aerial 
photographs. With the advance of digital imagery, aerial 
photographs are added to digital image collections. In the 
resulting scanning process the scanner introduces resolution to 
the image. On the other hand, raster images of a certain 
resolution should be viewed at their corresponding display scale 
to avoid giving the user the illusion of more detail in the image 
than is actually present. When using multiple images of various 
resolutions in GIS analysis, one has to take care that the implied 
scale of the images is compatible with the operations that are 
applied, to avoid a situation of ‘comparing apples with pears’. 
 
Resolution – Currency: The dependency between resolution 
and currency is driven by technology. The advances in sensor 
development over time make higher resolutions possible. 
Consequently, the highest possible resolution of older satellite 
images is lower than the highest possible resolution of more 
recent images. 
 
 
4.3 Consequences for Quality Visualization 

As was established before, professionals using geospatial 
analysis would benefit from knowledge about the quality of the 
data that is available to them. Some previous projects that used 
visualization methods to communicate data quality are: work on 
quality information for risk management decisions (Davis and 
Keller, 1997), visualizing uncertainty in multi-spectral remotely 
sensed imagery (Bastin et al., 2002), visualization of the 
reliability of water quality data (Howard and MacEachren, 
1996), and visualization of image quality in distributed spatial 
databases (Schlaisich et al., 2004). These projects use a limited 
number of quality attributes between which dependencies might 
exist.  
 
Data quality visualizations that show multiple attributes 
together might introduce an unwanted dynamic into the display. 
The previously described dependencies between quality 
attributes must be taken into account when developing a 
visualization method. The knowledge that we gained until now 
will lead to a formalization of the attribute dependencies, which 
in turn will enable an automatization of the data quality 
visualization process.  
 
 

5. CONCLUSIONS AND FUTURE WORK 

The wide availability and large number of geospatial image 
data offers users new ways to analyze spatial data. Data at hand 
is captured in various degrees of quality, which should be 
communicated to the end user. An effective way to convey 
geospatial data quality is by the means of visualization. This 
paper emphasizes the importance of quality visualization and 
develops a dependency matrix for quality attributes that can 
help the development of these visualizations. 
 
The used quality attributes are positional accuracy, logical 
consistency, completeness, scale, resolution, and currency. The 
selection is geared towards raster data in order to cater to 
geospatial images. In a first step, a binary dependency matrix is 
developed. The matrix recognizes dependencies between 

positional accuracy and scale, positional accuracy and 
resolution, scale and resolution, and resolution and currency.  
There are no dependencies identified between the other attribute 
pairings. 
 
In a further step, the dependency matrix is progressed from the 
binary state to further describe the nature of the dependencies in 
a quanlitative dependency matrix. The results from this 
expansion are as follows: Lower resolution or smaller scale 
result in lower positional accuracy. More current images have 
the potential for higher resolution. The resolution of an image 
implies a certain scale. 
 
The aforementioned dependencies between quality attributes 
can influence the quality visualizations in a negative way. 
Therefore, they need to be taken into consideration when 
designing a method for geospatial data quality visualization.    
 
Even though this research focuses on image data the resulting 
dependency matrices can be used in the broader context of 
spatial data in general. Furthermore, our selection of quality 
attributes is not absolute, and the matrices could be further 
populated by using additional attributes as they emerge. 
 
In future work we will concentrate on expanding the 
dependency matrix to include formalizations of the 
dependencies. This will make it easier to incorporate our 
findings into quality visualizations, enabling the generation of 
automated visualizations, which is the final step in the course of 
this work on data quality. 
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