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ABSTRACT:

Automatic scene interpretation of aerial images is a major purpose of photogrammetry. Therefore, we want to improve building
detection by exploring the "life-time" of stable and relevant image features in scale space. We use watersheds for feature extraction
to gain a topologically consistent map. We will show that characteristic features for building detection can be found in all considered
scales, so that no optimal scale can be selected for building recognition. Nevertheless, many of these features "live" in a wide scale
interval, so that a combination of a small number of scales can be used for automatic building detection.

1 INTRODUCTION

Building detection from aerial images is a very active research
area in photogrammetry, cf. the review in (Mayer, 1999). Early
attempts go back into the eighties (Nevatia and Price, 1982, Her-
man and Kanade, 1987, Huertas and Nevatia, 1988). In most
cases roof edges or roof parts have been used to identify com-
plex buildings, as facades usually are more difficult to extract.
Though some approaches concentrate on simple building types,
such as gabled or hipped roof type buildings, they are not generic
enough to deal with the great variety of building structures.

Interestingly, all approaches use image features extracted at a sin-
gle scale, which however, is either given by the resolution of the
images, or in some reasonable way selected by a human interpre-
tor. Of course, in general at resolutions of 5 to 30 cm pixel size
at ground level building easily can be detected by humans. They
obviously exploit the rich context on top of a building and around
it. When building an automatic interpretation system, modeling
context is one of the most difficult tasks. We want to reduce the
demands for modeling context by automatically selecting the op-
timal scale for image feature extraction.

Technically, detection is inferring existence from observable im-
age features using some classification procedure; localization is
only a side effect, precise boundaries are not of primary concern
at this stage, cf. the approach of (Brunn and Weidner, 1998) us-
ing an image pyramid. Detection may be based on Bayes’ rule
P (B|f(R)) ∝ P (f(R)|B)P (B), where the posterior probabil-
ity P (B|f(R)) for detecting a building or building part given
some features f(R) of a region R requires the likelihood
P (f(R)|B) and some a priori information about the occurrence
of a building. Training a classifier essentially consists of deter-
mining parameters p of an adequate likelihood function l(p) =
P (f(R)|B, p). This approach assumes the type of features f(R)
to be known.

We want to explore the observability of image features, which
may be relevant for building detection. Especially, we want to
investigate the suitability of regions extracted over scale space.
Small changes of scale often do not affect most of the regions
however, may lead to extinction of certain regions by merging
with neighbored regions, cf. fig. 1.

Such investigations are important for evaluation the mapping po-
tential in the context of human image interpretation, cf. (Jacob-
sen, 1997) or for evaluating the observability of objects in images
in the context of automatic interpretation, e. g. for road mapping

Figure 1: Effect of a scale change onto segmentation. Left: image
section of roof part with dormer, chimney, windows and antenna.
Middle: segmentation with scale σ = 1. Right: segmentation
with scale σ = 4. The regions belonging to minor roof parts,
e. g. small parts of the dormer’s roof or smaller shadows, do not
live over a larger range of scales. Most of them merge with other
regions with increasing scale.

procedures (Mayer et al., 1998, Baumgartner et al., 1999, Pakzad
and Heller, 2004).

In our context we need to consider the complexity of roof struc-
tures when deciding on the type of image features. Whereas
reconstruction implicitly aims at a geometric description, and
therefore uses features based on edges, cf. e. g. (Nevatia and
Price, 1982), or edge-aggregates such as corners, cf. e. g. (Lang
and Förstner, 1996), detection appears to better rely on features
based on regions, especially their form.

Scale space for region extraction has already been investigated,
cf. the review (Harvey et al., 1997). In contrast to the blob detec-
tion approach of (Lindeberg, 1993), we are interested in a com-
plete partitioning of color images, not restricting to local maxima
of intensity or a certain color. Therefore, we propose to use the
watersheds of the gradient image, cf. also (Olsen and Nielsen,
1997). Additionally, we adopt the idea of finding maximally sta-
ble regions over scale, which are regions whose area does not
change over scale, similar to the approach of MSER (Matas et al.,
2002) which searches for region which are stable over intensity
level sets. At the moment we do not exploit the hierarchical struc-
ture of the regions, as e. g. (Bangham et al., 1999) and (Kuiper et
al., 2003).

The goal of this paper is to investigate the suitability of such re-
gions for building detection. We will derive a statistics about the
scale occurrence of certain roof parts, such as triangular or rectan-
gular roof planes, which is a first attempt to derive the likelihood
function for building part detection. Using only a single scale
will turn out not to be sufficient for capturing the region infor-
mation contained in an image, as we will show in our empirical
investigations.



The paper is organized as follows: Section 2 describes the seg-
mentation procedure. Sect. 3 presents our approach to measure
the stability of regions. Sect. 4 investigates the suitability of the
regions over scale space. Sect. 5 discusses the results and gives
an outlook on future research.

2 SEGMENTATION

Our segmentation is based on the watershed boundaries derived
from a sequence of images in the Gaussian scale space of the
gradient magnitude.

The Gaussian scale space is built with logarithmicly ranged scales
2i/nσ0, i = −N1, ..., 0, ..., N2 starting at σ−N1 = 2−N1/nσ0

and leading to σN2 = 2N2/nσ0. In our experiments we use σ0 =
1, n = 10, and N2 = 30, thus scales between 1 and 8 with steps
of a ten’th octave. The N1 = 17 scales between 0 and 1 continue
the arrangement of the larger scales into the scale between 0.3 and
1. Smaller scales are useless to compute, because the smoothing
has nearly no effect.

For each scale σ = σi the three band image f = [fc], c = 1, 2, 3
is convolved with a Gaussian filter G(x, y, σ):

f(x, y, σ) = f(x, y) ∗Gσ(x, y). (1)

As input function for the watershed algorithm we use the total
gradient of the color images f(x, y, σ) as homogeneity measure:
For each channel fc(x, y, σ) we compute the squared gradients
‖∇fc(x, y, σ)‖2. In order to compensate for the different noise
characteristics in the three color channels the homogeneity then
is the sum of the squared gradients over all channels c weighted
with the inverse of the variance σnc of the noise

g(x, y, σ) =

vuut 3X
c=1

‖∇fc(x, y, σ)‖2

σ2
nc

(2)

in each channel. (Brügelmann and Förstner, 1992) have shown
that the median of the squared gradients, except for a factor, is a
good estimation for the noise variance. Therefore, we apply this
approach and get the channel specific noise variance by

σ2
nc

= medx,y(||∇f(x, y, σ)||2). (3)

In order to eliminate noise effects we use as input function for the
watershed algorithm

h(x, y, σ) = max(g(x, y, σ), mg) (4)

where

mg = medx,y(g(x, y, σ)). (5)

The watershed algorithm takes the local minima of the input func-
tion as seed points and performs a region growing. This gives us
a complete partitioning of the image. The result is a label image

l(x, y, σ) = WS [h(x, y, σ)] (6)

that has the same labels at the catchment region of the local min-
ima. It can be thought as flooding the basins, if the input function
is seen as height values of a virtual landscape. All border pixels
of watershed regions are labeled 0.

3 STABILITY OF REGIONS OVER SCALE SPACE

Regions which show only little variation over a certain scale range
can be termed stable. There are various metric and topological
criterions for measuring stability of regions, but nevertheless the
area is the most important one: The region size changes dramat-
ically when regions merge or split. Other region’s properties do
not change that much over scale.

For obtaining the stability of the Lσ regions R(l, σ), l = 1, ..., Lσ

at scale σ , we compute the area |R(l, σ)| of each region from the
histogram of l(x, y, σ) in (6). We build a set of images where
each region is labeled with its area

a(x, y, σ) = |R(l(x, y, σ), σ)| (7)

We then analyse the area function

a(σ|x, y) (8)

for manually selected points (x, y) over the scales. Taking points
in regions with a selected content allows to investigate the stabil-
ity of these regions, thus their usefulness for detection.

In order to evaluate the stability of the area from the area func-
tion a(σ|x, y), we have to consider the uncertainty of the area of
regions. Areas can be categorized as stable in case their area lies
in the error band over a large enough range of scales. We require
stability over at least 10 scale space layers, i. e. over at least one
octave.

The uncertainty of the area A of a polygon [pj ] with J chord
lengths dj between the two neigboring points pj−1 and pj can
be shown to be

σ2
A =

1

4

JX
j

d2
j σ2

p (9)

if all points have the same standard deviation σp and taking the
indices j cyclically, cf. (Förstner, 1999). In case of dense points
and a smooth boundary the standard deviation of the area

σA =
U√
J

σp (10)

reveals to be only dependent on the length U of the boundary,
the number of border points J and the standard deviation σp of
the points. We use a 3 σA-error bands assuming a positional er-
ror of σp = 0.5 [pixel] to estimate the accuracy of the region’s
boundary.

4 EMPIRICAL INVESTIGATION

The empirical investigation aims at exploring the usefulness of re-
gions over scale space for building detection. A region is useful,
if we can expect that features, which are distinctive for separating
building parts from non-building parts, can be derived automat-
ically. Therefore we select roof regions in a supervise mode by
picking a point in the region, identify the scale range for stable re-
gions from the area function a(σ|x, y) and evaluate these regions
visually with respect to their usefulness. Though this is subjec-
tive, it gives a clear indication whether there is a chance at all, that
stable and relevant regions may be found. We also want to find
out whether there are characteristic scales for different classes of
roof regions.



4.1 Basic categories of roof planes

Since roofs are the most distinctive parts of a building seen in an
aerial image, there seems to be no limit for the complexity of ur-
ban roof structures. We model our roof prototypes by examining
their roof planes.

Although there exist various catalogs of basic roof styles due to
roof construction, we define roof prototypes in a different way.
This is due to the high complexity of roof structures, which can
be only partially categorized by classical roof styles. Therefore
our detection scheme does not aim at such a categorization of
complete roofs, but only on categories of roof planes.

Fig. 2 shows some basic roof styles of suburban buildings. Each
of these roofs can be modeled by triangles and tetragons. Some
planes of half-hipped roofs are hexagons. Of course, more com-
plex buildings, e. g. L-shaped buildings, show other shapes, e. g.
parallelograms or skew trapezoids. However, taking roof regions
as key-features for triggering building detection does not require
distinguishing between planes of major roof and those of dormers
(see fig. 3).

pent roof gabled roof

hipped roof half-hipped roof

Figure 2: Common types of Middle European roofs

Figure 3: Example for building with a dormer

We therefore represent each roof by the roof planes together with
their geometric traits and by their adjacency graph, possibly in-
cluding attributes of the type of neighborhood.

Besides dormers the roof planes can get disturbed by other ob-
jects fixed on the roof. Examples of these objects are chimneys,
windows and solar cells (see fig. 1, left). Furthermore, roofs can
be occluded by trees or other buildings and their shadows. These
disturbances may affect the region detection. Whereas some of
these, e. g. antennas and their shadows, will not be visible at
lower resolution, thus at other scales, others such as occlusions
will change the form of the extractable regions, however, be visi-
ble over a larger range of scales.

At this stage of our investigation we are only interested in the
observability of stable regions, which show roof-type structures.

4.2 Test Data

Our experiments are based on aerial image data, showing subur-
ban buildings in the cities of Bonn (Germany), Graz (Austria),
and Toyonaka (Japan).

Bonn: We consider 13 aerial images taken over Bonn, having
a ground resolution of 10 cm, cf. figs. 4 and 5. The first ex-
ample image shows a scene of a shopping area with bigger flat

and gabled roofs. In the other example image, there is a sub-
urban scene with gabled roofs often having additional roof parts
as dormers or windows. Due to the time of image acquisition
in winter, the vegetation around the buildings does not show a
strong contrast. Additionally, as the position of the sun is quite
low, the shadows often reach to the neighboring building.

Figure 4: Image section from Bonn, shopping area, 10 cm ground
resolution

Figure 5: Image section from Bonn, residential area, 10 cm
ground resolution

Graz: Our 14 test images of Graz have a ground resolution of
8 cm (cf. fig. 6). Most of the roofs are covered with red tiles,
the buildings are surrounded by fresh vegetation. There are only
small shadows in the picture, the roof planes are only disturbed
by other objects, such as chimneys or solar cells. The images
show many gabled and cross gabled roofs.

Figure 6: Image section Graz, residential area, 8 cm ground res-
olution, kindly provided by Vexcel Imaging GmbH in Graz

Toyonaka: Our 9 test images of Toyonaka have a ground resolu-
tion of 7 cm (cf. fig. 7). The concentration of buildings differs
strongly from the other test images. Roofs with colorful tiles
are detectable by eye very well. Due to the low position of the
sun, shadows make it difficult to distinguish between dark cov-
ered roofs. There are no other objects on the roofs, but most of
the houses are extended by additional building parts. Our test im-
age does not show any vegetation and is weak in contrast. Most
of buildings have hipped or pyramid roofs.



Figure 7: Image section Toyonaka, dense residential area, 7 cm
ground resolution, kindly provided by Vexcel Imaging GmbH in
Graz

4.3 Experimental Results

We selected roof planes manually to observe the stability of their
area in scale space. Tab. 1 shows the number of stable regions we
found in all images. We distinguished the regions by their shape.
The row of more complex shaped regions refers to those regions,
which have melted together with other regions of the roof still
forming characteristic roof shapes. Less than 20% of the selected
regions were not stable at all, these regions are not taken into
account any further.

Shape Bonn Graz Toyonaka Σ
triangle 20 71 151 242
square 55 95 16 166

rectangle 205 373 152 730
trapezoid 39 60 115 214

more complex 56 60 176 292
Σ 375 659 610 1644

Table 1: Statistics of selected regions which turned out to be sta-
ble.

Fig. 9, an extract of fig. 5, demonstrates that at various scales
relevant roof areas can be detected. We obtain a thin recangu-
lar shaped roof plane, which merges with another one at σ ≈ 3
[pixel]. As long as the balconies form bays at the bottom of the
region, it is not considered to be stable. In contrast to the bal-
cony bays, the hole of the region belonging to the window is very
stable.

Fig. 10, an extract of fig. 4, demonstrates that even smaller roof
parts as dormer roofs can be stable, too. From scale σ = 4 [pixel]
on, the region merges with a vegetation area in front of the build-
ing.

Fig. 11, an extract of fig. 5, shows the smoothing deforms roof
part with increasing scale. The region is stable over various scale
space layers, but the shape of the original region changes from
a triangle to a circle within the last 10 layers, resp. starting at
σ ≈ 4 [pixel].

Fig. 12, an extract of fig. 7, shows a problem of our manual re-
gion selection: The Japanese roofs are often strong textured in op-
posite to the most European roofs. In this case, one almost always
selects a border point of region at at least one scale space layer
between σ = 0 and 1 [pixel]. So, the area function a(σ|x, y)
is not determined from a region but from all border pixels in the
image (which have the same label: 0). From σ = 1 [pixel] on,
the roof planes are well observable.

The results of our investigation are shown in fig. 8. It is orga-
nized in a max-min-diagram that shows the maximal versus the
minimal level of scale for the rectangular roof parts, measuring

the scales in dm at ground level. The other roof parts show sim-
ilar results, the graphics would present nearly the same range of
positions, the density of the drawn dots would only be less.

Figure 8: The results of the investigation on rectangular regions
are drawn in a max-min-interval diagram. The results of the dif-
ferent shaped regions are similar to those as tab. 2 shows.

Obviously, we have very stable regions, where the minimum scale
is small and the maximum scale is large, namely those in the
upper left of the diagram. We also find regions which only live
in large scales as those few in the upper right of the diagram. We
finally find regions which only exist at small scales, i. e. those in
the lower left.

There is no certain scale where uniquely formed regions can be
found. Also, choosing a certain scale for finding regions, say 3
dm, would only allow to detect those regions which are in the
upper left rectangular having its lower right corner at (3,3), thus
missing quite some relevant regions, in the lower left and the up-
per right of the diagram.

The relevance of the extracted regions has only been evaluated in
general: over appr. 80% of all regions are stable over at least an
octave in the investigated scale range.

Tab. 2 also contains the range of the minimal and maximal scales
in [dm]. The different forms appear in all scale ranges. As the
minimum and maximum ranges of the scales almost totally over-
lap, selecting a single scale in this overlap would lead to a loss in
region detection, e. g. when choosing σ = 3 dm and searching
for rectangular roof regions.

Type σmin [dm] σmin σmax [dm] σmax

min – max [dm] min – max [dm]
triangle 0.21 – 3.56 0.58 0.64 – 8.00 3.13
square 0.21 – 4.00 0.61 0.56 – 8.00 3.37
rectangle 0.21 – 4.15 0.74 0.56 – 8.00 3.95
trapezoid 0.21 – 4.15 0.59 0.56 – 8.00 3.48
others 0.21 – 4.25 0.86 0.72 – 8.00 3.64

Table 2: Range of minimal and maximal scales over all stable
regions, additionally their means, distinguishing the shapes of re-
gions.

5 CONCLUSION

This paper is a first investigation into the detectability of building
roofs via regions which are stable in scale space. The stability of
a region can be measured by the scale range where the region’s
area does not change significantly.

We used the watershed algorithm on the averaged and weighted
gradient magnitude image for image partitioning. The weights



are the inverse of the noise variance in the different channels.
These regions turned out to be quite stable over scale.

We have shown, that regions that represent roofs and roof parts in
aerial images can only be extracted in certain intervals of scale.
However, there is no optimal scale for the extraction of roof parts
in aerial images. It is necessary to automatically choose the scale
for each region.

The usefulness of stable regions was explored. Over appr. 80%
of the roof regions, which were selected manually, lead to im-
age regions which were stable and promised to have attributes for
reliable detection.

We are currently investigating the automatic extraction of regions
which are stable over scale space. We are setting up an annotated
image database, which makes it possible to train our building de-
tectors.

The approach should be easily transferred to other types of im-
ages, as such region detectors exploiting scale space can be ex-
pected to play at least a prominent role as point type detectors.
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original σ = 3.03

σ = 4.92 σ = 8.00

Figure 9: Example 1 of the development of a region:
log(a(σ|x, y)). Starting with a thin rectangular roof plane, the
region merges at higher levels with other roof planes and roof ob-
jects. Graph: Relation between smoothing scale and region sizes
together with the error bands. Stable Regions allude to concrete
scales.
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