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ABSTRACT: 
 
This paper describes a model for the consistent estimation of building parameters that is a part of a method for automatic building 
reconstruction from airborne laser scanner (ALS) data. The adjustment model considers the building topology by GESTALT 
observations, i.e. observations of points being situated in planes. Geometric regularities are considered by “soft constraints” linking 
neighbouring vertices or planes. Robust estimation can be used to eliminate false hypotheses about such geometric regularities. 
Sensor data provide the observations to determine the parameters of the building planes. The adjustment model can handle a variety 
of sensor data and is shown to be also applicable for semi-automatic building reconstruction from image and/or ALS data. A test 
project is presented in order to evaluate the accuracy that can be achieved using our technique for building reconstruction from ALS 
data, along with the improvement caused by adjustment and regularisation. The planimetric accuracy of the building walls is in the 
range of or better than the ALS point distance, whereas the height accuracy is in the range of a few centimetres. Regularisation was 
found to improve the planimetric accuracy by 5- 45%.  
 
 

1. INTRODUCTION 

The shapes of buildings and other man-made objects, despite 
being very complex in realistic scenes, are often characterised 
by certain geometrical regularities. At a level of detail typical 
for topographic mapping (mapping scales 1:500 to 1:1000) most 
buildings can be modelled by polyhedrons. This implies that all 
vertices belonging to a face must be situated on a plane in 
object space. Apart from that, other geometrical regularities 
include perpendicular walls, horizontal roof edges, or symmetry 
between roof faces.  
 
It is the goal of automatic building reconstruction to generate 
3D building models from sensor data in previously detected 
regions of interest. In this context, model regularisation by 
considering geometric constraints is essential for achieving high 
quality building models. Besides resulting in a more regular 
visual appearance, considering geometric regularities helps to 
improve the geometric accuracy of the models, especially if the 
sensor geometry is weak. There are two general strategies for 
building reconstruction, differing in the way buildings are 
represented in the reconstruction process and thus also in the 
way geometric regularities are considered. The first strategy is 
based on a bottom-up process. The sensor data are segmented in 
order to obtain 3D features such as edges and planes. These 
features are combined to obtain a polyhedral model, e.g. 
(Rottensteiner et al., 2005). Alternatively, buildings can be 
reconstructed by parametric primitives in a top-down process, 
e.g. (Brenner, 2000). In the first case, assumptions on geometric 
regularities may or may not be used in order to select the 3D 
features and group them; they can and should be considered as 
additional information in a final parameter estimation process 
yielding consistent and regularised building models. In the 

second case, assumptions about regularities, e.g. rectangular 
footprints, are an implicit part of the description of the 
primitives. Using parametric primitives reduces the level of 
detail that can be achieved as the number of primitives is 
usually small and most have a rectangular footprint. This can be 
avoided by using “adaptive primitives” (Rottensteiner & 
Schulze, 2003), i.e. primitives having an adaptive 
parameterisation. However, the bottom-up strategy seems to be 
more flexible with respect to handling geometric regularities. 
They are not an implicit part of the building model, but rather 
are added as additional information to the estimation of the 
building parameters and thus only have to be considered where 
enough evidence is found in the data. From the point of view of 
parameter estimation, this can be handled in two ways. First, 
geometric regularities can be considered in the adjustment by 
constraint equations. This strategy will result in models 
precisely fulfilling these “hard” constraints. Brenner (2005) has 
given an overview about the ways such constraints can be 
handled in object modelling. The alternative is to add “soft 
constraints”, i.e. direct observations for entities describing a 
geometric regularity, to the adjustment of the sensor-based 
observations. In this case, the constraints will not be fulfilled 
exactly, but there will be residuals to the observations. The 
degree to which the constraints are fulfilled depends on the 
stochastic model. Using the second strategy, robust estimation 
techniques can be applied to the soft constraints to determine 
whether a hypothesis about a geometric regularity fits to the 
sensor data or not.  
 
Vosselman (1999) proposed an algorithm for building 
reconstruction from airborne laser scanner (ALS) data that 
determined building outlines under the assumption of all 
neighbouring walls intersecting at right angles. He addressed 



 

the necessity of adding constraints to the estimation of the 
model parameters without doing so himself. Vögtle and Steinle 
(2000) reconstruct buildings from ALS and spectral data. The 
coordinates of their building vertices are estimated by local 
adjustment only, and no geometric regularities are considered. 
Alharty and Bethel (2004) describe two methods for roof 
outline detection. The first method relies on the existence of a 
dominant roof direction and the neighbouring walls being 
orthogonal. The second does not require such assumptions, but 
no overall adjustment is carried out, and no geometric 
regularities are considered. Ameri (2000) describes a general 
adjustment model for building reconstruction from image data. 
Geometric constraints are considered. For instance, for two 
orthogonal building edges a direct observation of the inner 
product of the directional vectors is introduced. The weighting 
of such an algebraic observation seems to be somewhat critical. 
A method for fitting building models to multiple aerial images 
using “hard” constraints was presented in (Vallet & Taillandier, 
2005). McGlone (1996) describes the mathematical basis for 
handling geometrical constraints both as (“hard”) condition 
equations and as “soft” constraints, using this basis for 
improving the results of multiple-image point matching under 
the assumption of certain object regularities.  
 
In (Rottensteiner et al., 2005) we have presented a method for 
automatic building reconstruction from ALS data that is based 
on the detection and combination of roof planes. The final step 
of building reconstruction is an overall adjustment of all 
observations to determine the model parameters consistently. 
The adjustment model was originally presented in 
(Rottensteiner, 2003), but implemented only recently. It is the 
first goal of this paper to present this adjustment model in its 
improved and revised form and to show how it can be used as a 
tool for consistent estimation of building parameters for 
different types of available sensor data. Special emphasis is laid 
on the way geometric regularities can be considered. The 
second goal of this paper is to evaluate the results of building 
reconstruction from ALS data by comparing automatically 
derived building models to reference data. This comparison 
should also show how effective the overall adjustment is in 
improving the geometric quality of building models.  
 
 
2. WORKFLOW FOR BUILDING RECONSTRUCTION 

Our algorithm for building reconstruction requires ALS points 
and a coarse approximation of the building outlines. The ALS 
data are sampled into a Digital Surface Model (DSM) in the 
form of a regular grid of width Δ by linear prediction. The work 
flow consists of three steps (Rottensteiner et al., 2005):  
 

1. Detection of roof planes based on a segmentation of the 
DSM. These planes are expanded by region growing.  

2. Grouping of roof planes and roof plane delineation: Co-
planar roof planes are merged, and hypotheses for 
intersection lines and/or step edges are created based on an 
analysis of the neighbourhood relations of the roof planes.  

3. Consistent estimation of the building parameters to 
improve these parameters using all available sensor data 
and considering geometric constraints.  

 

In step 2, the boundary polygons of the roof planes are 
determined as a combination of roof plane intersections and 
step edges, the step edges being located in the DSM by an edge 
extraction technique taking into account specific information 
about buildings. Decisions in the determination of the shapes of 
the roof polygons are based on hypotheses tests and robust 

estimation. We use the concept of uncertain projective 
geometry (Heuel, 2004) for consistent modelling of the 
stochastic properties of all geometric entities. In this paper, we 
will focus on the final step of the reconstruction process.  
 
 

3. THE ADJUSTMENT MODEL 

The adjustment problem we want to solve can be described as 
follows. We assume to have given a polyhedral building model 
in boundary representation (B-rep). The model consists of 
planar faces, loops, edges, and vertices. Each edge is the 
intersection of two neighbouring faces, and each vertex is the 
intersection of at least three planes of the model. All vertices 
belonging to the boundary of a face have to lie in the face’s 
plane. The faces of the model are labelled as being a roof face, 
a wall, or the floor. Walls are modelled to be strictly vertical. 
The topology of the model and some meaningful initial values 
for its parameters are assumed to be known. The initial model 
can be the outcome of the bottom-up strategy for building 
reconstruction (cf. section 2). In this case it is an approximate 
version of the final model, and its initial parameters are already 
derived in some way from the sensor data. The coarse model 
has to be analysed for geometric regularities, which can be done 
automatically or based on the interaction of a human operator, 
and the model parameters have to be estimated. For that 
purpose, we use five categories of observations: 
 
1. Observations representing the topology of the model  
2. Observations corresponding to geometric regularities  
3. Sensor and sensor-derived observations  
4. Observations linking the sensor observations to the model 
5. Direct observations for unknowns to avoid singularities. 
 
They are used to determine four categories of unknowns:  
 
1. The co-ordinates of the model vertices 
2. The parameters of the model planes 
3. Transformation parameters, e.g. the unknown angle for each 

pair of perpendicular walls (cf. section 3.2) 
4. Additional unknowns, e.g. unknown object co-ordinates for 

each ALS point (cf. section 3.3.2). 
 
Our method for handling the model topology and geometric 
regularities is independent not only from the types of sensor 
data that are used, but also from the way in which the original 
model was created. The adjustment model is based on the 
program ORIENT for hybrid photogrammetric adjustment, 
especially on its concept of handling object space constraints by 
“GESTALT” observations (Kager, 2000).  
 
3.1 Observations Representing Model Topology  

It is the idea of our method to find a mapping between the B-rep 
of the polyhedral model and a system of GESTALT 
observations representing the model topology in adjustment. 
GESTALT observations are observations of a point P being 
situated on a polynomial surface (Kager, 2000). The polynomial 
is parameterised in an observation co-ordinate system (u, v, w) 
related to the object co-ordinate system by a shift P0 and three 
rotations Θ = (ϖ, φ, κ)T. The actual observation is P‘s distance 
from the surface which has to be 0. Using (uR, vR, wR)T = 
 RT (Θ) · (P − P0), with RT (Θ) being a transposed rotational 
matrix parameterised by Θ, and restricting ourselves to vertical 
planes for walls and tilted planes for roofs, there are three 
possible formulations of GESTALT observation equations: 
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In equation 1, ri are the corrections of the fictitious observations 
of co-ordinate i and mi ∈ {−1, 1} are mirror coefficients. An 
application is free to decide which of the parameters (P, P0, Θ, 
ajk, bik, cij) are to be determined in adjustment and how to 
parameterise a surface. In addition, different GESTALTs can 
refer to identical transformation or surface parameters, which 
will be used to handle geometric regularities (cf. section 3.2). 
Here, we declare the rotations to be 0 and constant. P0 is a point 
situated inside the building and constant. For each face of the 
B-rep of the building model, we define a set of GESTALT 
observations, taking one of the first two equations 1 for walls 
and the third one for roofs. The unknowns to be determined are 
the object co-ordinates of each vertex P and the plane 
parameters (ajk, bik, cij). As each vertex is neighboured by at 
least three faces, the co-ordinates of the vertices are determined 
from these GESTALT observations and thus need not be 
observed directly in the sensor data. Further, these observations 
link the vertex co-ordinates to the surface parameters and thus 
represent the building topology in the adjustment. They do 
already enforce geometric constraints by modelling walls as 
being strictly vertical and by declaring all vertices of a face to 
lie in the same plane. The stochastic model of these GESTALT 
observations is described by the a priori standard deviation σT 
of the fictitious distance between a point and the plane.  
 
3.2 Observations Representing Geometric Regularities 

Geometric regularities are considered by additional GESTALT 
equations, taking advantage of specific definitions of the 
observation co-ordinate system and specific parameterisations 
of the planes. Geometric regularities can occur between two 
planes or between two vertices of the model. In the current 
implementation, we restrict ourselves to regularities involving 
planes or vertices being neighbours of one edge. In all cases, 
the observation co-ordinate system is centred in one vertex P1 
of that edge and the w-axis is vertical, thus ϖ = φ = 0 = const. 
Four types of geometric regularities are considered (Figure 1). 
The first type, a horizontal roof edge, involves the edge’s end 
points: Its two vertices P1 and P2 must have identical heights. 
The two points are declared to be in a horizontal plane εh that is 
identical to the (u,v) – plane of the observation co-ordinate 
system. One observation is inserted for P2: rw = wR = Z2-Z1.  
 
The other cases involve the two neighbouring planes of an edge. 
One of the axes of the observation coordinate system is defined 
to be the intersection of these two planes ε1 and ε2. There is one 
additional unknown rotational angle κ describing the direction 
of the u-axis. For each vertex Pi of the planes, GESTALT 
observations are added for ε1 or ε2. For the edge’s second vertex 
P2 two observations (one per plane) are added. The GESTALT 
observations for ε1 and ε2 are parameterised in a specific way: 
 
• The edge is the intersection of two horizontal and symmetric 

roof planes ε1 and ε2. There is only one tilt parameter c1
01. 

Symmetry is enforced by selecting mv = −1 for ε2:  
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• The edge is the intersection of two perpendicular walls:  
ε1: ru = uR, ε2: rv = vR. There is no additional surface 
parameter to be determined.  

• Two walls are identical and the edge does not really exist in 
the object: ε1: rv = vR, ε2: rv = vR. There is no additional 
surface parameter. P1 and/or P2 might become undetermined, 
so that direct observations for one of the co-ordinates of these 
vertices have to be generated.  

 

 
 

Figure 1. (a) Horizontal edge; (b) horizontal and symmetric 
edge; (c) perpendicular walls; (d) Identical walls.  

 
The stochastic model of these GESTALT observations is 
described by their a priori standard deviations σC. The “soft 
constraints” thus modelled will only be fulfilled up to a degree 
depending on σC. The GESTALT observations corresponding to 
the geometrical constraints can be subject to robust estimation 
for gross error detection. If the sensor observations contradict 
the constraints, the respective GESTALT observations should 
receive large residuals, which can be used to modulate the 
weights in an iterative robust estimation procedure (Kager, 
2000). Thus, if the GESTALT observations describing a 
geometric constraint are eliminated in adjustment, this means 
that the hypothesis about a constraint was wrong.  
 
Whether or not a hypothesis about a constraint is introduced can 
be decided in several ways. For instance, the coarse model can 
be analysed whether the angles between neighbouring walls 
differ from 90° by less than a threshold εα, and a constraint 
about perpendicular walls can be inserted if this is the case. 
More sophisticated methods can take into account the stochastic 
properties of the coarse model. In a semi-automatic working 
environment, geometric constraints can be inserted (and 
enforced) by the user. The principle can be expanded to the 
definition of parametric primitives by generating more complex 
systems of constraints between the planes of a building 
(Rottensteiner & Schulze, 2003).  
 
3.3 Sensor Observations and Observations Linking the 
Sensor Data to the Model 

The observations described so far link the plane parameters to 
the vertices or to the parameters of other planes. In order to 
determine the surface parameters, observations derived from the 
sensor data are necessary. ORIENT can handle a large variety 



 

of sensor models. Any of these sensors or any combination of 
them can be used in adjustment. Here we will restrict ourselves 
to image and ALS data.  
 
3.3.1 Image co-ordinates: Points measured in images are 
related to object space by the perspective equations. We assume 
the orientation parameters of the images to be known and 
constant. An observed image point has to be assigned to an 
entity of the object model to contribute to the determination of 
the model parameters. Two cases can be distinguished. First, an 
image point can be assigned to a building vertex, which yields 
two perspective observation equations for that vertex. Second, 
the image point can be assigned to a model edge. As such a 
point is not a part of the model, its object co-ordinates have to 
be determined as additional unknowns; however, each point 
assigned to an object edge yields four additional observations: 
its two image co-ordinates and two GESTALT observations 
(one for each object plane intersecting at the object edge). The 
stochastic model of an image co-ordinate is described by its 
standard deviation σI. Depending on the way the image points 
were determined, σI can describe the accuracy of manual 
measurement, or it can be the result of a feature extraction 
process.    
 
3.3.2 ALS data: ALS points give support to the 
determination of the roof plane parameters. As an ALS point is 
not a part of the model, its object co-ordinates have to be 
determined as unknowns. Each ALS point gives four 
observations, namely its three co-ordinates and one GESTALT 
observation for the roof plane the point is assigned to. As the 
walls only receive few laser hits, their parameters have to be 
determined from other observations. Walls correspond to 
sections of step edges in the DSM (Rottensteiner et al., 2005). 
Each step edge section is derived from “edge points” in the 
DSM (e.g. points of maximum height gradient). In order to 
determine the walls, these edge points have to be used as 
observations in a way similar to the original ALS points: Each 
edge point gives three observations (its X and Y co-ordinates 
and 1 GESTALT), but two additional unknowns (again X and 
Y). The ALS observations can be modelled in two different 
ways: They can be introduced as “control point” observations, 
i.e. as direct observations for the object co-ordinates, or they 
can be introduced as “model points”. In the latter case, the ALS 
points are linked to the object co-ordinate system by a rigid 
motion, and the six parameters of that rigid motion are 
estimated in the adjustment. Using this variant, local shifts and 
rotations of the ALS co-ordinate system with respect to the 
object co-ordinate system that might be the result of systematic 
GPS and INS errors of the ALS system can be compensated. 
This only makes sense if additional data, e.g. aerial images, are 
available. Otherwise, the ALS and the object co-ordinate 
systems are assumed to be identical. The stochastic model of an 
ALS point is described by two standard deviations: σXY for its 
planimetric co-ordinates and σZ for its height. The edge point 
co-ordinates are introduced with a standard deviation σE.  
 
3.4 

4.1 

4.2 

Overall Adjustment 

All observations are used in an overall adjustment process. The 
weights of the observations are determined from their a priori 
standard deviations. Correlations between the observations (e.g. 
between the x and y image co-ordinates of an image point) are 
not considered. Robust estimation is carried out by iteratively 
re-weighting the observations depending on their normalised 
residuals in the previous adjustment (Kager, 2000). The re-

weighting scheme is only applied to the sensor observations and 
to the observations modelling geometric constraints, in order to 
eliminate gross observation errors and wrong hypotheses about 
geometric regularities. The surface parameters and the vertex 
co-ordinates determined in the adjustment are used to derive the 
final building model. 
 
 

4. EVALUATION 

The Test Data 

For our test, we selected 8 buildings of different size and 
complexity out of a larger test area in Fairfield (NSW). They 
were chosen to highlight the method’s potential to handle 
buildings of both regular and irregular shapes. Both ALS and 
image data were available for that test site. The ALS data were 
captured using an Optech ALTM 3025 laser scanner with a 
nominal average point distance of 1.25 m. As our test buildings 
were at the edge of a swath, there was a relatively irregular 
point density, with point distances of about 0.5 m in flight 
direction and 1.5 - 2 m across flight direction.  The aerial 
images were a stereo pair taken at a scale of 1:11000 (focal 
length f = 30 cm). They were scanned at a resolution 15 μm, 
which corresponds to a ground sampling distance of 0.17 m.  
 

Generating Reference Data 

The aerial images were used to determine the reference data for 
the test. In a semi-automatic working environment, the roof 
polygons were digitised in the images and hypotheses about 
geometric regularities were introduced by the human operator. 
The adjustment model described in section 3 was used to 
determine the parameters of the reference buildings, taking into 
account the GESTALT observations, the image co-ordinates of 
the building vertices, and ALS points to improve the height 
accuracy of the reference models. The ALS points were 
necessary because of the weak configuration of the images. 
Figure 2 shows an upright projection of a reference building 
resembling a hip roof and the ALS points. Three variants are 
shown: the results of photogrammetric plotting with and 
without geometric constraints and the results achieved by 
combining photogrammetric plotting with geometric constraints 
and ALS data. For the variant without geometric constraints the 
RMS values of the height differences of the horizontal eaves is 
±0.25 m. In the constrained version, the eaves are horizontal, 
but the figure reveals that the heights of the eaves derived from 
the ALS data are about 50 cm lower. The ALS points were 
introduced as model co-ordinates; the shift was about 15 cm in 
X and Y and about 5 cm in Z. The precision of the building 
vertices was about ±17 cm in X and Y, and about ±5 cm in Z.  

0.1 m

 

Figure 2. Upright projection of a hip roof (heights enlarged by 
a factor 2) generated from images without 
constraints (dotted lines); images with constraints 
(broken lines); images with constraints and ALS 
points (full lines).  Circles: ALS points.  



 

4.3 Results and Discussion 

From the ALS data, a DSM with a grid width of Δ = 0.5 m was 
generated. From the DSM, roof planes were extracted, and the 
roof boundary polygons were determined as a combination of 
intersection lines and step edges in the way described in 
(Rottensteiner et al., 2005). These initial roof boundary 
polygons are shown super-imposed to the DSM in Figure 3.  
 

 
 

Figure 3. Initial roof boundary polygons for the eight 
buildings superimposed to the DSM. The buildings 
are shown in different scales, according to the 
extents shown in the figure.  

 
In general the models look quite good except for building 8, 
which is partly occluded by trees. There is some noise in the 
outlines of buildings 1 and 2. Buildings 4, 6, 7, and 8 and the 
main part of building 3 should have a rectangular footprint, 
which is not entirely preserved in the initial models; geometric 
constraint should help to overcome this situation. The initial 
models, the original ALS points, and the step edge points 
provide the input for the overall adjustment. Soft constraints 
were introduced just on the basis of a comparison of 
angles/height differences to thresholds. Table 1 gives an 
overview about the stochastic model for the individual groups 
of observations in adjustment. Robust estimation was applied to 
the soft constraints and to the ALS and step edge points. In the 
current implementation this had to be done in a supervised way. 
It turned out that with some larger buildings the stochastic 
model had to be changed to make false hypotheses on 
geometric constraints detectable. Using σC = ±0.05 m and σE = 
±0.25 m turned out to be a good choice. However, the final 
adjustment without the eliminated observations was carried out 
using the values given in Table 1. They were confirmed by a 
variance component analysis. 

Topology
σT [m] 

Constraints
σC [m] 

ALS XY 
σXY [m] 

ALS Z
σZ [m] 

Step Edge
σE [m] 

±0.01 ±0.015 ±0.25 ±0.075 ±0.5 
 

Table 1. A priori standard deviations of the observations.  
 

 
 

Figure 4. Final roof boundary polygons (red) and reference 
data (blue). A part of building 2 is missing in the 
reference data since it only occurs in the ALS data. 

 
Figure 4 gives the final results of building reconstruction and a 
comparison to the reference data. Compared to figure 3, the 
building models appear to be more regular. For buildings 1-6 
the number of extracted roof planes was correct. The 
intersection lines are very accurate, and step edges are in 
general determined quite well, too. Some small roof structures 
are generalised, e.g. the outline of the smallest roof plane of 
building 1 or of roof plane a of building 2. The step edge 
between that plane and its neighbouring plane b was also not 
very precisely determined. The problem was that roof plane a 
was horizontal, its western vertex being higher and its eastern 
vertex lower than the corresponding vertices of roof plane b; the 
maximum height difference was only 0.3 m, so that the step 
edge was poorly defined. Building 7 was reconstructed as being 
flat. The intersection of the two roof planes is only 0.15 m 
lower than the eaves, which is the reason why the two planes 
were merged. Building 8 was also reconstructed as a flat roof. It 
was the smallest building in the sample with only a few ALS 
points on the roof planes, and both ends occluded by trees. The 
outlines at the occluded ends are not very well detected either. 
Apart from the visual inspection of the building models, a 
numerical evaluation of these results was carried out. RMS 
values of the co-ordinate differences of corresponding vertices 
in the reconstruction results and the reference data were 
computed for each roof plane: 
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In Equation 3, N is the number of corresponding points in the 
respective roof plane. If no matching vertex was found, the 
closest point on the corresponding roof boundary polygon was 
used instead. For buildings 7 and 8 only the outlines were 
evaluated. Figure 5 shows a graph of RMSXY and RMSZ 
depending on the roof area. RMSXY is smaller than 3.1 m for all 
roof planes. For most roofs it is in the range between ±0.5 m 
and ±1.5 m, which is better than the point density across the 
flight direction. The largest values occur for roof planes smaller 
than 100 m2, with the exception of roof planes a and b of 
building 2, for reasons discussed above. RMSZ is much smaller 
than RMSXY because heights are better defined in ALS data than 
step edges. RMSZ becomes smaller with increasing area roof 
planes because more ALS points give support to large planes. 
Intersections are more accurately determined than step edges. 
RMS values computed for intersection lines are only ±0.35 m in 
planimetry and ±0.07 m in height.  
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Figure 5. Left: RMSXY [m], right: RMSZ [m], both depending 

on the roof area [m2].  
 

B P RMSXY [m] RMSZ [m] ΔXY [m] ΔZ [m] 
1 5 0.76 0.12 0.24 0.01 
2 5 2.27 0.20 0.00 -0.02 
3 3 0.82 0.10 0.07 0.16 
4 2 0.60 0.02 0.13 0.03 
5 2 1.31 0.08 -0.08 -0.02 
6 4 0.48 0.09 0.36 0.17 
7 2 1.43 0.14 0.44 0.03 
8 O 2.74 - -0.02 - 

 

Table 2. B: Building; P: Number of planes; RMSXY, RMSZ: 
Combined RMS values in planimetry / height;  
ΔXY, ΔZ: improvement of RMSXY / RMSZ.  

 
Table 2 gives combined RMS values for all the test buildings. 
The large value for RMSXY for building 2 of ±2.27 m is caused 
by the erroneous step edge; the combined value without that 
edge would be ±1.43 m. For most buildings, RMSXY is better 
than the average point distance across flight direction. Apart 
from problems with low step edges, errors occurred at the 
outlines of some of the larger building due to occlusions: as the 
test area was at the edge of the swath, the positions of the step 
edges were very uncertain there. The height accuracy is good, 
with the largest value of ±0.20 m occurring at building 2, again 
at the problematic step edge. Table 2 also gives the impact of 
the overall adjustment to the RMS values. With building 5, the 
RMS values get worse by a small value after adjustment, but in 
most cases the RMS values are improved by the overall 
adjustment. The improvement can be up to 45% (building 6).  
 
 

5. CONCLUSION 

In this paper we have described a model for the consistent 
estimation of building parameters that is part of a method for 
the automatic reconstruction of buildings from ALS data. The 

adjustment model can consider geometric regularities by “soft 
constraints”, and it can handle different sensor data. It was used 
not only in the reconstruction process, but also for the 
generation of reference data for a test project. In the test project, 
the roof boundary polygons extracted from the ALS data were 
compared to the reference data. The accuracy was determined 
to be in the range of or better than the average point distance in 
planimetry, and about ±0.1 - ±0.2 m in height. The 
improvement of the model co-ordinates caused by the 
geometric constraints can be up to 45 %.  
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