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ABSTRACT:

This paper describes an algorithm in order to derive DTMs (Digital Terrain Models) from correlation DSMs (Digital Surface Models)
and above-ground (buildings and vegetation) masks in dense urban areas. Among all the methods found in literature, the Elastic Grid
method shows a good capability to reconstruct the topographic surface. This method consists in interpolating height values under
above-ground masks by minimizing an energy. Nevertheless, this method is ill-adapted to outliers in input data (above-ground points
out of above-ground masks). The main contribution of our study is the use of a method based on robust statistics in order to reject
outliers from calculation so that the final DTM fits the “true” topographic surface for the best. For that purpose, the initial Elastic Grid
has been noticeably changed. The results of the new method for 2 test sites with a pixel ground size of 20 cm (the first one is relatively
flat and the second one is hilly) show the quality of the final DTM and the robustness of our method. Tests have been carried out with
lower resolution DSMs and without any mask and show the feasability of extending the method to a more general context.

1 INTRODUCTION

1.1 Background

In the past few years, DTMs (Digital Terrain Models) have in-
creasingly been used as an important tool for engineering works
or environmental applications (water overflowing control for ex-
ample).
In urban areas, especially in a change detection process, a DTM
can be very useful. As a matter of fact, using only the radiomet-
ric and texture information from RGB images or orthophotos are
generally not sufficient to perform a good detection of buildings.
The buildings height, calculated by making the difference be-
tween a DSM and the corresponding DTM, is often necessary. A
lot of techniques exist to calculate DSMs (lidar scanning, stereo-
matching algorithms) but few techniques are available to calcu-
late a reliable DTM. It is sometimes possible to use a reference
DTM (generally built manually or semi-manually) but, especially
when working on high resolution data, such a reference is often
not as accurate as the corresponding DSM: that leads to classical
detection problems, typically a high underdetection rate (“False
Negative” rate) and a high overdetection rate (“False Positive”
rate). In order to make the underdetection rate tend towards 0 and
to have the overdetection rate as small as possible, a good DTM
i.e a good approximation of the topographic surface is necessary.
In this paper, a method for deriving a reliable DTM from a DSM,
a building mask (derived from a database) and a vegetation mask
is presented and evaluated.
In a DSM generation context, 2 families of techniques can be dis-
tinguished: lidar scanning and stereo-matching techniques. Lidar
scanning methods have an undeniable advantage in rural areas,
where they generally provide both DTMs and DSMs. In dense
urban areas, the DTM can not be so easily obtained. Image-based
DSM generation has then some advantages over lidar techniques.
On the one hand, as images are most of time necessary for pho-
togrammetric projects, generating a DSM with stereo-matching
techniques does not implie additionnal costs. On the other hand,
images provide a higher degree of internal geometric quality. The
main challenge when deriving a DTM from a stereo-matching

DSM is to filter and to discard outliers (blunders), i.e points that
have too high an elevation compared with their surroundings (See
Subsection 2.4 for a list of several kinds of outliers that can be
found in a DSM). Almost all the methods found in literature try
to deal with this problem, as shown in the following subsection.

1.2 Related Works

Several methods to derive a DTM from a DSM have been consid-
ered.
The first method for estimating DTMs is based on morphologi-
cal operators. A description can be found in (Weidner, 1996).
This method is not robust when DSMs contain outliers. To solve
this problem, (Eckstein and Munkelt, 1995) introduces the “Dual
Rank Filter”. Unfortunately, the structuring element remains dif-
ficult to define without any a priori knowledge about the study
area (urban / industrial . . . ). Moreover, the method can fail be-
cause of big aggregations of vegetation or big buildings (typically
a cathedral) in city centres. Eventually, such a tool generally re-
locates ridges and thalwegs.
An other strategy consists in using parametric methods in order
to reconstruct the topographic surface. The final DTM is sup-
posed to belong to a family of parameterized surfaces and these
parameters have to be derived from observations . Unfortunately,
as shown in (Jordan and Cord, 2004), all the kinds of surface can
not be reconstructed and the reconstruction is all the more diffi-
cult and inaccurate as the study area is big.
A large set of methods based on triangulation have been found in
literature (See (Baillard, 2003) for an example). The main chal-
lenge here is to choose ground points and then to triangulate them
in order to interpolate height in the whole scene. As the final sur-
face depends on this choice, finding good criteria to select true
ground points (and not outliers!) is determinant. An other weak
point is that the final surface is not regular (i.e not differentiable)
and so not “natural”.
A good method that gives regular surfaces is the Elastic Grid.
Former works when producing the French Elevation Database
have shown its capability to represent the topographic surface
naturally and correctly (Masson d’Autume, 1978).



1.3 Presentation

The Elastic Grid method has always been used in order to derive a
DTM from a set of extracted points (for example, contour lines).
There are no ouliers in input data in that case. Tests have shown
the limits of the algorithm in presence of outliers: when applied
too roughly, the algorithm creates artificial blobs (See figure 3
in Section 4). The main goal of this study is also to show the
feasability of adapting the method to such a context.
In Section 2, input data are first described. In Section 3, our
method is detailed. In Section 4, the results of our method are
presented and qualitative and quantitative results are given. Even-
tually, forthcoming research axes are given in concluding remarks

2 INPUT DATA

The algorithm presented in Section 3 uses a DSM, a building
mask and a vegetation mask to estimate the final DTM.

2.1 DSM

In our study, 2 stereo-matching algorithms are used to compute
the initial DSM. The first one is described in (Baillard and Dis-
sart, 2000) and is based on cost minimization along epipolar lines.
This cost takes discontinuities in heights and radiometric similar-
ities into account. The second one is based on a multi-resolution
implementation of Cox and Roy optimal flow image matching
algorithm. More details are given in (Pierrot-Deseilligny and
Paparoditis, 2006). DSMs have a resolution of 20 cm.

2.2 Buildings Masks

The buildings mask is directly derived from a cadastral database.
This database is a vector database where buildings ground foot-
prints are represented in 2D. As it is produced manually, it has
a good precision but contains some discrepancies (for example
demolished buildings), as shown in Subsection 2.4.

2.3 Vegetation Masks

The vegetation mask is produced by applying a threshold on NDVI
images (Normalized Difference Vegetation Index). This index is
high for vegetation due to the fact most of the visible light is ab-
sorbed and nearly all infrared light is reflected.

NDV I =
NIR − Red

NIR + Red
(1)

This index is computed on orthophotos so that vegetation masks
can be easily superimposed on buildings masks and DSMs. RGB
and IR images used for orthophotos are calibrated but, to avoid
problems linked to the “hot-spot” phenomenon, source images
are corrected with an algorithm that performs a radiometric equal-
ization. The model used for this correction is a parameterized and
semi-empirical BRDF model. More details can be found in (Pa-
paroditis et al., 2006).

2.4 Comments

Three types of outliers can be distinguished in input data. Firstly,
some buildings are not represented in masks as the database is
not necessarily up-to-date (Case 1 in Figure 1). Secondly, some
above-ground points are out of them: cars, street furniture, news-
papers kiosks...(Case 2 in Figure 1). Eventually, a lot of outliers
are located at the edges of buildings (Case 3 in Figure 1). That
comes from the fact that buildings footprints are given by the out-
lines of the walls in the cadastral database and that the walls limits
do not necessarily fit the roof limits given in a DSM.
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Figure 1: Problems in buildings masks. Outliers (highlighted in
red boxes) in above-ground masks sumperimposed on DSMs (up-
per images) and corresponding orthophotos (bottom images)

3 METHOD

In this section, a short mathematical description of the Elastic
Grid method is given. This method is based on a functional
(that contains a regularization term and a data term) to minimize.
Firstly, the importance of the norm ρ to use in the data term is
shown. Secondly, the 3 parameters to be tuned (a tuning con-
stant c intrinsic to the norm ρ, the standard deviation σ and the
smoothing coefficient λ) are introduced and justified. Eventually,
the general strategy used for the process is detailed.

3.1 Theoretical Aspects

The Elastic Grid method estimates the reconstructed topographic
surface by fitting an elastic surface to a finite sample of obser-
vation points (i.e points considered as ground points in the DSM
i.e points out of above-ground masks). Mathematically, this is
equivalent to the minimization of this functionnal:

E(z) = K(z) + λG(z, σ) (2)

• the Regularization Term K(z) corresponds to the discrete
approximation of the second derivative of the surface to re-
construct. This term minimizes the mean quadratic curva-
ture (i.e height variations) of the final DTM.
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• the Data Term G(z, σ) corresponds to the distance between
the model to estimate and observations.

G(z, σ) =
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(5)

where zc,l is the value of the estimated model at the (c,l)
pixel, obsc,l the corresponding observation value and ρ, the
norm used in order to calculate the distance.

• the factor λ is used in order to balance both terms. The
higher λ is, the better the model fits observations. The smaller
λ is, the smoother the model is.



3.2 Description of the grid parameters

The initial Elastic Grid method uses the Least-Squares method
to minimize the difference between the model to estimate and
observations. Therefore, a classical euclidean norm is introduced
in the data term.
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Such an approach is not robust to outliers in input data and can
become very unstable. The method used in our work in order to
reject outliers from calculation is derived from the M-estimator
technique. This technique reduces the effect of outliers by re-
placing the sum of squared differences (residuals) by a certain
function ρ that is symmetric, positive-definite, with a minimum
at zero and less increasing than square.
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Table 1: Robust norms tested in our study

All the norms tested in our study are listed in Table 1. In most
norms, there is a tuning constant c. It is all the more important as
it determines points whose influence will be reduced in the pro-
cess. In (Zhang, 1997), the author considers that noise follows
a gaussian law N (0, 1) and gives, for each norm, the value for
the tuning constant c in order to reach the 95 percent asymptotic
efficiency on the standard normal distribution. (Zhang, 1997)
shows that c = 4.6851 for the Tukey’s norm for instance.
In our work, the difference zc,l − obsc,l is assumed to follow a
gaussian law but is not standardized (zc,l − obsc,l) ∼ N (0, σ),
what prevents us to apply the previously mentioned values di-
rectly. Therefore, a standard deviation σ must be calculated. It is
calculated with the classical estimator, in a clean and horizontal
area (typically a square without any tree, car. . . ) so that it is not
biased because of the presence of outliers.

σ =

v

u

u

t

1
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n
X

i=1
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where n is the number of pixels in clean areas, ri = zi − obsi is
the difference between the estimated model and correponding ob-
servations and ri = 1

n
×
P

i=1
ri is the mean value of differences

in clean areas.

3.3 General Strategy

As can be seen in Figure 2, several steps are necessary in order
to compute the final DTM. The process is divided into 4 steps:
Initialization, Paving, Elastic Grid and Mosaicking.

As the process to minimize E(z) is iterative, a good way to de-
crease the number of iterations is to calculate an initial solution.
This approximate solution is given by a method based on a dual
rank filter. This tool has some imperfections mentioned in Sub-
section 1.2 but is fast and easy to implement. Moreover, as the
convergence is all the more long as the study area is big (the ra-
tio “calculation time” / “study area size” is not linear), a paving
strategy (with a 1000× 1000 tile) has been set up. A mosaicking
process is consequently necessary.
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Figure 2: General Strategy

4 RESULTS AND DISCUSSION

4.1 Test areas and data

2 test sites are presented:

• Amiens City Centre, France

– Pixel Ground Size = 20cm

– Area = 800m × 800m ' 0.64km2

– Terrain Type: relatively flat

– Land Cover Type: dense urban area

– Matching Algorithm: (Baillard and Dissart, 2000)

• Marseille City Centre, France

– Pixel Ground Size = 20cm

– Area = 950m × 950m ' 0.90km2

– Terrain Type: hilly



– Land Cover Type: dense urban area

– Matching Algorithm: (Pierrot-Deseilligny and Papar-
oditis, 2006)

Several norms have been tested in our work. For each norm, the
tuning constant c is firstly found in literature. Secondly, as our
data are not standardized, a standard deviation must be calcu-
lated in a clean area to standardize them and to be able to apply
the value of c found in literature. Once these 2 factors fixed, a
sensitivity study is carried out in a small area (typically, a 300 ×
300 area) to determine the best value to give to the smoothing co-
efficient λ. Results are assessed by visual inspection (difference
between the DSM and the DTM) and by editing profiles along
lines in the DSM and corresponding lines in the DTM. Experi-
ments have shown the terrain is best reconstructed with a Tukey’s
norm. This norm has also been used with the 3 factors (c, σ and
λ) previously determined to process the whole area. The corre-
sponding results are given in the next subsection.

4.2 Results

As the process to minimize E(z) is long, an optimized numerical
library (GNU Scientific Library) is used. The calculation time
with a 1.8 GHz PC is about 30 hours in Amiens (size of the whole
scene: 4000 × 4000 / 36 tiles) and 40 hours in Marseille (size of
the whole scene: 4600 × 4600, 49 tiles). The qualitative and
quantitative results of our algorithm are now given.

4.2.1 Qualitative Results The benefit of introducing a robust
norm (instead of the classical euclidean norm) is clearly shown
in Figure 3 where results in a small test area are presented. The
initial DSM is displayed on the upper left image. Above-ground
masks are sumperimposed on the initial DSM and are displayed
on the upper right image. Final DTMs are displayed on bottom
images (on the left, the one processed with the classical Elas-
tic Grid, on the right, with our algorithm). All the figures are
displayed by using the same scale in height as the bottom right
DTM. In this way, readers can have a first visual idea of the qual-
ity of DTMs. In the bottom left DTM, artificial blobs are created.
That comes from outliers present in input data: as they are consid-
ered by the classical Elastic Grid algorithm as true ground points,
they have the same influence in the process and deviate the re-
constructed topographic surface upwards. As the new algorithm
introduces a robust norm in order to reject outliers, such a bad
effect does not occur.
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Figure 3: Comparison between the classical Elastic Grid algo-
rithm and the new algorithm. In white, points higher than 25.2m

The qualitative results when applying our algorithm are now given
in Figures 5 - 8 (Amiens) and Figures 9 - 12 (Marseille). As
detailed in the introduction, a good detection of above-ground
points implies a good reconstruction of the topographic surface.
Therefore, the difference DSM − DTM is a good indicator for
assessing the quality of final products and is given in Figure 8
(Amiens) and Figure 12 (Marseille).

4.2.2 Quantitative Results In order to assess results quan-
titatively, a statistical analysis is firstly performed by manually
extracting ground points from initial DSMs and by comparing
them with corresponding points extracted from DTMs. A bias, a
standard deviation and a RMS are then calculated and are shown
in Table 2. Secondly, profiles along arrows in DSMs and corre-
sponding arrows in DTMs are edited (See Figures 4 - 13 - 14).

Area Bias σ RMS Nb Pts
Amiens City Centre 0.424 0.447 0.616 1104

Marseille City Centre 0.307 2.606 2.604 886

Table 2: Stastistical Analysis

The topographic surface is well reconstructed in Amiens. The
bias is slightly positive. That means the reconstructed surface is
slightly disturbed by the presence of outliers. Nevertheless, as
shown in the profile (Figure 4) along the green arrow (Figures
5 and 7), the final DTM perfectly clings to points in streets and
courtyards and reconstructs all the small undulations of the ter-
rain.
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Figure 4: Profiles in Amiens along the green arrow in the DSM
and DTM (See Figures 5 and 7). In red, the initial DSM. In black,
the result with the new algorithm. In light grey, the result of the
classical Elastic Grid. The blobs that correspond to buildings and
vegetation in the DSM are filtered with the new method. Artificial
blobs are created when using the euclidean norm.

Some problems occur in Marseille. The bias is small and proves
that the computed DTM is a good approximation of the topo-
graphic surface. As shown in the profile (Figure 13) along the
green arrow in the DSM and DTM (Figures 9 and 11), the fi-
nal DTM generally clings to true ground points and filters blobs
corresponding to buildings. In that case, results are similar to
Amiens. Nevertheless, a high RMS outlines problems in specific
areas, especially in breaklines areas. For example, some prob-
lems occur in the profile along the red arrow (Figure 14). The
left breakline is well reconstructed, which proves the capability
of our algorithm to reconstruct such terrain types. Nevertheless,
the right breakline is completely eroded. This problem firstly
comes from the terrain type (a 50m high cliff difficult to recon-
struct), secondly from the combination of using a robust norm and
a coarse initial solution: using a robust norm is an efficient means
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Figure 5: Amiens - Initial DSM (Top View)
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Figure 6: Amiens - Mask over DSM (Top View)
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Figure 7: Results in Amiens - DTM (Top View)
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Figure 8: Results in Amiens - DSM − DTM (Top View)
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Figure 9: Marseille - Initial DSM (Top View)
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Figure 10: Marseille - Mask over DSM (Top View)
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Figure 11: Results in Marseille - DTM (Top View)
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Figure 12: Results in Marseille - DSM − DTM (Top View)
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Figure 13: Profiles in Marseille along the green arrow. In red,
the initial DSM. In black, the result of the new algorithm. In
light grey, the result of the classical Elastic Grid. The blobs that
correspond to buildings and vegetation in the DSM are filtered
with the new method.
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Figure 14: Profiles in Marseille along the red arrow. In red, the
initial DSM. In black, the result of the new algorithm. In light
grey, the result of the classical Elastic Grid. The left breakline is
well reconstructed. The right breakline is too eroded (Problems
in the initialization step).

to reject definitely outliers; problems occur when rejected points
are inliers (true ground points). In Marseille, the right breakline
is eroded in the initialization step (because of the use of a dual
rank filter, see Subsection 1.2 for more explanations). As the
difference zc,l − obsc,l is then too big in that area, all the corre-
sponding points (even inliers) are considered outliers: the process
does not use these points to reconstruct the topographic surface
and the breakline is not modelled very well in the end. A multi-
resolution coarse-to-fine approach is being considered to give our
algorithm a more precise initial solution.

5 CONCLUSIONS AND FUTURE WORK

Our goal was to compute a DTM from a DSM and above-ground
masks, in dense urban areas and in a difficult context (presence
of outliers in input data). The initial Elastic Grid has been re-
vised by introducing a robust norm (instead of the classical eu-
clidean norm) and by setting the grid parameters (the tuning con-
stant c, the standard deviation σ and the smoothing coefficient λ)
suitably. The results presented in this paper and corresponding
to different configurations (high resolution DSM, relatively flat /
hilly city centres) show the robustness of our approach. In order
to make our method as generic as possible, tests have been car-
ried out with lower resolution DSMs (pixel ground size = 70cm
and 5m). First results are promising and show the feasability of
extending our method to such a resolution. An other research
axis is to adapt our method so that the initial above-ground mask
becomes optional. The challenge here is to reject above-ground

points rapidly. On the one hand, the points where the difference
between the model and observations is negative and that are also
closer to the model to estimate (typically ground points) must
have their influence in the calculation increased. On the other
hand, points with a positive difference (typically above-ground
points) must be rejected. In (Jordan et al., 2002), a dissymetric
norm is used for that purpose: the euclidean norm is used wher-
ever the difference zc,l − obsc,l is negative and the Tukey’s norm
is used wherever it is positive. As the euclidean norm is more
increasing than the Tukey’s norm, lowest points are advantaged.
The main idea is to introduce such a dissymetric norm (by re-
placing the non robust euclidean norm with the more robust L1L2
norm) in our grid data term.
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d’une surface par approximations successives: application aux modèles
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McKeown, D., Bulwindle, T., Cochran, S., Harvey, W., McGlone, J. and
Shufelt, J., 2000. Performance evaluation for automatic feature extrac-
tion. In: International Archives of Photogrammetry and Remote Sensing,
Vol. XXXIII-B2, Amsterdam, The Netherlands, pp. 379–394.

Paparoditis, N., Souchon, J., Martinoty, G. and Pierrot-Desseiligny, M.,
2006. High-end aerial digital cameras and their impact on the automation
and quality of the production workflow. IJPRS. To Appear.

Pierrot-Deseilligny, M. and Paparoditis, N., 2006. A multiresolution and
optimization-based image matching approach: An application to surface
reconstruction from spot5-hrs stereo imagery. In: International Archives
of Photogrammetry and Remote Sensing, Vol. XXXVI, Ankara, Turkey.

Weidner, U., 1996. An approach to building extraction from digital sur-
face models. In: Proceedings of the 18th ISPRS Congress, Comm. III,
WG 2, Vol. 43 - Building Detection from a Single Image, pp. 924–929.

Zhang, Z., 1997. Parameter estimation techniques: A tutorial with ap-
plication to conic fitting. Image and Vision Computing Journal 15(1),
pp. 59–76.


