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ABSTRACT:

With TerraSAR-X and RADARSAT-2, two dual-channel SAR satellites will belaunched in the next months. Both sensors allow for
detecting moving objects, and, by this, enable traffic monitoring from space. This paper revises the theoretical background of traffic
monitoring with space-based SARs and presents concepts for the TerraSAR-X traffic monitoring system. Compared to previous work
an extensive analytical and empirical accuracy analysis is included forboth vehicle detection and velocity estimation. The accuracy
analysis includes a theoretical accuracy evaluation and a validation with real data.

1 INTRODUCTION

Since the launch of new optical satellite systems, e.g. Ikonos and
QuickBird, satellite imagery with 1-meter resolution or higher is
commercially available and a number of approaches have been
developed to detect or track vehicles in this imagery (see e.g. ref-
erences in (Leitloff et al., 2005)). Traffic monitoring based on
optical satellite systems, however, is only possible at daytime and
cloud-free conditions. Two high-resolution Spaceborne RADAR
systems, TerraSAR-X (Germany) and RADARSAT-2 (Canada),
which will be launched this year will overcome this limitations.
Yet there are other difficulties inherent in the SAR imaging pro-
cess that must be solved to design a reasonably good approach
for traffic monitoring using spaceborne Radar.

The task of detecting moving vehicles with SAR sensors (ground
moving target indication (GMTI)) has been addressed in several
scientific publications. The method of choice in GMTI is to use a
Radar or SAR sensor with at least 3 channels and use space-time
adaptive processing (STAP) for target detection. Further refer-
ence to that topic can be found e.g. in (Klemm, 1998, Living-
stone et al., 2002, Gierull, 2004). Unfortunately, civilian space
borne SAR systems with 3 or more channels are currently not
available. The upcoming TerraSAR-X mission as well as the
Canadian RADARSAT-2 mission will be equipped with a single
channel SAR that can be switched to an experimental mode with
two channels to enable along-track interferometric applications
like traffic monitoring. Although the use of a 2-channel system
is not optimal for detecting vehicles, some methods exist that al-
low detection under certain conditions. The classical approach to
do so is to use the displaced phase center array (DPCA) method.
Along-track interferometry (ATI) is another method that can be
used. The issue of detecting moving targets using ATI is for in-
stance discussed in (Gierull, 2001, Sikaneta and Gierull, 2005).
In (Gierull, 2002) special emphasis is put on the probability den-
sity functions associated with this detection. The influence of
vehicle acceleration is discussed in (Sharma et al., 2006). Traffic
monitoring from space is quite rare so far. But as shown in (Breit
et al., 2003, Meyer and Hinz, 2004, Meyer et al., 2005) first en-
deavors have already been carried out.

Based on a revision of the effects of moving objects in SAR Data

we present a concept of detection and velocity estimation of vehi-
cles, thereby considering the restrictions ofcivilian SAR satellite
systems. The main focus of this paper, finally, lies on the perfor-
mance characterization of the main components of this concept,
in order to predict and validate the expected results of the system
for TerraSAR-X. The performance analysis includes both a the-
oretical accuracy evaluation and a validation with real airborne
SAR data.

2 MOVING OBJECTS IN SPACEBORNE SAR IMAGES

Before outlining the concepts for vehicle detection and veloc-
ity estimation we briefly summarize the effects of moving ob-
jects in spaceborne SAR images. Here, only the resulting formu-
lae are included; a derivation of the formulae can be found, e.g.
in (Meyer et al., 2005), while a comprehensive overview on SAR
image processing is given in (Cumming and Wong, 2005).

2.1 Object Motion Effects in SAR — A Summary

The position of a Radar transmitter on board a satellite is given
by Psat(t) = [xsat(t), ysat(t), zsat(t)] with x being the along-
track direction,y the across-track ground range direction andz
being the vertical. A point scatterer is assumed to be at posi-
tionPmover = [xmover(t), ymover(t), zmover(t)], and the range
to this arbitrarily moving and accelerating point target from the
radar platform is defined byR(t) = Psat(t) − Pmover(t).

Omitting pulse envelope, amplitude, and antenna pattern for sim-
plicity reasons, and approximating the range historyR(t) by a
parabola, the measured echo signalu(t) of a static point scatterer
can be written as

ustat(t) = exp{jπFMt2} (1)

with

FM = − 2

λ

d2

dt2
R(t) = − 2

λR
vsatvB (2)

being the frequency modulation (FM) rate of the azimuth chirp.
Azimuth focussing of the SAR image is performed using the
matched filter concept(Bamler and Schättler, 1993, Cumming and



Wong, 2005). According to this concept, an optimally focused
image is obtained by complex-valued correlation ofustat(t) with
the filter s(t) = exp{−jπFMt2}. To constructs(t) correctly,
the actual range history of each target in the image, and thus,
the position and motion of sensor and scatterer, must be known.
Usually, the time dependence of the scatterer position is ignored
yielding Pmover(t) = Pmover. This concept is commonly re-
ferred to asstationary-world matched filter(SWMF). Because of
this definition, a SWMF does not correctly represent the phase
history of a significantly moving object, which eventually results
in image deteriorations.

We first evaluate targets moving with velocityvy0 in across-track
direction. This movement causes a change of range history pro-
portional to the projection of the motion vector into the line-of-
sight direction of the sensorvlos = vy0 · sin(θ), with θ being
the local incidence angle. In case of constant motion during il-
lumination the change of range history is linear and causes an
additional linear phase trend in the echo signal. The resulting
signal of an object moving in line-of-sight direction with velocity
vlos is consequently:

u(t) = exp{jπFMt2} · exp{−j 4π

λ
vlost} (3)

If u(t) is focused with the SWMFs(t) defined above, the linear
phase term in Equ. (3) is not compensated for, and remains in the
phase of the focused signal. This linear phase term corresponds
to a shift of the signal in space domain, which is given by

∆az = −Rvlos
vsat

[m] (4)

According to Equ. (4), across-track motion results in an along-
track displacement of the moving object. It is displaced in flying
direction if the object moves towards the sensor and reverse to
flying direction if the movement is directed away from the sen-
sor. When inserting the TerraSAR-X parameters into the above
formulae, one can see, that moving vehicles are displaced sig-
nificantly from their real position even for small across-track ve-
locities (about1 km for 50 km/h at 45◦ inc. angle). This effect
strongly hampers the recognition of cars in TerraSAR-X images
as their position is not anymore related to semantic information,
e.g. streets. A detailed analysis and illustration of these effects is
given in (Meyer et al., 2005).

The target is now assumed to move with velocityvx0 in along-
track. In this case the relative velocity of sensor and scatterer
is different for moving objects and surrounding terrain. Thus,
along-track motion changes the frequency modulation (FM) rate
of the received scatterer response. The FM rateFMmt of a target
moving in along-track with velocityvx0 is defined byFMmt =
FM

(

1 − vx0
vB

)

. If the echo signal of this object is focused with
a SWMFs(t), a quadratic phase component remains in the fo-
cused signal leading to a spread of the signal energy in time or
space domain. The width of the focused peak as a function of the
object’s along-track velocityvx0 can be approximated by

∆t ≈ 2TA

√

vsat
vB

vx0√
vsatvB

[s] (5)

with TA being the aperture time. Interpretation of Equation (5)
shows that a moving vehicle is smeared by twice the distance it
moved along track during the illumination timeTA. Note that the
approximation in Equation (5) only holds forvx0 ≫ 0. As the
backscattered energy of the moving object is now spread over a
larger area the peak value of the signal drops down. Using the

parameter set of TerraSAR-X, it is obvious that blurring and peak
power decrease are quite drastic. The strong blurring distributes
the backscattered energy and results in a drop of50% peak power
or more if vx0 ≥ 15 km/h (Meyer et al., 2005). Thus, nearly
all ground moving targets suffer from energy dispersion, which
decreases the signal-to-clutter ratio and renders target detection
more difficult.

Similar analyses are conducted for first order accelerations. Such
effects not only appear if drivers physically accelerate or brake
but also along curved roads, as the object’s along-track and across-
track velocity components vary during illumination time. The
analysis is based on a third order Taylor series expansion of the
rangeR(t) to an accelerating and isotropic point scatterer. The
scatterer is assumed to be at position(0, y0, 0) at azimuth time
t = 0 and to move with velocity(vx0, vy0, 0) and acceleration
(ax, ay, 0). With R0 being the range at azimuth timet = 0 the
third order Taylor series expansion ofR(t) calculates to:

R(t) ≈ R0 +
y0vy0
R0

t− 1
2R0

[

y0vy0(vx0−vsat)
2+y0v

3
y0

R2
0

]

t3 +

1
2R0

[

y0ay0

(

1 − y2
0

R2
0

)

+ (vx0 − vsat)ax0

]

t3 +

1
2R0

[

(vx0 − vsat)
2 + v2

y0

(

1 − y2
0

R2
0

)

+ y0ay0

]

t2 (6)

It can be seen in Equation (6) that acceleration components ap-
pear in the quadratic and the cubic term of the Taylor series ex-
pansion. The acceleration in across-track direction (ay) causes a
quadratic phase component, which results in a spread of the sig-
nal energy in time or space domain. Considering the TerraSAR-
X system parameters it comes clear that image degradation due
to across-track accelerations is significant foray > 1 m

s2
, which

is commonplace for traffic on roads or highways (Meyer et al.,
2005). On the other side, along-track accelerationax appears
only in the cubic term of Equation (6) and results in an asymme-
try of the focused point spread function. For TerraSAR-X, this
effect is very small even for unrealistic accelerations, and can be
neglected.

2.2 Detection Approaches

On one hand, all the above described effects of moving objects
hinder the detection of cars in conventionally processed SAR im-
ages. On the other hand, these effects are mainly deterministic
and can be exploited to not only detect vehicles but also measure
their velocity. Our system for moving object detection consists
of two major components: a detection and a velocity estimation
component. Both components make use of a-priori knowledge
in form of a road database and expectation values for the aspect-
angle dependent Radar cross-section of vehicles. In the follow-
ing sections we discuss the approaches employed in the system
in more detail.

In order to detect moving objects in SAR data one has to pre-
dict their appearance in the image. Thus, the main tasks to solve
are theestimationof the blurring, the displacement, and the in-
terferometric phase values associated with the particular moving
object. The solution to this typical inverse problem can be facil-
itated when incorporating a priori knowledge about the appear-
ance, location, and velocity of vehicles. Hence, we will first turn
to the integration of a priori knowledge (Sect. 2.2.1) before de-
scribing different detection approaches in Sects. 2.2.2, 2.2.3 and
2.2.4.



2.2.1 Integration of A-priori Information Assuming objects
being point scatterers and given the SAR- and platform parame-
ters, the displacement effect in the along-track direction can be
predicted when real position, velocity, and motion direction of
the vehicle are known. Because of the functional relation of in-
terferometric phase and object velocity in across-track direction,
also the interferometric phase of a displaced moving object can
be derived (see below).

In our case, road network databases serve as basic source for ac-
quiring a priori knowledge. Typically, these databases contain
road axes in form of polygons and attributes like road class, road
width, maximum velocity, etc. attached to each polygon. Using
this information a number of ”maps” representing the a priori in-
formation can be derived (i.e. displacement map, velocity map,
and interferometric phase map). Figure 1 shows an example for
the different maps derived for a single road segment.

(a) (b)

(c) (d)
Figure 1: Example for maps derived from a single road segment
associated with travelling direction (see (a)): (b) Displacement
map, (c) velocity map, (d) phase map.

Besides the information about the phase, also a priori informa-
tion about the vehicle’s radar cross section strongly supports de-
tection. As it is well known, significant variations of radar cross
section exist over different aspect angles of cars. An example of
radar cross section variations as a function of aspect angleα for
a Volkswagen Golf car derived from experimental measurements
of DLRs airborne SAR system E-SAR is shown in Fig. 2. The
analysis of the RCS curve shows that cars have quite high RCS
values if their front, rear or side faces the sensor. RCS values
for the angles around 45◦ and 135◦ are significantly lower. It
also can be seen that the RCS is subject to high variation even
for small changes of aspect angle. Such information is incorpo-
rated into the detection scheme with the help of a road database,
since—given the sensor and platform parameters—the aspect an-
gle under which a car must have been illuminated by the sensor
can be calculated for each road segment.

2.2.2 Along-Track Interferometry In along-track interferom-
etry (ATI) an interferogramI is formed from two original SAR
images acquired with a short time lag in along-track direction.
The interferogram phase can be related to object motion by:

ψ =
4π

λ
∆R =

4π

λ
vlost =

4π

λ
vlos

∆l

vsat
(7)

Figure 2: Radar cross section depending on aspect angle. Exper-
imental data of a VW Golf car in X-band.

wheret is the temporal separation of the aquisitions defined by
the satellite motion and the effective distance∆l between the
phase centers of the two antennas. Since both interferometric
phaseψ and azimuth displacement∆az are caused by across-
track motion, an analytic relation between both measurements
can be established:

∆az = −Rvlos
vsat

= −Rψ λ

4π∆l
(8)

To design a constant false alarm rate (CFAR) detection scheme,
the probability density distributions of vehicles and background
in interferometric data need to be known. Here, we follow the
derivation presented in (Lee et al., 1994) and (Joughin et al.,
1994). For all stationary targets the interferometric phase values
are assumed to be statistically distributed around the expectation
valueE [ψ] = 0. Using the underlying assumption of jointly
Gaussian-distributed data in the two images, the joint probabil-
ity density function (pdf)fc (η, ψ) of amplitude and phase of an
interferogram is given by:

fc(η, ψ)= 2nn+1ηn

πΓ(n)(1−|ρ|2)
exp

(

2nη|ρ| cos(ψ)

1−|ρ|2

)

Kn−1

(

2nη

1−|ρ|2

)

(9)

wheren is the number of looks (effectively the amount of aver-
aging),Γ (·) is the gamma function andKn (·) is the modified
Bessel function of thenth kind. For medium resolution SAR the
jointly Gaussian assumption has been validated for most agricul-
tural and vegetated areas (Ulaby and Dobson, 1989). As outlined
in Sect. 2.2.1 it is possible to derive expectation values for po-
sition, interferometric phase, and aspect-dependent radar cross
section of vehicles using ancillary data. Hence, from these data
also a pdf for ”clutter+mover”fc+m (η, ψ) should be established.
An approximation valid forn ≫ 1 has been derived in (Gierull,
2002) and is given by:

fc+m (η, ψ) =
2nn+1η((η−δ cos(ζ))2+δ2 sin(ζ)2)

n−1
2

πΓ(n)(1−|ρ|2)
·

exp
(

2nρ(η cos(ψ)−δ cos(ϑ))

1−ρ2

)

Kn−1

(

2n
√

(η−δ cos(ζ))2+δ2 sin(ζ)2

1−ρ2

)

(10)

while the moving target’s signal is assumed to have a peak ampli-
tudeβ, and withδ = β

η
andζ = ψ−ϑ. Using this approximation

as an alternative hypothesis,fc+m (η, ψ) allows to define a like-
lihood ratio to which a threshold can be applied.

Figure 3a) shows a typical example offc (η, ψ) assuming a co-
herency of|ρ| = 0.95, n = 1 and a expected signal amplitude of
E [η] = 1, while Fig. 3b) shows an example offc+m (η, ψ) and
a corresponding curve of separation.

2.2.3 Displaced Phase Center Array Method In a similar
way one may derive a CFAR detector based on the displaced



(a) (b)
Figure 3: PDFs for background only (a) and background as well
as moving objects (b). The dashed line is an example for curve of
separation.

phase center array (DPCA) technique, where the two coregistered
images are simply substracted, yielding

IDPCA = I1 − I2 = |IDPCA| · (ejφ1 − ejφ2)

= 2|IDPCA|sin(
φ1 − φ2

2
)e
j

(

φ1−φ2
2

+π
2

)

(11)

Here, only the magnitude2|IDPCA|sin(φ1−φ2

2
) of the signal is

evaluated for classification. Hence, the above pdf’s simplify to a
one-dimensional case. The magnitude ofIDPCA is high when-
ever moving objects cause a phase shift between the two images
and low if the observed surface elements are stable.

2.2.4 Frequency Modulation Method The approaches out-
lined so far can only be applied if displacement or interferomet-
ric phase occurs at all. This does not happen for objects mov-
ing purely in azimuth (along-track) direction. As explained in
Sect. 2.1 such vehicles appear defocussed in the image. Focusing
these objects is however possible when choosing a FM rate that
corresponds to the relative velocity of platform and object. Our
strategy for finding the correct FM rate relies on hypothesizing a
series of FM rates and analyzing a pixel’s ”sharpness function”
over these FM rates (see (Weihing et al., 2006) for details). Since
blurring occurs only in azimuth direction, searching the correct
FM rate for a given pixel reduces to a 2D-problem. Moreover, the
known location of roads as well as the expected range of vehicle
velocities allow to further restrict the search space to a limited
number of FM rates. For extracting the energy peak, we imple-
mented a simple but effective blob detection scheme that ana-
lyzes the local curvatures in azimuth- and FM-direction, thereby
incorporating a certain amount of smoothing depending on the
expected noise level of the images. Combining local curvature
maxima and peak amplitude by the geometric mean yields the fi-
nal decision function, from which the maximum is selected (see
(Hinz, 2005) for details). The FM-rate at the extracted peak cor-
responds to the correct along-track velocity – assuming that target
acceleration can be neglected for a first guess.

2.3 Velocity Estimation

The estimation of the velocity of detected vehicles can be done
based on all effects moving objects cause in SAR images and
SAR interferograms. Thus, approaches may usei) the interfer-
ometric phase values,ii) the displacement of detected vehicles
from their corresponding roads, andiii) the along-track defocus
caused by along-track motion and/or across-track acceleration.
All possible approaches have their advantages and disadvantages
and differ in the accuracy of their results (see Sect. 4). The pres-
ence of several methods for estimating velocities leads to an over-
determination of the estimation problem. This redundancy might

be used to estimate across-track acceleration in addition to the
vehicle’s velocity. However, this has not yet been realized in the
current implementation of the system.

3 PERFORMANCE ANALYSIS OF DETECTION

In order to assess the detection performance for varying scenar-
ios, three different approaches have been used:i) an analytical
performance analysis based on analytical pdf’s and Receiver Op-
erator Characteristic (ROC) curves obtained therefrom (Sect. 3.1);
ii ) a numerical performance analysis derived from simulations
(Sect. 3.2); andiii ) a performance analysis based on data from
airborne SAR experiments. The system parameters are tuned to
produce images that correspond to the expected space-borne data.
In the following, we concentrate mainly on the detection based on
the across-track components of vehicle motion. Analyses of the
FM-Rate method described in Sect. 2.2.4 are given in (Weihing
et al., 2006).

3.1 Analytical Performance Analysis of Detection

The analytical performance analysis is based on the pdf’s given
in Equs. 9 and 10 and shown in Fig. 3b). These pdf’s allow for the
calculation of detection and false-alarm probabilities for a given
line of separation, i.e. a predefined likelihood ratio, see Fig. 4a).
Thereby each parameterization of the pdf’s corresponds to dif-
ferent characteristics of background and vehicle appearance. Fi-
nally, ROC-curves are obtained when varying the likelihood ra-
tio. Figure 4a) depicts an example for a typical parameterization
of the pdf’s and Fig. 4b) shows the corresponding ROC curve.
However, one has to keep in mind that a number of simplifica-
tions have been necessary to obtain the analytical pdf’s, most no-
tably the restriction to more than 3 looks and the precondition of
Gaussian distributed clutter. Hence, although this approach al-
lows for maximum flexibility, a ROC curve derived this way is
only valid for open and rural areas.

(a) (b)

Figure 4: Analytical Detection Characterization: (a) Analytic
PDFsfc(η, ψ), fc+m(η, ψ) and varying curves of separation. (b)
Corresponding ROC curve.

3.2 Numerical Performance Analysis of Detection

To extent the analysis and to overcome some of the above limita-
tions, a simulator for ATI and DPCA has been developed, which
can be parameterized in such a way that a priori information about
the interferometric phase and amplitude can be integrated. To
generate a random sample, the whole process of data acquisi-
tion is simulated for both vehicles and clutter, i.e., the SAR-Data-
Acquisition process, multilooking if required, and the generation
of interferograms. Then, for each set of random samples a his-
togram is computed substituting the probability density functions.
As above, to evaluate the performance of the detectors, a thresh-
old is varied and the probability of detection and probability of



false alarm are determined for each step of this variation. Fig-
ure 5 illustrates the detection probability using ATI (a) and DPCA
(b) over different vehicle velocities (i.e. phases) for certain vehi-
cle brightnesses as well as fixed background and false alarm rate.
As can be seen, for low velocities and bright vehicles ATI delivers
generally better results while for faster vehicles it is outperformed
by DPCA. The reason for this behavior is that DPCA purely re-
lies on the interferometric phase, i.e., for low phase values the
detection is strongly influenced by noise, which leads to the sig-
nificant decrease of performance. In contrast, ATI makes also use
of the amplitude so that, for low velocities, one additional feature
is still left to detect a vehicle.

(a) (b)

Figure 5: Numerical Detection Characterization: Detection Prob-
abilities for given Background Clutter (bushes) and fixed False
Alarm Rate (10e-5) calculated for varying vehicle brightnesses
(RCS). (a) Results for ATI. (b) Results for DPCA.

3.3 Performance Analysis Based on Airborne Data

The validity of the simulation results has been assessed using real
data of flight campaigns. Besides of this, tests on real data sets
also allow to discover bottlenecks of the techniques employed and
to reveal unforeseen problems. An additional goal is to simulate
TerraSAR-X data for predicting the performance of the extraction
procedures. To this end, an airborne Radar system has been used
that has been modified so that the resulting raw data is compa-
rable with future satellite data of TerraSAR-X. We followed two
different ways of assessment:i) using real background data and,
to have a ”ground-truth”, vehicles that have been artificially im-
painted into the background (Sect. 3.3.1) , andii ) detection of real
vehicles in scenes for which optical data has been simultaneously
acquired.

3.3.1 Background Data and Impainted Vehicles Figure 6a)
shows a larger SAR scene composed of different types of back-
ground. In two test areas, vehicles in form of point targets have
been impainted. The appearance of a vehicle (amplitude and
phase) has been randomized using a random generator. Since in
this case ground-truth is available one is able to obtain complete-
ness and correctness curves when varying the detection threshold,
which replace the detection and false alarm rates before. Fig-
ure 6b) shows these curves for a typical image background using
a fixed vehicle velocity, statistically distributed vehicle bright-
ness and DPCA as detection method. Although not being directly
comparable with Fig. 5b), the typical behavior of DPCA is con-
firmed also by this evaluation, i.e., there is a striking lock-in of
the quality of the results depending on the detection threshold.

3.3.2 Vehicle Detection in Airborne Data In the following,
results of a flight campaign are shown during which images over
real-life traffic scenarios on highways were acquired. To eval-
uate the results of SAR-based vehicle detection, time series of
aerial photographs have been taken – almost synchronized with
the SAR acquisition.

(a) (b)

Figure 6: Detection Characterization based on airborne back-
ground image (a) and impainted vehicles withRCS = 3dB ±
8dB and phase according to 65km/h: Curves for completeness
(red) and correctness (green) for agricultural area obtained by
DPCA with varying thresholds.

Figure 7: Experiments with airborne SAR: Detection results and
velocity estimation for a dense traffic scenario

First encouraging results have been achieved with the system de-
scribed above, although we have to admit that too few scenes have
been processed up to now to give reliable and statistically con-
firmed statements about the system’s performance. The used ex-
perimental proccesing system includes a combination of an ATI
and a DPCA detector, and allows for an automatic integration of
a-priori knowledge (NavTeq road data). It performs velocity esti-
mation based on ATI phase and on along-track displacement. The
incorporated road data not only enables displacement measure-
ments but also the prediction of displacement intervals and thus a
limitation of the search space. Typical results are depicted in Fig-
ure 7. It shows the detector performance for rather dense traffic.
Although simultaneously acquired optical images are available
for this scene, it was–due to unknow time delays–unfortunately
not possible to match the car reference data form optical images
uniquely to the detection results. Yet the evaluation of these re-
sults based on traffic flow parameters has shown that flow pa-
rameters can be derived precisely, although the completeness of
detected cars is only moderate ((Suchandt et al., 2006)).

Figure 8 illustrates the detection of vehicle by FM-rate variation.
The azimuth direction points from bottom to top, thus, along-
track velocity components of vehicles travelling along the main
road in the center of the image are quite small and moving vehi-
cles are both blurred and displaced. At the bottom of Figure 8 a)
the marked image patch is focused with FM rates corresponding
to 0km/h and15km/h (assuming absence of acceleration). As
can be seen, the background of the image blurs for the second
case, while one bright point gets sharp (marked by red arrows).
Figure 8 b) shows the corresponding FM-slice, the detected peak,
and an estimated along-track velocity of approx.10km/h as-



suming zero acceleration. Considering a road orientation of 15
degree the vehicle velocity computes to approximately40km/h,
which fits reasonably well to the velocity computed from the dis-
placement (37km/h).

(a)

(b)

Figure 8: (a) Image patch (blue rectangle) focused with two dif-
ferent FM-rates (bottom). Red arrows mark azimuth line in which
the sharpened point lies. (b) FM slice computed for this azimuth
line (top) and detected peak (bottom).

4 PERFORMANCE ANALYSIS OF VELOCITY
ESTIMATION

For each of the three approaches for velocity estimation, i.e.i)
via interferometric phase,ii) via displacement, andiii) via along-
track blurring, the corresponding accuracy values are derived, and
at the end of this section, an example for accuracy when combin-
ing approaches is given.

4.1 Velocity Estimation based on the Interferometric Phase

The interferometric phase allows for a direct access to the objects
line-of-sight velocity component without the need of auxiliary
information. Still, information about the relative orientation of
the road axis corresponding to the particular vehicle is needed in

order to derive the real heading velocity of vehicles from their
line-of-sight motion. If we assume that a detected vehicle acts
as point scatterer, the standard deviationσψ of its interferometric
phase is defined by

σψ − ψ ≈ 1√
2 · SCR

(12)

with SCRbeing the signal-to-clutter ratio of a point like target.
SCR values can be determined based on RCS measurements of
vehicles, which are shown in Sect. 2.2.1. Given Equation (12),
the standard deviation of the derived across-track velocity esti-
matev̂ψy results in

σ
v̂
ψ
y

=
sin(θinc) · λ · vsat√
2 · SCR · 4π · ∆l

(13)

Given the system parameters of TerraSAR-X and assuming aSCR
of 5 dB we get a standard deviationσ

v̂
ψ
y

of approximately 30 km/h

for the center of the TerraSAR-X swath. Clearly, for an analysis
of traffic behavior and traffic dynamics, this accuracy level is only
marginally sufficient.

4.2 Velocity Estimation from Along-track Displacement

Besides of the above mentioned approach, the heading velocity
of a moving vehiclêvmt can be derived by measuring its along-
track displacement from its corresponding road segment. The
functional relation is given by

v̂∆az
mt =

∆̂az · vmt
R · sin(α̂road) · sin(θinc)

(14)

where∆̂az = |x̂road − x̂mt| is the along-track displacement.
The accuracyσv̂∆az

mt
of the velocity estimate is a function of the

quality of the displacement measurement|x̂road − x̂mt|, and the
accuracy of the road’s heading angleα̂road relative to the satellite
track.σv̂∆az

mt
is calculated by error propagation.

σv̂∆az
mt

=

√

(

∂v̂∆az
mt

∂xobj

)2

σ2
xobj+

(

∂v̂∆az
mt

∂xroad

)2

σ2
xroad+

(

∂v̂∆az
mt

∂αroad

)2

σ2
αroad

(15)
From empirical evaluations of the peak detection approach we
assessed the accuracy of the target’s along-track position to be
σxobj = 1 m. The standard deviation of the road axis position
σxroad of the NavTeq data was estimated by comparing the vec-
tor data with precisely geocoded aerial images. The mean dis-
tance of the NavTeq axes from their corresponding reference was
determined to beσxroad = 3.5 m (this result holds for high level
roads like motorways). From this value, and by assessing the av-
erage length of the NavTeq polygon pieces, the accuracy of the
road heading angleσαroad was deduced. For motorways its stan-
dard deviation results inσαroad = 2◦.

The accuracy of velocity estimatesσv̂∆az
mt

is derived by inducting
these empirical error measures into Equation (15). The resulting
errorσv̂∆az

mt
/vmt is shown in Figure 9 as a function of heading

angleαroad and normalized with the real target velocityvmt. It
can be seen from Figure 9 that the vehicles heading velocityvmt
can be estimated with a high accuracy ofσv̂∆az

mt
/vmt ≤ 10% if

they were moving on roads with a heading angle ofαroad ≥ 4◦.
For roads running nearly in along-track direction (αroad < 4◦)
this approach fails to provide reliable velocity measures.
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Figure 9: Relative velocity errorσv̂∆az
mt

/vmt estimated from
along-track displacement as a function of heading angleαroad.
Note the logarithmic scale.

4.3 Velocity Estimation from Along-track Blurring

Both of the already presented estimation methods fail to give a re-
liable velocity estimate for vehicles moving almost in along-track
direction. To fill the gap we propose to use the along-track blur-
ring effect for estimating along-track velocities. The functional
dependence of the velocity estimate on unknown or uncertain pa-
rameters is given by:

v̂xmt = −
√

(vsat − vmt) · cos(α̂)2 + y0 · ây · sin(α̂) + vsat
(16)

As explained in Section 2.1 both along-track velocityvx = vmt ·
cos(α) and across-track accelerationay give rise to peak broad-
ening in along-track. Usually, it is assumed that the accelera-
tion of vehicles is zero during the time of illumination. As a
consequence, actual occurring across-track accelerations intro-
duce errors to the velocity estimates. According to empirical
studies based on inertial navigation system measurements with
cars driving on city streets and highways, accelerations up to
ay = 2 m/s2 are likely to happen in common traffic scenarios.
Thus, we assumeσay = 2 m/s2 as a ”worst case” error source
for the following calculations. Besides of possible acceleration,
the standard deviation of the road heading angleσαroad = 2◦

influences the accuracy of the velocity estimateσv̂x
mt

.

σv̂δFM
mt

=

√

(

∂v̂δFMmt

∂αroad

)2

σ2
αroad +

(

∂v̂δFMmt

∂ay

)2

σ2
ay (17)

Figure 10a) showsσv̂δFM
mt

as a function of real target velocityvmt
and real road headingαroad. The standard deviation of the veloc-
ity estimate is dominated by acceleration influences and increases
with αroad. The dependence onvmt is merely a secondary effect.
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Figure 10: a) Standard deviationσv̂x
mt

of vehicle velocities esti-
mated from along-track blurring as a function of target velocity
vmt and heading angleαroad. σv̂x

mt
is given in km/h. b) relative

velocity errorσv̂x
mt
/vmt.

Forαroad < 4◦, i.e. for the heading angles of interest (see Sect.
4.2), the standard deviationσv̂δFM

mt
reaches up to 22 km/h. The

relative error of the estimated velocities is indicated in Figure
10b). It indicates that the velocity of slow moving targets cannot
be reliably estimated even for very small heading anglesαroad,
whereas the speed of fast moving targets can be estimated with
better relative accuracy.

Sections 4.1 to 4.3 show that several possibilities exist to estimate
the velocity of moving vehicles from TerraSAR-X data. Accord-
ing to the quality of the velocity estimates the usage of along-
track displacement is the most promising approach for a wide
range of heading anglesαroad. If vehicles move nearly in along-
track, the accuracy of velocity estimates is fair for all estimators.
Still, the use of along-track blurring gives best results.

4.4 Examples

To demonstrate the quality of the velocity estimation for real live
scenarios we calculated the expected standard deviation of the
estimated velocityσv̂mt for a road network north of Munich. In
this area three large motorways are situated which are highly fre-
quented during rush hours. We applied two different velocity esti-
mators to this test, the displacement-based and the blur-based es-
timator. Real TerraSAR-X orbit and sensor parameters have been
used in this simulation and an average speed of 100 km/h was as-
sumed. The orientation of the motorways relative to the choosen
TerraSAR-X orbit and the resultingσv̂mt values for both estima-
tors are show in Figures 11a) to 11c) (the corresponding flight
direction of the satellite is indicated as well. The standard devia-
tion of the displacement-based velocity estimateσv̂∆az

mt
is shown

in Figure 11a) in km/h for all three motorways. It can be seen
that vehicle velocities can be estimated with high accuracy for
large parts of the road network. However, in areas where the road
is oriented nearly in along-track, the estimation error increases
dramatically. Figure 11b) shows that the second detector, which
is based on the blurring of the impulse response, provides better
results for this areas. Thus, in order to get an optimal estima-
tion quality, we combine both methods depending on the relative
orientation of road and satellite track. The performance of the
combined estimator is shown in Figure 11c). With the presented
algorithm velocities can be estimated with an accuracy better than
10 km/h for about 80 % of the investigated road network.

5 SUMMARY

A system to detect moving vehicles from TerraSAR-X data and
to estimate their respective velocities has been presented. Besides
a detailed description of the methods used, performance analyses
are shown in addition. The detection of fast moving traffic seams
to be very promissing, whereas slow moving cars are hard to dis-
tinguish from non moving background. The estimation of the
velocity of detected vehicles can be done with high accuracy for
nearly all possible observation geometries. All approaches are
subject to further improvement and a more detailed performance
analysis will be presented as soon as the satellite is in its orbit.
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Figure 11: Simulation ofσv̂mt for a road network north of Mu-
nich (vmt = 100 km/h assumed). a) shows the estimation accu-
racy for a displacement-based detector, b) for a blur-based detec-
tor, and c) indicates the estimation quality if both detectors are
combined.

REFERENCES
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