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ABSTRACT:

With TerraSAR-X and RADARSAT-2, two dual-channel SAR satellites willléaenched in the next months. Both sensors allow for
detecting moving objects, and, by this, enable traffic monitoring fromesp@his paper revises the theoretical background of traffic
monitoring with space-based SARs and presents concepts for th&A& A traffic monitoring system. Compared to previous work

an extensive analytical and empirical accuracy analysis is includdabtbrvehicle detection and velocity estimation. The accuracy
analysis includes a theoretical accuracy evaluation and a validation witthataa

1 INTRODUCTION we present a concept of detection and velocity estimation of vehi-
cles, thereby considering the restriction<ivilian SAR satellite

Since the launch of new optical satellite systems, e.g. Ikonos angystems. The main focus of this paper, finally, lies on the perfor-
QuickBird, satellite imagery with 1-meter resolution or higher is mance characterization of the main components of this concept,
commercially available and a number of approaches have beén order to predict and validate the expected results of the system
developed to detect or track vehicles in this imagery (see e.g. refor TerraSAR-X. The performance analysis includes both a the-
erences in (Leitloff et al., 2005)). Traffic monitoring based onoretical accuracy evaluation and a validation with real airborne
optical satellite systems, however, is only possible at daytime ang AR data.
cloud-free conditions. Two high-resolution Spaceborne RADAR
systems, TerraSAR-X (Germany) and RADARSAT-2 (Canada),
which will be launched this year will overcome this limitations. 2 MOVING OBJECTS IN SPACEBORNE SAR IMAGES
Yet there are other difficulties inherent in the SAR imaging pro-

cess that must be solved to design a reasonab]y good approa@ﬁfore Outlining the concepts for vehicle detection and veloc-
for traffic monitoring using spaceborne Radar. ity estimation we briefly summarize the effects of moving ob-

jects in spaceborne SAR images. Here, only the resulting formu-
The task of detecting moving vehicles with SAR sensors (groundgae are included; a derivation of the formulae can be found, e.g.
moving target indication (GMTI)) has been addressed in severgh (Meyer et al., 2005), while a comprehensive overview on SAR
scientific publications. The method of choice in GMTI is to use aimage processing is given in (Cumming and Wong, 2005).
Radar or SAR sensor with at least 3 channels and use space-time
adaptive processing (STAP) for target detection. Further refer2.1 Object Motion Effects in SAR — A Summary
ence to that topic can be found e.g. in (Klemm, 1998, Living-
stone et al., 2002, Gierull, 2004). Unfortunately, civilian spaceThe position of a Radar transmitter on board a satellite is given
borne SAR systems with 3 or more channels are currently Noby Pso:(t) = [Zsat(t), Ysat (1), zsat (t)] With = being the along-
available. The upcoming TerraSAR-X mission as well as thetrack direction,y the across-track ground range direction and
Canadian RADARSAT-2 mission will be equipped with a single being the vertical. A point scatterer is assumed to be at posi-
channel SAR that can be switched to an experimental mode withion P.over = [Zmover (1), Ymover (t), Zmover (t)], and the range
two channels to enable along-track interferometric applicationso this arbitrarily moving and accelerating point target from the
like traffic monitoring. Although the use of a 2-channel systemradar platform is defined bi(t) = Psat(t) — Prmover (t).
is not optimal for detecting vehicles, some methods exist that al-
low detection under certain conditions. The classical approach t@mitting pulse envelope, amplitude, and antenna pattern for sim-
do so is to use the displaced phase center array (DPCA) methoglicity reasons, and approximating the range hist&i¢) by a
Along-track interferometry (ATI) is another method that can beparabola, the measured echo sign@l of a static point scatterer
used. The issue of detecting moving targets using ATI is for in-can be written as
stance discussed in (Gierull, 2001, Sikaneta and Gierull, 2005).

In (Gierull, 2002) special emphasis is put on the probability den- ustar(t) = exp{jmFM1*} 1)
sity functions associated with this detection. The influence of

vehicle acceleration is discussed in (Sharma et al., 2006). Traﬁl\é’ 9 &2 9

monitoring from space is quite rare so far. But as shown in (Breit FM = -3 ﬁR( ) = “ R UsetvB (2

et al., 2003, Meyer and Hinz, 2004, Meyer et al., 2005) first en-
deavors have already been carried out. being the frequency modulation (FM) rate of the azimuth chirp.

Azimuth focussing of the SAR image is performed using the
Based on a revision of the effects of moving objects in SAR Datamatched filter concept(Bamler and Sttter, 1993, Cumming and



Wong, 2005). According to this concept, an optimally focusedparameter set of TerraSAR-X, it is obvious that blurring and peak

image is obtained by complex-valued correlatiomgf, (¢) with power decrease are quite drastic. The strong blurring distributes

the filter s(t) = exp{—jmFMt*}. To constructs(¢) correctly,  the backscattered energy and results in a drgjd 6 peak power

the actual range history of each target in the image, and thusr more ifvyo > 15km/h (Meyer et al., 2005). Thus, nearly

the position and motion of sensor and scatterer, must be knowmll ground moving targets suffer from energy dispersion, which

Usually, the time dependence of the scatterer position is ignoredecreases the signal-to-clutter ratio and renders target detection

yielding Ppover(t) = Pmover- This concept is commonly re- more difficult.

ferred to asstationary-world matched filtesiSWMF). Because of

this definition, a SWMF does not correctly represent the phas&imilar analyses are conducted for first order accelerations. Such

history of a significantly moving object, which eventually results effects not only appear if drivers physically accelerate or brake

in image deteriorations. but also along curved roads, as the object’s along-track and across-
track velocity components vary during illumination time. The

We first evaluate targets moving with velocity, in across-track  analysis is based on a third order Taylor series expansion of the

direction. This movement causes a change of range history preangeR(t) to an accelerating and isotropic point scatterer. The

portional to the projection of the motion vector into the line-of- scatterer is assumed to be at posit{@nyo, 0) at azimuth time

sight direction of the sensafi,s = vyo - sin(f), with 0 being ¢ = 0 and to move with velocityv.o, v40,0) and acceleration

the local incidence angle. In case of constant motion during il{a,, a,,0). With Ry being the range at azimuth time= 0 the

lumination the change of range history is linear and causes athird order Taylor series expansion Bft) calculates to:
additional linear phase trend in the echo signal. The resulting

R . . L . . . . . 0y0 (Va0 —vsat)? 3
S|gngl of an object mlovmg in line-of-sight direction with velocity R(t) ~ Ro + L0y — L [yo 0 (V20 v +)°+yo yo} =
Vios IS CONSEquently: 0 0 0
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If u(t) is focused with the SWME(t) defined above, the linear 2 {( ’ t) vo RrZ ) Y00 ©

phase term in Equ. (3) is not compensated for, and remains in the
phase of the focused signal. This linear phase term correspon

. . ; . A ?lscan be seen in Equation (6) that acceleration components ap-
to a shift of the signal in space domain, which is given by in Equation (6) ! P P

pear in the quadratic and the cubic term of the Taylor series ex-
Vlos pansion. The acceleration in across-track directigy) €auses a

Aaz=—R—= [m] 4) . ) . : .
Vsat quadratic phase component, which results in a spread of the sig-

According to Equ. (4), across-track motion results in an along-nal energy in time or space domain. Considering the TerraSAR-

track displacement of the moving object. It is displaced in fIyingX system parameters it comes clear that image degradation due

direction if the object moves towards the sensor and reverse t%) across-track accelerations is significantdgr> 1 %, which

: N - IS commonplace for traffic on roads or highways (Meyer et al.,
flying direction if the movement is directed away from the sen- . .

. . . 2005). On the other side, along-track acceleratignappears
sor. When inserting the TerraSAR-X parameters into the above "~ : . -
formulae, one can see, that moving vehicles are displaced si only in the cubic term of Equation (6) and results in an asymme-

' ' 9 P er of the focused point spread function. For TerraSAR-X, this

nificantly from their real position even for small across-track ve- . o -
) o : effect is very small even for unrealistic accelerations, and can be
locities (aboutl km for 50 km/h at45° inc. angle). This effect neglected

strongly hampers the recognition of cars in TerraSAR-X images
as their position is not anymore related to semantic information2 2 Detection Approaches
e.g. streets. A detailed analysis and illustration of these effects is’ pp

iven in (Meyer et al., 2005). . . .
¢ (Mey ) On one hand, all the above described effects of moving objects

The target is now assumed to move with veloeity in along- hinder the detection of cars in conventionally processed SAR im-
track In this case the relative velocity of sensor and scattere@ges. On the other hand, these effects are mainly deterministic
is different for moving objects and surrounding terrain. Thus,and can be exploited to not only detect vehicles but also measure
along-track motion changes the frequency modulation (FM) ratdheir velocity. Our system for moving object detection consists
of the received scatterer response. The FM Faité, ., of a target of two major components: a detection and a velocity estimation
moving in along-track with velocity,o is defined byF M,,; = component. Both components make use of a-priori knowledge
FM (1 _ m) If the echo signal of this object is focused with in form of a road database and expectation values for the aspect-
a SWMFsEB a quadratic phase component remains in the fo-2ngle dependent Radar cross-section of vehicles. In the follow-
cused signal leading to a spread of the signal energy in time dn9 Sections we discuss the approaches employed in the system
space domain. The width of the focused peak as a function of thi§! more detail.

object’s along-track velocity.o can be approximated by ) ) .
In order to detect moving objects in SAR data one has to pre-

Vsat  Vx0 dict their appearance in the image. Thus, the main tasks to solve
At = 2T —— 4] ®) are theestimationof the blurring, the displacement, and the in-
UB /UsatVB 9, p ,

terferometric phase values associated with the particular moving
with T4 being the aperture time. Interpretation of Equation (5)object. The solution to this typical inverse problem can be facil-
shows that a moving vehicle is smeared by twice the distance itated when incorporating a priori knowledge about the appear-
moved along track during the illumination tinf& . Note thatthe ance, location, and velocity of vehicles. Hence, we will first turn
approximation in Equation (5) only holds for,, > 0. As the to the integration of a priori knowledge (Sect. 2.2.1) before de-
backscattered energy of the moving object is now spread over scribing different detection approaches in Sects. 2.2.2, 2.2.3 and
larger area the peak value of the signal drops down. Using th&.2.4.



2.2.1 Integration of A-priori Information ~ Assuming objects t
being point scatterers and given the SAR- and platform parame- R l !
ters, the displacement effect in the along-track direction can be 'F ‘
predicted when real position, velocity, and motion direction of _ | Wl I‘.f N"
the vehicle are known. Because of the functional relation of in- H w‘ i J’} ﬁ!\ \ |
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terferometric phase and object velocity in across-track direction, 0] ‘ l
also the interferometric phase of a displaced moving object can

be derived (see below).

In our case, road network databases serve as basic source for ac Aspect angle

quiring a priori knowledge. Typically, these databases contain ) ]

road axes in form of polygons and attributes like road class, roaffi9ure 2: Radar cross section depending on aspect angle. Exper-
width, maximum velocity, etc. attached to each polygon. UsingMental data of a VW Golf car in X-band.

this information a number of "maps” representing the a priori in-

formation can be derived (i.e. displacement map, velocity Mapyheret is the temporal separation of the aquisitions defined by
and interferometric phase map). Figure 1 shows an example fQhe satellite motion and the effective distandé between the

the different maps derived for a single road segment. phase centers of the two antennas. Since both interferometric
phasey and azimuth displacemerfaz are caused by across-
track motion, an analytic relation between both measurements
can be established:

Vlos _ A
VUsat - Rw4ﬂ'Al

Aaz = —R (8)
To design a constant false alarm rate (CFAR) detection scheme,
the probability density distributions of vehicles and background
e e B e e s in interferometric data need to be known. Here, we follow the
) derivation presented in (Lee et al., 1994) and (Joughin et al.,
1994). For all stationary targets the interferometric phase values
% are assumed to be statistically distributed around the expectation
5 value E [¢)] = 0. Using the underlying assumption of jointly
Gaussian-distributed data in the two images, the joint probabil-
I3 ity density function (pdf)f. (n, ) of amplitude and phase of an
interferogram is given by:

b Foo ' ’ ' 2"t lgn 2nn|p| cos(vp) 2nn
. = X K —
i | 100 L, fc("]v'l/}) WF("l)(l—|p|2) expl 1_|p‘2 n—1 1_|p|2 (9)
g1l 500100 [13? 200 250 30 350 -5l £ 100 [\’i? 20 250 3000 350
(© (d) wheren is the number of looks (effectively the amount of aver-

Figure 1: Example for maps derived from a single road segmenging), T (-) is the gamma function an#’, (-) is the modified

associated with travelling direction (see (a)): (b) DisplacemenBessel function of theth kind. For medium resolution SAR the

map, (c) velocity map, (d) phase map. jointly Gaussian assumption has been validated for most agricul-
tural and vegetated areas (Ulaby and Dobson, 1989). As outlined

Besides the information about the phase, also a priori informal? .Sect.. Z'Zf'l itis ppssfle to deélve expegtatlondvaluesdfor po-
tion about the vehicle’s radar cross section strongly supports de>ton: mtfer e:_)r;netrlc_p ase,_liam (?spect- epenf ent rﬁ ar gross
tection. As it is well known, significant variations of radar cross section of vehicles using ancillary data. Hence, from these data

section exist over different aspect angles of cars. An example ¢}!SC @ pdf for"clutter+moverfe.... (7, ) should be established.
radar cross section variations as a function of aspect anfge ' @Pproximation valid fom > 1 has been derived in (Gierull,
a Volkswagen Golf car derived from experimental measurement§002) and is given by:

of DLRs airborne SAR system E-SAR is shown in Fig. 2. The . PP |

analysis of the RCS curve shows that cars have quite high RCS.,., (n,¢) = — n((n=3 cos()) o sin(e) ) :

values if their front, rear or side faces the sensor. RCS values EICTD)

for the angles around 45and 138 are significantly lower. It eXp(%p(n wj(f)jcos(ﬂ>>>Kn71(2"vf’7*5COT(E));’HZ Sin(C)z) (10)
also can be seen that the RCS is subject to high variation even L P

for small changes of aspect angle. Such information is incorpowhile the moving target's signal is assumed to have a peak ampli-
rated into the detection scheme with the help of a road databasgde, and withs = 2 and¢ = ¢ — 9. Using this approximation
n

since—given the sensor and platform parameters—the aspect ags 5n alternative hypothesi,... (n,) allows to define a like-
gle under which a car must have been illuminated by the sensqfhooq ratio to which a threshold can be applied.
can be calculated for each road segment.

) Figure 3a) shows a typical example ff(n, ¢)) assuming a co-
2.2.2 Along-Track Interferometry In along-track interferom- herency oflp| = 0.95, n = 1 and a expected signal amplitude of
etry (ATI) an interferogrant is formed from two original SAR n

) ! ; ; ; onn [7] = 1, while Fig. 3b) shows an example ¢f ., (n, ) and
images acquired with a short time lag in along-track direction. corresponding curve of separation.
The interferogram phase can be related to object motion by:

An An An Al 2.2.3 Displaced Phase Center Array Method In a similar
= TAR =~ Vtost = —~Vios — (7)  way one may derive a CFAR detector based on the displaced

sat



: ] be used to estimate across-track acceleration in addition to the
2 ¥ vehicle’s velocity. However, this has not yet been realized in the
i ’ = current implementation of the system.

};’: ” 3 PERFORMANCE ANALYSIS OF DETECTION

. In order to assess the detection performance for varying scenar-
—— X ios, three different approaches have been ugpdn analytical

"& T *([’;‘3 o performance analysis based on analytical pdf's and Receiver Op-
Figure 3: PDFs for background only (a) and background as welerator Characteristic (ROC) curves obtained therefrom (Sect. 3.1);

as moving objects (b). The dashed line is an example for curve df) @ numerical performance analysis derived from simulations
separation. (Sect. 3.2); andii) a performance analysis based on data from

airborne SAR experiments. The system parameters are tuned to
produce images that correspond to the expected space-borne data.
phase center array (DPCA) technique, where the two coregisterdd the following, we concentrate mainly on the detection based on

ED £

images are simply substracted, yielding the across-track components of vehicle motion. Analyses of the
, ) FM-Rate method described in Sect. 2.2.4 are given in (Weihing
Ippoa = §L —Ir=|Ippcal- (% —'??) etal., 2006).

_ P1—b2 =
= 2|-’DPCA\SZ'”(¥)6]( 2" 2) (11 3.1 Analytical Performance Analysis of Detection

Here, only the magnitudEIIDPCA\sin(@) of the signalis  The analytical performance analysis is based on the pdf's given
evaluated for classification. Hence, the above pdf’s simplify to @n Equs. 9 and 10 and shown in Fig. 3b). These pdf’s allow for the
one-dimensional case. The magnitude/pkc 4 is high when-  calculation of detection and false-alarm probabilities for a given
ever moving objects cause a phase shift between the two imagége of separation, i.e. a predefined likelihood ratio, see Fig. 4a).
and low if the observed surface elements are stable. Thereby each parameterization of the pdf's corresponds to dif-

ferent characteristics of background and vehicle appearance. Fi-
2.2.4 Frequency Modulation Method The approaches out- nally, ROC-curves are obtained when varying the likelihood ra-
lined so far can only be applied if displacement or interferomet+io. Figure 4a) depicts an example for a typical parameterization
ric phase occurs at all. This does not happen for objects mowef the pdf's and Fig. 4b) shows the corresponding ROC curve.
ing purely in azimuth (along-track) direction. As explained in However, one has to keep in mind that a number of simplifica-

corresponds to the relative velocity of platform and object. OurGaussian distributed clutter. Hence, although this approach al-
over these FM rates (see (Weihing et al., 2006) for details). Sinces e o et o

known location of roads as well as the expected range of vehic :

mented a simple but effective blob detection scheme that an -

expected noise level of the images. Combining local curvaturc @) (b)

(Hinz, 2005) for details). The FM-rate at the extracted peak Cor'Corresponding ROC curve.

Sect. 2.1 such vehicles appear defocussed in the image. Focusitigns have been necessary to obtain the analytical pdf’s, most no-
strategy for finding the correct FM rate relies on hypothesizing dows for maximum flexibility, a ROC curve derived this way is
blurring occurs only in azimuth direction, searching the correc , ) l ‘ B ——

" ) g £
velocities allow to further restrict the search space to a limit . .

L

lyzes the local curvatures in azimuth- and FM-direction, thereb . ‘ o
maxima and peak amplitude by the geometric mean yields the fII_:igure 4: Analytical Detection Characterization: (a) Analytic
responds to the correct along-track velocity — assuming that target

these objects is however possible when choosing a FM rate th#ably the restriction to more than 3 looks and the precondition of
series of FM rates and analyzing a pixel's "sharpness function'only valid for open and rural areas.

FM rate for a given pixel reduces to a 2D-problem. Moreover, th

number of FM rates. For extracting the energy peak, we imple;..

incorporating a certain amount of smoothing depending on th .

nal decision function, from which the maximum is selected (SquDFSfc(’IL ), fosm (1, 1) and varying curves of separation. (b)
acceleration can be neglected for a first guess.

3.2 Numerical Performance Analysis of Detection
2.3 \Velocity Estimation

To extent the analysis and to overcome some of the above limita-
The estimation of the velocity of detected vehicles can be donéons, a simulator for ATl and DPCA has been developed, which
based on all effects moving objects cause in SAR images andan be parameterized in such a way that a priori information about
SAR interferograms. Thus, approaches may ijigke interfer-  the interferometric phase and amplitude can be integrated. To
ometric phase values) the displacement of detected vehicles generate a random sample, the whole process of data acquisi-
from their corresponding roads, aiif) the along-track defocus tion is simulated for both vehicles and clutter, i.e., the SAR-Data-
caused by along-track motion and/or across-track acceleratiofcquisition process, multilooking if required, and the generation
All possible approaches have their advantages and disadvantagafsinterferograms. Then, for each set of random samples a his-
and differ in the accuracy of their results (see Sect. 4). The presogram is computed substituting the probability density functions.
ence of several methods for estimating velocities leads to an oveAs above, to evaluate the performance of the detectors, a thresh-
determination of the estimation problem. This redundancy mighold is varied and the probability of detection and probability of



false alarm are determined for each step of this variation. Fig§s % > ;Z \

ure 5illustrates the detection probability using ATl (a) and DPCA S : 08

(b) over different vehicle velocities (i.e. phases) for certain vehi-# e o7 )

cle brightnesses as well as fixed background and false alarm ra 22 Field

As can be seen, for low velocities and bright vehicles ATI deliverss 04

generally better results while for faster vehicles it is outperformed™g 03

by DPCA. The reason for this behavior is that DPCA purely re-§ 02

lies on the interferometric phase, i.e., for low phase values thg o

detection is strongly influenced by noise, which leads to the sig- 028 Eg) 12116 20
nificant decrease of performance. In contrast, ATI makes also use

. - - igure 6: Detection Characterization based on airborne back-
of the amplitude so that, for low velocities, one additional feature . . . .
o . ground image (a) and impainted vehicles wRi®'S = 3dB +
is still left to detect a vehicle.

8dB and phase according to 65km/h: Curves for completeness
T g . ~ et (red) and correctness (green) for agricultural area obtained by
T T e A e DPCA with varying thresholds.

Pg o5 2 . Py o5t

v, lkm/]

(@)
Figure 5: Numerical Detection Characterization: Detection Prob-
abilities for given Background Clutter (bushes) and fixed False
Alarm Rate (10e-5) calculated for varying vehicle brightnesses
(RCS). (a) Results for ATI. (b) Results for DPCA.

3.3 Performance Analysis Based on Airborne Data 5 A

The validity of the simulation results has been assessed using re&idUre 7: Experiments with airborne SAR: Detection results and
data of flight campaigns. Besides of this, tests on real data set§!0City estimation for a dense traffic scenario
also allow to discover bottlenecks of the techniques employed and

to reveal unforeseen problems. An additional goal is to simulat

TerraSAR-X data for predicting the performance of the extractior?: Irst encouraging results have been achieved with the system de-

procedures. To this end, an airborne Radar system has been u ec(’jibed above, although we have to admit that too few scenes have

that has been modified so that the resulting raw data is comp een dpr?ctessedtuptt)o rlot\év to g|;/e r’e||ab|fe and stau:c,rt;]cally C(;)n'
rable with future satellite data of TerraSAR-X. We followed two ''"€¢ Statements about the system's periormance. The used ex-

different ways of assessmei}:using real background data and perimental proccesing system includes a combir?at_ion of an AT
to have a "ground-truth”, vehicles that have been artificially im-2and a DPCA detector, and allows for an automatic integration of

painted into the background (Sect. 3.3.1) , @hdetection of real a-priori knowledge (NavTeq road data). It performs velocity esti-

vehicles in scenes for which optical data has been simultaneousﬂzatlon based on ATI phase and on along-trgck displacement. The
acquired. Incorporated road data not only enables displacement measure-

ments but also the prediction of displacement intervals and thus a

3.3.1 Background Data and Impainted Vehicles Figure 6a) limitation of the search space. Typical results are depicted in Fig-
shows a larger SAR scene composed of different types of backire 7. It shows the detector performance for rather dense traffic.
ground. In two test areas, vehicles in form of point targets havéhlthough simultaneously acquired optical images are available
been impainted. The appearance of a vehicle (amplitude ant@r this scene, it was—due to unknow time delays—unfortunately
phase) has been randomized using a random generator. Since'ift Possible to match the car reference data form optical images
this case ground-truth is available one is able to obtain completeiniquely to the detection results. Yet the evaluation of these re-
ness and correctness curves when varying the detection threshofllts based on traffic flow parameters has shown that flow pa-
which replace the detection and false alarm rates before. Figameters can be derived precisely, although the completeness of
ure 6b) shows these curves for a typical image background usingetected cars is only moderate ((Suchandt et al., 2006)).

a fixed vehicle velocity, statistically distributed vehicle bright-

ness and DPCA as detection method. Although not being direcﬂyigure 8 illustrates the detection of vehicle by FM-rate variation.
comparable with Fig. 5b), the typical behavior of DPCA is con- The azimuth direction points from bottom to top, thus, along-
firmed also by this evaluation, i.e., there is a striking lock-in of track velocity components of vehicles travelling along the main

the quality of the results depending on the detection threshold. road in the center of the image are quite small and moving vehi-
cles are both blurred and displaced. At the bottom of Figure 8 a)

3.3.2 Vehicle Detection in Airborne Data In the following,  the marked image patch is focused with FM rates corresponding
results of a flight campaign are shown during which images oveto 0km/h and15km/h (assuming absence of acceleration). As
real-life traffic scenarios on highways were acquired. To evalcan be seen, the background of the image blurs for the second
uate the results of SAR-based vehicle detection, time series afase, while one bright point gets sharp (marked by red arrows).
aerial photographs have been taken — almost synchronized witkigure 8 b) shows the corresponding FM-slice, the detected peak,
the SAR acquisition. and an estimated along-track velocity of apprad0km/h as-



suming zero acceleration. Considering a road orientation of 1%rder to derive the real heading velocity of vehicles from their
degree the vehicle velocity computes to approximatélym /h, line-of-sight motion. If we assume that a detected vehicle acts
which fits reasonably well to the velocity computed from the dis-as point scatterer, the standard deviatignof its interferometric
placement37km/h). phase is defined by

1
v2-SCR

with SCRbeing the signal-to-clutter ratio of a point like target.
SCR values can be determined based on RCS measurements of
vehicles, which are shown in Sect. 2.2.1. Given Equation (12),
the standard deviation of the derived across-track velocity esti-
matedy results in

oy — Y~ (12)

o _ szn(ﬁmg) . )\ * VUsat
%~ \2-SCR-4r - Al

Given the system parameters of TerraSAR-X and assum#t@/a
of 5 dB we get a standard deviatiot),, of approximately 30 km/h

for the center of the TerraSAR-X sl(/vath. Clearly, for an analysis
of traffic behavior and traffic dynamics, this accuracy level is only
marginally sufficient.

(13)

Scene (0 kmdh) | Scene (-15 kmih)

(a) , 4.2 Velocity Estimation from Along-track Displacement

Besides of the above mentioned approach, the heading velocity
of a moving vehicles,,; can be derived by measuring its along-
track displacement from its corresponding road segment. The
functional relation is given by

~Aaz Aaz * Umt
= 14
Urnt R - sin(Groad) * 81n(0ine) (14)

where Aaz = |Zr0ad — Zmt| is the along-track displacement.
The accuracyaa- of the velocity estimate is a function of the
quality of the displacement measuremght,ea — Zm:|, and the
accuracy of the road’s heading anglge, .. relative to the satellite
track. Opdaz is calculated by error propagation.

oode N0, (ooae .,  (o0he\?,
Ophaz= O oy O%road Ooroad
Y YUmt a.flfgbj o0 awroad 8aroad
(15)

Vo= 105 kmih

(b)
Figure 8: (a) Image patch (blue rectangle) focused with two dif-From empirical evaluations of the peak detection approach we
ferent FM-rates (bottom). Red arrows mark azimuth line in whichassessed the accuracy of the target’s along-track position to be
the sharpened point lies. (b) FM slice computed for this azimuthr,,, = 1 m. The standard deviation of the road axis position
line (top) and detected peak (bottom). Oe,..q Of the NavTeq data was estimated by comparing the vec-
tor data with precisely geocoded aerial images. The mean dis-
tance of the NavTeq axes from their corresponding reference was
4 PERFORMANCE ANALYSIS OF VELOCITY determined to be, ., = 3.5 m (this result holds for high level
ESTIMATION roads like motorways). From this value, and by assessing the av-
erage length of the NavTeq polygon pieces, the accuracy of the
road heading angle., ,,, was deduced. For motorways its stan-

For each of the three approaches for velocity estimation,i).e. . [
hp v ) dard deviation results ia,,,.__, = 2°.

via interferometric phasd) via displacement, anid) via along-

track blurring, the corresponding accuracy values are derived, anT
he accuracy of velocity estlmategmz is derived by inducting

at the end of this section, an example for accuracy when (:omblnh | h |
ing approaches is given. ese empirical error measures into Equatlon (15). The resulting

eITor o aa= /vme 1S shown in Figure 9 as a function of headlng
4.1 Velocity Estimation based on the Interferometric Phase anglea,vqq and normalized with the real target velocity,. |

can be seen from Figure 9 that the vehicles heading veloggy
The interferometric phase allows for a direct access to the objec&@n be estimated with a high aCCUfaCyO%ngz/Umt < 10% if
line-of-sight velocity component without the need of auxiliary they were moving on roads with a heading anglevaf.q > 4°.
information. Still, information about the relative orientation of For roads running nearly in along-track directian.{,q < 4°)
the road axis corresponding to the particular vehicle is needed ithis approach fails to provide reliable velocity measures.



1000 For a0aa < 4°, i.e. for the heading angles of interest (see Sect.
4.2), the standard deviatioﬂﬁaptM reaches up to 22 km/h. The
relative error of the estimated velocities is indicated in Figure
10b). It indicates that the velocity of slow moving targets cannot
be reliably estimated even for very small heading angles.a,
whereas the speed of fast moving targets can be estimated with
better relative accuracy.

=
1)
S}

Velocity error [%)]
s

Sections 4.1 to 4.3 show that several possibilities exist to estimate
o1 the velocity of moving vehicles from TerraSAR-X data. Accord-
’ Heading angle [] ® ing to the quality of the velocity estimates the usage of along-

Figure 9: Relative velocity errob,aa. /v estimated from track displacement is the most promising approach for a wide

along-track displacement as a function of heading anglg . ranglj(e ?J heading angflml"ad_' vae_hlcles ”_‘O;’e_ nfearl)lll in a_Iong-
Note the logarithmic scale. track, the accuracy of velocity estimates is fair for all estimators.

Still, the use of along-track blurring gives best results.

4.3 Velocity Estimation from Along-track Blurring

4.4 Examples
Both of the already presented estimation methods fail to give a re-
liable velocity estimate for vehicles moving almost in along-trackTo demonstrate the quality of the velocity estimation for real live
direction. To fill the gap we propose to use the along-track blurscenarios we calculated the expected standard deviation of the
ring effect for estimating along-track velocities. The functional estimated velocityr; , for a road network north of Munich. In
dependence of the velocity estimate on unknown or uncertain pahjs area three large motorways are situated which are highly fre-

rameters is given by: quented during rush hours. We applied two different velocity esti-
K . . — mators to this test, the displacement-based and the blur-based es-
e = =/ (Vsat — Vme) - c08(4)2 + yo - y - 5in(&) + Vsar timator. Real TerraSAR-X orbit and sensor parameters have been
(16) used in this simulation and an average speed of 100 km/h was as-
As explained in Section 2.1 both along-track velogity= vm: - sumed. The orientation of the motorways relative to the choosen

cos(cr) and across-track acceleratiop give rise to peak broad-  TerraSAR-X orbit and the resulting,,,, values for both estima-
ening in along-track. Usually, it is assumed that the accelerators are show in Figures &) to 11c) (the corresponding flight
tion of vehicles is zero during the time of illumination. As a gjrection of the satellite is indicated as well. The standard devia-
consequence, actual occurring across-track accelerations intrion of the displacement-based velocity estimate. is shown
duce errors to the velocity estimates. According to empirical, figure 1) in km/h for all three motorways. It can be seen
studies based on inertial navigation system measurements Wit vehicle velocities can be estimated with high accuracy for
cars driving on city streets and highways, accelerations up tyge parts of the road network. However, in areas where the road
ay = 2m/s” are likely to happen in common traffic scenarios. is oriented nearly in along-track, the estimation error increases
Thus, we assume.,, = 2 m/ s” as a "Worst case” error source gramatically. Figure 14) shows that the second detector, which
for the following qalpulatlons. Besides of possible acceleration g phased on the blurring of the impulse response, provides better
the standard deviation of the road heading angle,,, = 2°  regults for this areas. Thus, in order to get an optimal estima-
influences the accuracy of the velocity estimaje, . tion quality, we combine both methods depending on the relative
orientation of road and satellite track. The performance of the
DoSEM 2 ) DoSEM 2 ) combined estimator is shown in Figurec)1With the presented
T35 A\ Banoag ) Torent T\ "Ha, ) T (I7)  algorithm velocities can be estimated with an accuracy better than
10 km/h for about 80 % of the investigated road network.

mt

aOf?"oad

Figure 10a) shows@(n;M as a function of real target velocity,+
and real road headirtlgmad. The standard deviation of the veloc-

ity estimate is dominated by acceleration influences and increases ) )
With c0ea. The dependence an.; is merely a secondary effect. A system to detect moving vehicles from TerraSAR-X data and

to estimate their respective velocities has been presented. Besides
5t
5(
4t
4(
3
3
2t
2
1t
1
5
6 8 10 °

: j / 7 a detailed description of the methods used, performance analyses
J / . areshown in addition. The detection of fast moving traffic seams
« to be very promissing, whereas slow moving cars are hard to dis-
= tinguish from non moving background. The estimation of the
/w velocity of detected vehicles can be done with high accuracy for
., hearly all possible observation geometries. All approaches are
. Subject to further improvement and a more detailed performance
= analysis will be presented as soon as the satellite is in its orbit.
Hegding angle [] HE;ding ange\e [ ¢ *

@ (b)
Figure 10: a) Standard deviatien , of vehicle velocities esti-

mated from along-track blurring aéf a function of target velocity )
vme and heading angle,.oa. oo«  is given in km/h. b) relative ~ The authors would like to thank all members of the DLR/TUM
mt

velocity errorose /v TerraSAR-X traffic processor team for their valuable contribution
" to this work.
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Figure 11: Simulation of;,,, for a road network north of Mu-
nich (v.: = 100 km/h assumed). a) shows the estimation accu

racy for a displacement-based detector, b) for a blur-based dete

tor, and c) indicates the estimation quality if both detectors ar
combined.
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