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ABSTRACT:

A method for accurate 3D reconstruction of road features from multiglibrated aerial images of urban areas is proposed in this
paper. We here focus on road-marks and in particular on zebsaiogs and discontinuous road-marks separating circulation lanes.
The approaches used here are generic and based on a-prianaékteswledge and thus constrain the extraction of image features. As
we will explain, two strategies are adopted depending on the object sizeeBi@-crossings, we first build 3D segments representing
stripes’ borders by 2D segments matching. For discontinuous landsjildea graph describing the network in each image and then
match nodes in order to obtain 3D position of stripes’ centers. This prevwideoth cases an initial solution in 3D space. Using
geometric and radiometric modeling to obtain a set of plausible models, dablefior an optimal solution. The last step yields us
to choose the best one in adequacy with images data. A correlation hasey end template matching strategy achieve this in a
hierarchical frame. The algorithm is finally evaluated with ground comaits surveyed with a millimetric precision.

1 INTRODUCTION bined with INS and / or other sensors (odometers, gyroscopes,
...) are often used. However, in dense urban areas, GPS masks,

. . . multi-path errors and bad satellites configurations are extremely
Most of the photogrammetric research on object extraction fron}requent. These errors cannot be fully corrected with an INS due

a_lerlal images in the last years ha§ focused on bundmg_reconstru% its relative drift on long distances providing an absolute accu-
tion. However, the road network is extremely structuring for ur- .
racy from 0.5 m to 1 m. Thus, to provide an accurate georef-

ban scene analysis and for defining possible building ROIs. In . h deal with ld introd
addition, in 3D city models, roads and pavements should need teren0|ng, we ave.t.o eal wit extgrna . ata to |r)tro uce con-
. [ - . Qraints on the position. A strategy is to integrate in the system

be described as well as buildings, thus needing a surfacic repré-_ . " . .
aerial images georeferenced with a bundle adjustement. Images

sentation and a decimetric and geometric accuracy instead of t b he kev-f for obtaini bsolute localisation b
classical linear spaghetti model encountered in most of Road Gl en h_econ;]et € dey- rarréef oro htalnmg anso utfe oca Isation by
databases. In this scope, (Mosselman, 2003) proposed a 3D ro?aatc Ing shapes detected from the two points of view.

reconstruction from LASER points cloud and a cadastral map, " France, zebra-crossings, and more generally road markimare (
L P . - Pinost cases) governed by careful specificafioMoreover, these

For these applications, road-marks are very interesting descn%—

a

. X . inds of objects can be considered as invariants with a simple
tors of the road surface architecture. Semantic and function . o .
. . ; ) . . Shape not suffering from generalisation, e.g to match aerial and
informations can be derived from them: way of circulation, num-

X . ound based images or for the generation of landmarks data-
ber of lanes, special lanes (public transport, ...). They can be us o
ases for autonomous navigation.

in numerous applications such as cartographic road databases up- . i .
dating (Zhang, 2003), road extraction (Hinz and Baumgartnelr‘lﬂus paper describes robust and accurate road-mark detection and

2002; Steger et al., 1997) or creation of visual landmarks used irr]econstrucnon experts that can be helpfull for all previously de-

autonomous navigation systems (Royer et al., 2006) scribed applications. We will not at all describe the reconstruc-
9 y y N ‘ tion of the road network topology which could be in any case

Concerning ground-based imagery, many papers were publish N -~ .
and various approaches are used.  (Se and Brady, 2003) deot_a extracted from medium-scale existing databases (at least in

tect zebra-crossings for outdoor aid navigation for the partially urope and North America) but only describe two road-mark ex-

sighted using vanishing lines. ~ (Rebut et al., 2004) proposegerts that could be helpfull to derive higher level information in

a method for road marks analysis with mathematical morphol-a more complete system. The paper is organised as follows. A

ogy and a training database. For an automatic road markinflrst part presents the algorithm for 3D zebra-crossing reconstruc-

repainting tool, (Charbonnier et al., 1997) designed an algogon' A second one is focused on the 3D reconstruction of dashed

) . ; / : . lanes. We then present in a third section a hierarchical method
rithm analysing segments by pairs. In real time driver as&stanc%r refining the 3D position of the detected obiects. Finally. we
(Enkelmann et al., 1995) introduced a method using parallel seg- 9 po: 0l ) Y

. . . . gpresent briefly numerical results and evaluations.
ments and radiometric features in order to detect marking lanes!

The link between aerial and terrestrial imagery has become more
and more important in the last years. It is crucial for instance for 2 ZEBRA-CROSSING RECONSTRUCTION
urban environments reconstruction problematics such as georef- ]
erencing and / or matching of images produced by mobile map¥Ve first choose to reconstruct zebra-crossings because theglgtron
ping systems (MMS) or to texture 3D models obtained from aerStructure the road network in urban areas. Moreover, they are the
ial imagery (Rnard et al., 2006). Most of the problems encoun-  1source: Ministre de I'Inérieur et Minisere de 'Equipement, de
tered by MMS lies in the fine and robust absolute localisation of'Am énagement du Territoire et des Transportsstruction intermin-
the vehicle. Direct georeferencing methods such as GPS conistérielle sur la signalisation rouéire. 1988.




objects covering the greatest surface. by two all the pairs of planes within the set (see Figure 2 and 3).
Each plane is defined by the center of projection of the camera
2.1 Zebra-crossing specifications and goes through the image straight line. Each segment of a set
defines & P;, u;) 3D line. The final 3D segment lies on the line
The specifications show that pedestrian walkaways have a fixeethose directionv” minimises in a robust way the sum of angu-
width of 0.5 m. The length of each stripe is only described in ur-lar difference with all the segments of a given set (see Equation
ban areas by a minimal size of 2.5 m. Two consecutive stripeg). Using a least squares minimisation, it leads to find the vec-
are separated by a distance in the raf@ém;0.8m], butis tor X =v= (z,y, z)! by solving the systemi* AX = 0 where
regular for a zebra-crossing. Finally, the stripes are white on &1 4 is the3 x 3 matrix defined in Equation 2. Vectox is fi-
black background, but in special cases, like pedestrian areas, th@lly obtained by extracting the eigenvector corresponding to the
hue can be inversed, or the background can be colored. Zebrgmallest eigenvalue ofi*A. Note that the normalisation of the
crossings have most of the time four to twenty stripes, and theif;; |eads to the constraiitX || = 1.
maximum length is around 6 m.

argmin Z sinQ(g, u;) = argmin Z H? A w; Q)
AtA — _Zulw 'LLiy Z(u?'c + ufz) _Zuiyuiz
_;uiz Ui, —;uiy Ui, ;(ui + u?y)
@
\ Oy
Figure 1: Extracts of a 40004000 digital image in Amiens (25 4
cm ground pixel)
2.2 Zebra-crossing extraction \ %/

Our strategy relies on 2D segments lines image features. We use

the Canny-Deriche edge detector (Deriche, 1987). The images

are oversampled by a fact@rto have a better sampling of the

convolution filter, andx is set to 1.5 to handle a compromise

between localisation and sensitivity to noise. A hysteresis thresh-

old is then processed, followed by subpixelar localisation of each ~ Figure 2: One possible two by two planes intersection
contour paint. Finally, chaining of contour points and polygonal-
isation is performed by the Douglas-Peucker algorithm (Douglas
and Peucker, 1973). We now have 2D segments, with the knowl-
edge of their covariance matrix i, 6) polar coordinates (De-
riche et al., 1991).

In order to find zebra-crossings’ segments, we analyse their rela-
tive organisation, and use specifications. First, segments are fil-, . . .
tered on their length, taking in account a tolerance error. Aftef1gure 3: Zebra-crossing of Figure 1 3D segments corresponding
this, we search for parallel groups of segments (with a toleranct® the two by two intersection of pairs of planes

taking in account the angular variance) respecting stripes size and o . . .
distance between stripes. The homogeneity of length is equallggCe we have the direction, we have to find the point which the

computed, thus following again specifications. Finally, we retain-_ line g(;%s. through. It is r(]jgfmed as the ?ne which mlnlmlseﬁ
objects that have at least six segments. the sum of distances to each 3D segment of a given set. Using the

same techniques, we have to solve the systémX = B where
Bis a3 x 1 vector. Finally, the end-points of the reconstructed
3D segment are given by projecting orthogonally the extremities

This 2D processing provides a set of segments belonging to zebr3f €ach segment of the considered set and computing the union
crossings. We now build 3D segments with the detected strudSe€ Figure 4 - (Xu and Z.Zhang, 1996)).

tures in the images. For 3D segments reconstruction, we choose
a true multi-image matching algorithm of sweep-planes (Collins,
1996) (more details can be found in (Taillandier, 2004)). Here,

2.3 3D segments reconstruction

we introduce an external data - a DSM computed by image match- ’ . \\\\\?\i\s\\\;\\t\&

ing (Pierrot-Deseilligny and Paparoditis, 1996) - to limit search /////,/”/’ Yl VAN

space to cut down combinatory. The DSM is morphologically s

dilated (to define an upper and lower bounding surface) and the Figure 4: Final 3D segments

object space is discretised in voxels. The sweep step and the cells’

size are defined with respect to the flight parameters. This process only reconstructs the long sides of the stripes. We

With this sweep-plane technique, we obtain for each voxel segrow need to find the transversal axis , i.e the stripes’ small side.
ments correspondences between each images. To reconstrucTlaus, we have to find two 3D lines, each of this corresponding to
3D segment from a match, we use a two step minimisation procesne transversal side of the zebra-crossing. On each side of it, we
dure. We first construct a set of 3D segments by intersecting twase a robust least squares minimisation on the long side segment



extremities to find those 3D lines. The small sides are then ob-
tained by projecting those lines on the stripes’ borders segments.
To find a stripe, and thus know which borders we have to link two
by two, we use the gradient direction and distance between two
consecutive segments (distances constraints from specifications
are introduced). Result is shown on Figure 5.

SSOSSS
Figure 7: Extracts of a 40004000 digital image in Amiens (25
cm ground pixel)
Figure 5: Final zebra-crossing stripes of Figure 1 describing stripes’ borders. A graph representation - which pro-

vides the neighbors of an object - is for this purpose more robust,
because predecessor and successor of a stripe will provide a fine
orientation needed for the 3D reconstruction of stripes’ borders.
The strategy for DRM detection is based on graph theory. The
graph construction of the DRM in an image consists in find-
ing arrangements of segments who best fit the external geomet-
ric knowledge from specifications. As for zebra-crossings, seg-
ments are extracted and we only keep the ones belonging to a
specific length interval defined by the type of DRM we want to
extract (see Table 1). We then have segments that potentially be-
long to DRM. We now have to describe arrangements between
those road-marks. So, we build numerical potentials describing
Figure 6: Final zebra-crossings projected in image space the strength of the interactions between pairs of segments. Three
potentials described below are used in our application: a connec-
Each stripe of a zebra-crossing is now modeled by a 3D parallekion potential, an alignment potential and a potential for the the
ogram and is considered as an initial solution for a fine positiodength homogeneity. The value for each potential is given by a
refinement described in section 4 set of parameters and takes a value thanks to a function.

3.2.1 Potential function
3 DISCONTINUOUS ROAD-MARKS The potential functiol is generic and has the same general shape
RECONSTRUCTION for each potential. Two parameters describe:iafide). How-
ever, this function must respect a set of constraints:
The other road-mark feature extremely structuring for the roac its values must be ifo; 1]
network is the discontinuous line. We now present our strategy it must be symmetric

for its reconstruction. e it must be increasing ofr-1; 0]
((c) =¢(=c) =0
3.1 Discontinuous road-marks specifications el ((0)=1

Vz € [—e;e],¢(z) =1
Many kind of Discontinuous Road-Marks (DRM) can be found The symmetry is important because angles are computfd 2n).
in urban environments. They depend on the road functionality, olhe parametet allows to choose the extension of the potential
on the road type, and the stripes they are composed of are definéghction. e is used to have a "plateau” defining a set of values for
by three characteristics: the length, the width and the distance bevhich the potential function takes its maximum value. Finally,
tween consecutive stripes. Table 1 and Figure 7 give an overviewe choose to define the functigras:
of the discontinuous road-marks available in the French towns.

: . . ¢ R - [0; 1]
Type | Stripes length (m.)| Distance between stripes (m|) . 1 if lz| < e
T3 3 1.33 c — 0 if |z] > ¢
T2 3 3.5 e i:fi else
T2 1.33 5 o 3)

Table 1: Specifications for discontinuous road-marks ) o
3.2.2 Potentials definitions

Connection potential
3.2 Monocular extraction This is the first potential to be computed because if it is null, the

others are undefined. Around a given segmgntwe define a

We do not use the protocol presented for zebra-crossing. DRMegion of interesROI,, = ROI{Y UROI{?. Given an angular

are objects whose size is under the ground pixel size. Indeedpleranced., ROL&{> is an union of discs of radii. located at
their stripes are at most 12 cm width. So, working directly with a given distance frora; the middle ofs; in the direction ofs;.
segments in 3D space is not possible because these image featutéss surface is approximated by a trapeze (see Figure 8).

at this resolution are highly miss located: the stripes’ borders argVe then look for segments whose middles; belongs taRO 1, .
stretch toward the exterior, and because of their small length, se¢f such segments exist, the connection potential is:

ments lines have also a very noisy direction. So, the protocol de-

scribed in 2.3 will be inefficient for reconstructing 3D segments P(si~ s5) = C(d(57,55) — din, ce, ec) (4)



can be equivalent, but most of the time, we will have > a,.

A et sement In our application, we often use. = 0.45, a, = 0.35 and
‘\w/’”, : a; =0.2
\»H‘, To be sure to find the objects relations we are looking for, we
) R/ = use a threshold;, on each individual potential and also on the
5 global one. Thus, two segmentsands; are considered to be in
interaction, only if the following conditions are respected:

ROI?)

vk ya,l} ,P(si ~ s )
{ € {c,a,l} (sks)>;C @

Figure 8: Connection potential description P(si ~ s5) > da
G

whered,, is the distance between two consecutive stripesan o ) ) ]

be defined as a fraction df;, ande. allows to take into account Itis efficient to obtain good results and also in terms of time con-
segment detection accuracy. suming. Interactions are stored in anx n adjacency matrix,
Alignment potential wheren is the number of selected segments. A segment is se-
After the connection potential, we compute an alignment potenlécted only if it interacts with another one. The matrix fully de-
tial. It is an angular difference between the two segmentnd scribes our DRM network, but we need some simplifications in
s; e are studying. The angular differer@eis thend? = 6, -0, order to obtain a graph composed of nodes and edges.' .

(see Figure 9). As we want to penalise pairs of segments havintjote that some tests show that anddx. values are not critical.

a high angular difference, the alignment potential is: .
3.3 Graph creation

P(si ~ s5) = C(07,ce, ea) (5) :
e As we used a segment detector for our modeling of DRM net-

work, a stripe is most of the time composed of two parallel seg-

0 \\g o ments. We want to have a node representing each stripe, and a

i

e 5 valued edge (modeling interaction’s strength) linking two adja-
/ R cent stripes.

Thus, a node is created with the following rules:

o if there is only one segment for a stripe, the node is its middle,

o if there are two segments for a stripe, the node is the barycenter

In our application, we use. = 7/2 because when segments are Of the four extremities (a stripe is composed of two segments if
perpendicular, the potential must be nu,, is set to avoid pe- w0 segments having the same direction and a high recovering are
nalising curved roads, and can take into account the segmentfgund in a small neighborhood)

variance, i.e uncertainties on their angular parameter. The valuations between two edges are computed using the inter-
Length potential actions values between pairs of segments composing each stripe.
This potential is useful to know the length homogeneity of two Thus, if we consider two stripes (i.e two nodes), the valuation of
segments; ands;. We assign a higher potential to pairs of seg_the.edge linking them is the maximum of the interaction between
ments of the same length - in a DRM network stripes have thdheir segments.

same length (see Figure 10). Thus, we compute the norms’ ratid\s we use 2D noisy segments lines, the center of a stripe as com-
puted above can only be considered as an estimation of the real

position. To obtain a best solution, we build a 2D radiometric

template (see section 4) with the known geometry and find the
best location of the center by moving the template in the vicinity

of the node and optimising a similarity score.

nalized gr ’”‘”L;\. /
/ /\) 3.4 Chaining road-marks

\/ The graph created in 3.3 is used to extract DRM chains. This
is done recursively on its adjacency matrix. We search for long

paths and validate them with geometric characteristics. We first

look for regularity, i.e a path must not be auto-intersecting and

e; allows to have a tolerance on the length. Indeed, the edge déis curvature must vary slowly. In addition, some structures are

tector is very sensitive and often, segments are truncated at thdipund on the roofs (false alarms). We filter them using a DTM

extremities. This parameter is then set to take this observatiogenerated from a DSM. Results are shown on Figure 11.

into account, and so on to avoid penalising grouping of pairs of

segments having a small length difference. In addition, we us8.5 3D Reconstruction

c = 1.

Gl|oba| potential A graph of the DRM is created as described in the previous sec-

Finally, once we have computed the three individual potentialstions for each images. The last step of the reconstruction process

we use a global potential to summarise existing relations betweefPnsists in matching nodes across the different views. We use

pairs of segments. The global potential is simply a weighted sumere a simple algorithm consisting in making each image being
successively the master one. For each stereopairs and epipolar

s

Figure 9: Alignment potential description

Pls v s) = (1 —min (120 15 ¢ o)

Figure 10: Length homogeneity potential description

P(si > sj)= >, arP(si~sj) constraints, we search for candidates for matching. The graph
k=c,a,l g (7)  structure allows introducing topological, i.e neighborhood con-
Vk, o 2 0, zk: ag =1 straints. We can thus create a set of possible matches.

From each matching possibility, a 3D point is reconstructed by in-
As we know, there is a high incertitude on segments norms; so tersecting the rays (a ray is a 3D line going through the camera’s
is the smallest coefficient. In addition,. anda, are high, and center of projection and the image point). The resulting 3D point



4.1 Notations and definitions

M™: the model of reference at level(see 4.3),
My the best model,

T aclass of transformations,

T;: atransformationT = JT3),

M, a transformed model\; = TiMﬁn)).

An object's model is represented with a set of four points. So, a

model is defined by the central poimt = (x;, ;)" of the stripe,

its lengthZ; and directioni}, its width; and directiond?.

A transformation is the set of operations used for the genera-

Figure 11: Road marks chaining tion of the model hypothesis. Both for zebra-crossing and DRM

stripe, it is composed of two rotatioms andr; along the direc-

is the one which minimises the sum of distances to the rays. T§ONS vectorsd; andd;, and of translations,, ¢> andts along

decide between concurrent matches, we use a DSM and check f8Rch 3D axis. Specially for zebra-crossings, the transformations

theZ difference between the reconstructed point and the heigmlso haVe to take into account the |ength and Wldth Variations of

given by the DSM. A multi-image similarity score is also used to the object. Finally, a model is composed of five parameters for a

validate or not the 3D point. DRM stripe and of six parameters for a zebra-crossing stripe (see

We thus obtain 3D points describing the center of DRM's stripes Equation 9).

Note that if an object (car, tree, ...) hides a DRM element in an T,

image, the multi-image frame allows to obtain with this robust 3D T7 (F1, 72, t1 X t2 Y, ts Z,aL;) = T7.

reconstruction the missing element if it is at least not occluded in TPEM (7 7, ;(, to 57, ts }) = TPRM,

two images. A 3D reconstruction is given on Figure 12.

9)

The vectors of parameters to be estimated are then defined by:

N { @Zebra = (ﬂ,@7t1,t2,t370) (10)
NN OPEM — (71 75t ta, t3)
\‘\\
\, NS 4.2 Model choice
NN N\
\ O

To choose the best 3D position for a stripe, our strategy is to
compare the image signal with a perfect simulated signal. For
Figure 12: 3D DRM reconstruction and textured triangulation oneach model in 3D spac#&1; we have four points making a par-
the 3D stripes’ centers allelogram. The knowledge of the projection geometry allows to
project this shape in all the imagés. We thus obtain for each
vertex of M; its subpixellar position in 2D images spaces. We
then simulate a signd.S;; (5 stands for the image number) with
this positions for each images, i.e a white anti-aliased 2D shape
on black background. Finally, the best 3D modell, is chosen

by maximising the following energy:

My = maxZCorrMi(SSu,Ij) (11)
J

Figure 13: Final DRM of Figure 12 projected on image space

4 3D OBJECTS POSITION REFINEMENT

The strategies presented in 2.2 and 3.2 provides us a robust initial .

solution that needs to be refined. So, we model a stripe as a par- aF TEee

allelogram in 3D space and try to find its optimal position using ;

multiple images (Baltsavias, 1991) in a hierarchical frame. The

idea is to distort the base model (the initial solution) in 3D space

and to correlate a derivated 2D signal with images data. (Jain dtigure 14: Projections in image space of 3D models (lower im-
al., 1996) uses this principle in 2D space with a grid transformaage) on a simulated signal (upper image). Each color corresponds
tion. An other modeling of this strategy is proposed in (Chen eto a different modelM;. The found solution is in green.

al., 2003).



4.3 Hierarchical models generation We have presented 3D reconstructing experts for road marks which
are a structuring features of the road network e.g to separate lanes

As we have six parameters to estimate a zebra stripe and five forand estimate their width.

DRM stripe, the computational search space is huge (because all

parameters are estimated simultaneously) and need to be reduced. REFERENCES

That is why we adopt an iterative multi-scale frame (Kropatsch,

. ; altsavias, E., 1991. Multiphoto geometrically constrdimeatching.
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