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ABSTRACT:

A method for accurate 3D reconstruction of road features from multiple calibrated aerial images of urban areas is proposed in this
paper. We here focus on road-marks and in particular on zebra-crossings and discontinuous road-marks separating circulation lanes.
The approaches used here are generic and based on a-priori external knowledge and thus constrain the extraction of image features. As
we will explain, two strategies are adopted depending on the object size. For zebra-crossings, we first build 3D segments representing
stripes’ borders by 2D segments matching. For discontinuous lanes, webuild a graph describing the network in each image and then
match nodes in order to obtain 3D position of stripes’ centers. This provides in both cases an initial solution in 3D space. Using
geometric and radiometric modeling to obtain a set of plausible models, e thenlook for an optimal solution. The last step yields us
to choose the best one in adequacy with images data. A correlation based energy and template matching strategy achieve this in a
hierarchical frame. The algorithm is finally evaluated with ground controlpoints surveyed with a millimetric precision.

1 INTRODUCTION

Most of the photogrammetric research on object extraction from
aerial images in the last years has focused on building reconstruc-
tion. However, the road network is extremely structuring for ur-
ban scene analysis and for defining possible building ROIs. In
addition, in 3D city models, roads and pavements should need to
be described as well as buildings, thus needing a surfacic repre-
sentation and a decimetric and geometric accuracy instead of the
classical linear spaghetti model encountered in most of Road GIS
databases. In this scope, (Vosselman, 2003) proposed a 3D road
reconstruction from LASER points cloud and a cadastral map.
For these applications, road-marks are very interesting descrip-
tors of the road surface architecture. Semantic and functional
informations can be derived from them: way of circulation, num-
ber of lanes, special lanes (public transport, ...). They can be used
in numerous applications such as cartographic road databases up-
dating (Zhang, 2003), road extraction (Hinz and Baumgartner,
2002; Steger et al., 1997) or creation of visual landmarks used in
autonomous navigation systems (Royer et al., 2006).
Concerning ground-based imagery, many papers were published
and various approaches are used. (Se and Brady, 2003) de-
tect zebra-crossings for outdoor aid navigation for the partially
sighted using vanishing lines. (Rebut et al., 2004) proposed
a method for road marks analysis with mathematical morphol-
ogy and a training database. For an automatic road marking
repainting tool, (Charbonnier et al., 1997) designed an algo-
rithm analysing segments by pairs. In real time driver assistance
(Enkelmann et al., 1995) introduced a method using parallel seg-
ments and radiometric features in order to detect marking lanes.
The link between aerial and terrestrial imagery has become more
and more important in the last years. It is crucial for instance for
urban environments reconstruction problematics such as georef-
erencing and / or matching of images produced by mobile map-
ping systems (MMS) or to texture 3D models obtained from aer-
ial imagery (Ṕenard et al., 2006). Most of the problems encoun-
tered by MMS lies in the fine and robust absolute localisation of
the vehicle. Direct georeferencing methods such as GPS com-

bined with INS and / or other sensors (odometers, gyroscopes,
...) are often used. However, in dense urban areas, GPS masks,
multi-path errors and bad satellites configurations are extremely
frequent. These errors cannot be fully corrected with an INS due
to its relative drift on long distances providing an absolute accu-
racy from 0.5 m to 1 m. Thus, to provide an accurate georef-
erencing, we have to deal with external data to introduce con-
straints on the position. A strategy is to integrate in the system
aerial images georeferenced with a bundle adjustement. Images
then become the key-frame for obtaining absolute localisation by
matching shapes detected from the two points of view.
In France, zebra-crossings, and more generally road marks are (in
most cases) governed by careful specifications1. Moreover, these
kinds of objects can be considered as invariants with a simple
shape not suffering from generalisation, e.g to match aerial and
ground based images or for the generation of landmarks data-
bases for autonomous navigation.
This paper describes robust and accurate road-mark detection and
reconstruction experts that can be helpfull for all previously de-
scribed applications. We will not at all describe the reconstruc-
tion of the road network topology which could be in any case
be extracted from medium-scale existing databases (at least in
Europe and North America) but only describe two road-mark ex-
perts that could be helpfull to derive higher level information in
a more complete system. The paper is organised as follows. A
first part presents the algorithm for 3D zebra-crossing reconstruc-
tion. A second one is focused on the 3D reconstruction of dashed
lanes. We then present in a third section a hierarchical method
for refining the 3D position of the detected objects. Finally, we
present briefly numerical results and evaluations.

2 ZEBRA-CROSSING RECONSTRUCTION

We first choose to reconstruct zebra-crossings because they strongly
structure the road network in urban areas. Moreover, they are the

1Source: Minist̀ere de l’Int́erieur et Minist̀ere de l’Equipement, de
l’Am énagement du Territoire et des Transports:Instruction intermin-
istérielle sur la signalisation routìere. 1988.



objects covering the greatest surface.

2.1 Zebra-crossing specifications

The specifications show that pedestrian walkaways have a fixed
width of 0.5 m. The length of each stripe is only described in ur-
ban areas by a minimal size of 2.5 m. Two consecutive stripes
are separated by a distance in the range[0.5m; 0.8m], but is
regular for a zebra-crossing. Finally, the stripes are white on a
black background, but in special cases, like pedestrian areas, the
hue can be inversed, or the background can be colored. Zebra-
crossings have most of the time four to twenty stripes, and their
maximum length is around 6 m.

Figure 1: Extracts of a 4000×4000 digital image in Amiens (25
cm ground pixel)

2.2 Zebra-crossing extraction

Our strategy relies on 2D segments lines image features. We use
the Canny-Deriche edge detector (Deriche, 1987). The images
are oversampled by a factor2 to have a better sampling of the
convolution filter, andα is set to 1.5 to handle a compromise
between localisation and sensitivity to noise. A hysteresis thresh-
old is then processed, followed by subpixelar localisation of each
contour point. Finally, chaining of contour points and polygonal-
isation is performed by the Douglas-Peucker algorithm (Douglas
and Peucker, 1973). We now have 2D segments, with the knowl-
edge of their covariance matrix in(ρ, θ) polar coordinates (De-
riche et al., 1991).
In order to find zebra-crossings’ segments, we analyse their rela-
tive organisation, and use specifications. First, segments are fil-
tered on their length, taking in account a tolerance error. After
this, we search for parallel groups of segments (with a tolerance
taking in account the angular variance) respecting stripes size and
distance between stripes. The homogeneity of length is equally
computed, thus following again specifications. Finally, we retain
objects that have at least six segments.

2.3 3D segments reconstruction

This 2D processing provides a set of segments belonging to zebra-
crossings. We now build 3D segments with the detected struc-
tures in the images. For 3D segments reconstruction, we choose
a true multi-image matching algorithm of sweep-planes (Collins,
1996) (more details can be found in (Taillandier, 2004)). Here,
we introduce an external data - a DSM computed by image match-
ing (Pierrot-Deseilligny and Paparoditis, 1996) - to limit search
space to cut down combinatory. The DSM is morphologically
dilated (to define an upper and lower bounding surface) and the
object space is discretised in voxels. The sweep step and the cells’
size are defined with respect to the flight parameters.
With this sweep-plane technique, we obtain for each voxel seg-
ments correspondences between each images. To reconstruct a
3D segment from a match, we use a two step minimisation proce-
dure. We first construct a set of 3D segments by intersecting two

by two all the pairs of planes within the set (see Figure 2 and 3).
Each plane is defined by the center of projection of the camera
and goes through the image straight line. Each segment of a set
defines a(Pi,

−→ui) 3D line. The final 3D segment lies on the line
whose direction−→v minimises in a robust way the sum of angu-
lar difference with all the segments of a given set (see Equation
1). Using a least squares minimisation, it leads to find the vec-
tor X =

→
v = (x, y, z)t by solving the systemAtAX = 0 where

AtA is the3 × 3 matrix defined in Equation 2. VectorX is fi-
nally obtained by extracting the eigenvector corresponding to the
smallest eigenvalue ofAtA. Note that the normalisation of the
−→ui leads to the constraint‖X‖ = 1.
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Figure 2: One possible two by two planes intersection

Figure 3: Zebra-crossing of Figure 1 3D segments corresponding
to the two by two intersection of pairs of planes

Once we have the direction, we have to find the point which the
3D line goes through. It is defined as the one which minimises
the sum of distances to each 3D segment of a given set. Using the
same techniques, we have to solve the systemAtAX = B where
B is a3 × 1 vector. Finally, the end-points of the reconstructed
3D segment are given by projecting orthogonally the extremities
of each segment of the considered set and computing the union
(see Figure 4 - (Xu and Z.Zhang, 1996)).

Figure 4: Final 3D segments

This process only reconstructs the long sides of the stripes. We
now need to find the transversal axis , i.e the stripes’ small side.
Thus, we have to find two 3D lines, each of this corresponding to
one transversal side of the zebra-crossing. On each side of it, we
use a robust least squares minimisation on the long side segment



extremities to find those 3D lines. The small sides are then ob-
tained by projecting those lines on the stripes’ borders segments.
To find a stripe, and thus know which borders we have to link two
by two, we use the gradient direction and distance between two
consecutive segments (distances constraints from specifications
are introduced). Result is shown on Figure 5.

Figure 5: Final zebra-crossing stripes of Figure 1

Figure 6: Final zebra-crossings projected in image space

Each stripe of a zebra-crossing is now modeled by a 3D parallel-
ogram and is considered as an initial solution for a fine position
refinement described in section 4

3 DISCONTINUOUS ROAD-MARKS
RECONSTRUCTION

The other road-mark feature extremely structuring for the road
network is the discontinuous line. We now present our strategy
for its reconstruction.

3.1 Discontinuous road-marks specifications

Many kind of Discontinuous Road-Marks (DRM) can be found
in urban environments. They depend on the road functionality, or
on the road type, and the stripes they are composed of are defined
by three characteristics: the length, the width and the distance be-
tween consecutive stripes. Table 1 and Figure 7 give an overview
of the discontinuous road-marks available in the French towns.

Type Stripes length (m.) Distance between stripes (m.)
T3 3 1.33
T2 3 3.5
T’2 1.33 5

Table 1: Specifications for discontinuous road-marks

3.2 Monocular extraction

We do not use the protocol presented for zebra-crossing. DRM
are objects whose size is under the ground pixel size. Indeed,
their stripes are at most 12 cm width. So, working directly with
segments in 3D space is not possible because these image features
at this resolution are highly miss located: the stripes’ borders are
stretch toward the exterior, and because of their small length, seg-
ments lines have also a very noisy direction. So, the protocol de-
scribed in 2.3 will be inefficient for reconstructing 3D segments

Figure 7: Extracts of a 4000×4000 digital image in Amiens (25
cm ground pixel)

describing stripes’ borders. A graph representation - which pro-
vides the neighbors of an object - is for this purpose more robust,
because predecessor and successor of a stripe will provide a fine
orientation needed for the 3D reconstruction of stripes’ borders.
The strategy for DRM detection is based on graph theory. The
graph construction of the DRM in an image consists in find-
ing arrangements of segments who best fit the external geomet-
ric knowledge from specifications. As for zebra-crossings, seg-
ments are extracted and we only keep the ones belonging to a
specific length interval defined by the type of DRM we want to
extract (see Table 1). We then have segments that potentially be-
long to DRM. We now have to describe arrangements between
those road-marks. So, we build numerical potentials describing
the strength of the interactions between pairs of segments. Three
potentials described below are used in our application: a connec-
tion potential, an alignment potential and a potential for the the
length homogeneity. The value for each potential is given by a
set of parameters and takes a value thanks to a function.

3.2.1 Potential function
The potential functionζ is generic and has the same general shape
for each potential. Two parameters describe it (c ande). How-
ever, this function must respect a set of constraints:
• its values must be in[0; 1]
• it must be symmetric
• it must be increasing on[−1; 0]

•

8<: ζ(c) = ζ(−c) = 0
ζ(0) = 1
∀x ∈ [−e; e] , ζ(x) = 1

The symmetry is important because angles are computed on[0; 2π].
The parameterc allows to choose the extension of the potential
function.e is used to have a ”plateau” defining a set of values for
which the potential function takes its maximum value. Finally,
we choose to define the functionζ as:

ζ : R
3 → [0; 1]0� x

c
e

1A 7→

8<: 1 if |x| ≤ e
0 if |x| ≥ c

c2−x2

c2−e2 else
(3)

3.2.2 Potentials definitions
Connection potential
This is the first potential to be computed because if it is null, the
others are undefined. Around a given segmentsi, we define a
region of interestROIsi

= ROI
(1)
si

∪ROI
(2)
si

. Given an angular
toleranceθc, ROI

(j)
si

is an union of discs of radiirc located at
a given distance fromsi the middle ofsi in the direction ofsi.
This surface is approximated by a trapeze (see Figure 8).
We then look for segmentssj whose middlesj belongs toROIsi

.
If such segments exist, the connection potential is:

P(si ∼
c

sj) = ζ
�
d(si, sj) − dth, cc, ec

�
(4)
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Figure 8: Connection potential description

wheredth is the distance between two consecutive stripes.cc can
be defined as a fraction ofdth andec allows to take into account
segment detection accuracy.
Alignment potential
After the connection potential, we compute an alignment poten-
tial. It is an angular difference between the two segmentssi and
sj we are studying. The angular differenceθj

i is thenθj
i = θi−θj

(see Figure 9). As we want to penalise pairs of segments having
a high angular difference, the alignment potential is:

P(si ∼
a

sj) = ζ
�
θj

i , ce, ea

�
(5)
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Figure 9: Alignment potential description

In our application, we usece = π/2 because when segments are
perpendicular, the potential must be null.ea is set to avoid pe-
nalising curved roads, and can take into account the segment’s
variance, i.e uncertainties on their angular parameter.
Length potential
This potential is useful to know the length homogeneity of two
segmentssi andsj . We assign a higher potential to pairs of seg-
ments of the same length - in a DRM network stripes have the
same length (see Figure 10). Thus, we compute the norms’ ratio:

P(si ∼
l

sj) = ζ
�
1 − min

� ‖si‖

‖sj‖
,
‖sj‖

‖si‖

�
, cl, el

�
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Figure 10: Length homogeneity potential description

el allows to have a tolerance on the length. Indeed, the edge de-
tector is very sensitive and often, segments are truncated at their
extremities. This parameter is then set to take this observation
into account, and so on to avoid penalising grouping of pairs of
segments having a small length difference. In addition, we use
cl = 1.
Global potential
Finally, once we have computed the three individual potentials,
we use a global potential to summarise existing relations between
pairs of segments. The global potential is simply a weighted sum:8<: P(si ∼

G
sj) =

P
k=c,a,l

αkP(si ∼
k

sj)

∀k, αk ≥ 0,
P
k

αk = 1
(7)

As we know, there is a high incertitude on segments norms, soαl

is the smallest coefficient. In addition,αc andαa are high, and

can be equivalent, but most of the time, we will haveαc > αa.
In our application, we often useαc = 0.45, αa = 0.35 and
αl = 0.2
To be sure to find the objects relations we are looking for, we
use a thresholdδk on each individual potential and also on the
global one. Thus, two segmentssi andsj are considered to be in
interaction, only if the following conditions are respected:(

∀k ∈ {c, a, l} ,P(si ∼
k

sj) > δk

P(si ∼
G

sj) > δG
(8)

It is efficient to obtain good results and also in terms of time con-
suming. Interactions are stored in ann × n adjacency matrix,
wheren is the number of selected segments. A segment is se-
lected only if it interacts with another one. The matrix fully de-
scribes our DRM network, but we need some simplifications in
order to obtain a graph composed of nodes and edges.
Note that some tests show thatαk andδk values are not critical.

3.3 Graph creation

As we used a segment detector for our modeling of DRM net-
work, a stripe is most of the time composed of two parallel seg-
ments. We want to have a node representing each stripe, and a
valued edge (modeling interaction’s strength) linking two adja-
cent stripes.
Thus, a node is created with the following rules:
• if there is only one segment for a stripe, the node is its middle,
• if there are two segments for a stripe, the node is the barycenter
of the four extremities (a stripe is composed of two segments if
two segments having the same direction and a high recovering are
found in a small neighborhood)
The valuations between two edges are computed using the inter-
actions values between pairs of segments composing each stripe.
Thus, if we consider two stripes (i.e two nodes), the valuation of
the edge linking them is the maximum of the interaction between
their segments.
As we use 2D noisy segments lines, the center of a stripe as com-
puted above can only be considered as an estimation of the real
position. To obtain a best solution, we build a 2D radiometric
template (see section 4) with the known geometry and find the
best location of the center by moving the template in the vicinity
of the node and optimising a similarity score.

3.4 Chaining road-marks

The graph created in 3.3 is used to extract DRM chains. This
is done recursively on its adjacency matrix. We search for long
paths and validate them with geometric characteristics. We first
look for regularity, i.e a path must not be auto-intersecting and
its curvature must vary slowly. In addition, some structures are
found on the roofs (false alarms). We filter them using a DTM
generated from a DSM. Results are shown on Figure 11.

3.5 3D Reconstruction

A graph of the DRM is created as described in the previous sec-
tions for each images. The last step of the reconstruction process
consists in matching nodes across the different views. We use
here a simple algorithm consisting in making each image being
successively the master one. For each stereopairs and epipolar
constraints, we search for candidates for matching. The graph
structure allows introducing topological, i.e neighborhood con-
straints. We can thus create a set of possible matches.
From each matching possibility, a 3D point is reconstructed by in-
tersecting the rays (a ray is a 3D line going through the camera’s
center of projection and the image point). The resulting 3D point



Figure 11: Road marks chaining

is the one which minimises the sum of distances to the rays. To
decide between concurrent matches, we use a DSM and check for
theZ difference between the reconstructed point and the height
given by the DSM. A multi-image similarity score is also used to
validate or not the 3D point.
We thus obtain 3D points describing the center of DRM’s stripes.
Note that if an object (car, tree, ...) hides a DRM element in an
image, the multi-image frame allows to obtain with this robust 3D
reconstruction the missing element if it is at least not occluded in
two images. A 3D reconstruction is given on Figure 12.

Figure 12: 3D DRM reconstruction and textured triangulation on
the 3D stripes’ centers

Figure 13: Final DRM of Figure 12 projected on image space

4 3D OBJECTS POSITION REFINEMENT

The strategies presented in 2.2 and 3.2 provides us a robust initial
solution that needs to be refined. So, we model a stripe as a par-
allelogram in 3D space and try to find its optimal position using
multiple images (Baltsavias, 1991) in a hierarchical frame. The
idea is to distort the base model (the initial solution) in 3D space
and to correlate a derivated 2D signal with images data. (Jain et
al., 1996) uses this principle in 2D space with a grid transforma-
tion. An other modeling of this strategy is proposed in (Chen et
al., 2003).

4.1 Notations and definitions

M
(n)
r : the model of reference at leveln (see 4.3),

Mb: the best model,
T : a class of transformations,
Ti: a transformation (T =

S
i

Ti),

Mi: a transformed model (Mi = TiM
(n)
r ).

An object’s model is represented with a set of four points. So, a
model is defined by the central pointpi = (xi, yi)

t of the stripe,
its lengthLi and directiond1

i , its width li and directiond2
i .

A transformation is the set of operations used for the genera-
tion of the model hypothesis. Both for zebra-crossing and DRM
stripe, it is composed of two rotationser1 and er2 along the direc-
tions vectorsd1

i andd2
i , and of translationst1, t2 and t3 along

each 3D axis. Specially for zebra-crossings, the transformations
also have to take into account the length and width variations of
the object. Finally, a model is composed of five parameters for a
DRM stripe and of six parameters for a zebra-crossing stripe (see
Equation 9).(

T Zebra
i ( er1, er2, t1

→

X, t2
→

Y , t3
→

Z, αLi) = T Zebra
i .

T DRM
i ( er1, er2, t1

→

X, t2
→

Y , t3
→

Z) = T DRM
i .

(9)

The vectors of parameters to be estimated are then defined by:�
ΘZebra = ( er1, er2, t1, t2, t3, α)
ΘDRM = ( er1, er2, t1, t2, t3)

(10)

4.2 Model choice

To choose the best 3D position for a stripe, our strategy is to
compare the image signal with a perfect simulated signal. For
each model in 3D spaceMi we have four points making a par-
allelogram. The knowledge of the projection geometry allows to
project this shape in all the imagesIj . We thus obtain for each
vertex ofMi its subpixellar position in 2D images spaces. We
then simulate a signalSSij (j stands for the image number) with
this positions for each images, i.e a white anti-aliased 2D shape
on black background. Finally, the best 3D modelMb is chosen
by maximising the following energy:

Mb = max
i

X
j

CorrMi
(SSij , Ij) (11)

Figure 14: Projections in image space of 3D models (lower im-
age) on a simulated signal (upper image). Each color corresponds
to a different modelMi. The found solution is in green.



4.3 Hierarchical models generation

As we have six parameters to estimate a zebra stripe and five for a
DRM stripe, the computational search space is huge (because all
parameters are estimated simultaneously) and need to be reduced.
That is why we adopt an iterative multi-scale frame (Kropatsch,
1991; Hummel, 1988). For each level of the hierarchy, we set
search spaces and steps. This idea has already been used in dif-
ferent context (Gharavi-Alkhansari, 2001; Stefano et al., 2005).
The system is initialised withM(n)

r (the initial solution). At this
leveln of the hierarchy, the search spaces and sampling distances
on the parameters are the biggest. From this reference model and
with a class of transformationsT , we build several modelsMi

and the simulatedSSij signals in the images. Then, the best
modelM(n)

b at this level is given by Equation 11. We go down
a level of the hierarchy and repeat this process with initialising
M

(n−1)
r with M

(n)
b .

Each time we go down a level, the search spaces and sampling
distances are reduced. Here, for both we use a dyadic factor. This
protocol is iterated whilen > 0 or convergence is reached.
The numbern of levels of the hierarchy, the search spaces and
sampling distances are chose to be in adequation with the wished
accuracy for the final stripe position.

5 RESULTS

To test the robustness of our algorithms and their ability to de-
tect and reconstruct road marks, we have a reference database
of points surveyed with a millimetric accuracy on the town of
Amiens. It is composed of both zebra-crossings and DRM stripes’
corners, and were acquired with classical topometric techniques.
The evaluations were done only for the zebra-crossings, but give
clear information about the algorithm’s accuracy.B

H
ratio is in the

range[0.2; 0.6] and reconstructions were performed using from
3 to 9 images. We first measure absolute planimetric and altimet-
ric accuracies on a set of 112 stripes. The RMS is about 15 cm
for the first one, and less than 20 cm for the second one mainly
to the quality of the aerial triangulation. In terms of relative ac-
curacy, the algorithm shows its ability to be very fine. Indeed,
it’s about only a few cm, meaning that the global structure of a
zebra-crossing is preserved by our algorithm. We can also note
that the geometric refining presented in section 4 gives good re-
sults. The accuracy gain is about 5 cm. For both zebra-crossing
and DRM, there are only a few false positives alarms because
there are no ground structures having the same radiometric and
geometric properties as the objects we want to reconstruct. In
addition, the false positives detected for DRM are located on the
buildings’ roof and can easily be filtered with a focalisation mask.
However, the detection rate is higher than 90% for zebra-crossing
stripes. The missing stripes are the small ones located near the
pavement, the ones hidden by a car or the old ones degraded (thus
loosing their geometric and radiometric properties).

6 CONCLUSION AND FUTURE WORKS

As we have shown on examples, our modeling and detection of
the road-marks is very efficient for road detection and charac-
terisation in an urban environment. In can also be extended to
suburban areas or motorways.
To obtain a tool able to give more complete informations on the
road network, we now have to detect other road-marks (specialised
lanes, bus stops, traffic informations, ...).
An other key point to take advantage of our systems (aerial and
terrestrial) is to have a full collaboration between them, e.g to
search for missing objects in the images from the other viewpoint.

We have presented 3D reconstructing experts for road marks which
are a structuring features of the road network e.g to separate lanes
and estimate their width.
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