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ABSTRACT: 
 
Traffic monitoring requires mobile and flexible systems that are able to extract densely sampled spatial and temporal traffic data in 
large areas in near-real time. Video-based systems mounted on aerial platforms meet these requirements, however, at the expense of 
a limited field of view. To overcome this limitation of video cameras, we developed a concept for automatic derivation of traffic 
flow data which is designed for commercial medium format cameras with a resolution of 25-40 cm and a rather low frame rate of 
only 1-3 Hz. Since resolution and frame rate are the most limiting factors, the focus of the first implementations and evaluations lies 
on the approach for automatic tracking of vehicles in image sequences of such type in near real-time. The tracking procedure relies 
on two basic components: a simple motion model to predict possible locations of previously detected vehicles in the succeeding 
images and an adaptive shape-based matching algorithm in order to match, i.e. recognize, the detected vehicles in the other images. 
To incorporate internal evaluations and consistency checks on which the decision of a correct track can be based, the matching is 
done over image triplets. The evaluation of the results shows the applicability and the potentials of this approach. 
 
 

1. INTRODUCTION 

1.1 Traffic Monitoring 

Traffic monitoring is a very important task in today’s traffic 
control and flow management. The acquisition of traffic data in 
almost real-time is essential to swiftly react to current 
situations. Stationary data collectors such as induction loops 
and video cameras mounted on bridges or traffic lights are 
matured methods. However, they only deliver local data and are 
not able to observe the global traffic situation. Space borne 
sensors do cover very large areas. Because of their relatively 
short acquisition time and their long revisit period, such 
systems contribute to the periodic collection of statistical traffic 
data to validate and improve certain traffic models. However, 
often, monitoring on demand is necessary. Especially for major 
public events, mobile and flexible systems are desired, which 
are able to gather data about traffic density, average velocity, 
and traffic flow, in particular, origin-destination flow. Systems 
based medium or large format cameras mounted on airborne 
platforms meet the demands of flexibility and mobility. While 
they have the capability of covering large areas, they can 
deliver both temporally and spatially densely sampled data. 
Yet, in contrast to video cameras, approaches relying on these 
types of cameras have to cope with a much lower frame rate. 
 
A more extensive overview on the potential of airborne vehicle 
monitoring systems is given in (Stilla et al., 2004), while the 
use of aerial image sequences to derive traffic dynamics is 
studied in (Toth et al., 2003). There, it is also shown that the 
knowledge about traffic income and outgo directions allows a 
more precise and effective handling of traffic flow 
management. 
 
1.2 Related Work 

In the last decades, a variety of approaches for automatic 
tracking and velocity calculation have been developed. Starting 
with the pioneering work of Nagel and co-workers based on 
optical flow (Dreschler and Nagel 1982; Haag and Nagel, 
1999), the usage of stationary cameras for traffic applications 
has been thoroughly studied. Further examples for this category 

of approaches are (Dubuisson-Jolly et al., 1996; Tan et al., 
1998, Rajgopalan et al., 1999; Meffert et al., 2005). Some of the 
ideas incorporated in these approaches have influenced our 
work. Though, a straigtforward adoption is hardly possible 
since these approaches exploit oblique views on vehicles as 
well as a higher frame rate – both, however, at the expense of a 
limited field-of-view. Another group of approaches uses images 
taken by a photogrammetric camera with a high resolution of 5-
15cm on ground (e.g., (Hinz, 2004)). Also, these approaches are 
hardly applicable since the vehicle’s substructures which are 
necessary for matching a wire-frame model are no more 
dominant in images of lower resolution. 
 
In (Ernst et al., 2005), a matured monitoring system for real 
time traffic data acquisition is presented. Here, a camera system 
consisting of an infrared and an optical sensor is mounted on 
slowly moving air vehicles like an airship or a helicopter, but 
also tests with aircrafts have been conducted. Traffic parameter 
estimation is based on vehicle tracking in consecutive image 
frames collected with a frame rate of 5 Hz and more. While the 
results are promising, a major limitation of this system is the 
narrow field of view (the width of one single road) due to the 
low flying altitude that is necessary to obtain a reasonable 
resolution on ground.  
 
Considering the data characteristics, the most related 
approaches are (Reinartz et al. 2005) and (Lachaise, 2005). Like 
us, they use aerial image sequences taken with a frame rate of 
1-3 Hz and having a resolution of 25-40cm. Vehicle detection is 
done by analyzing difference images of two consecutive 
frames. This method is quite robust to detect moving objects 
and to quickly find possible locations for car tracking. Yet, with 
this approach, it is not possible to detect cars that are not 
moving, which often also happens for active vehicles if they are 
stuck in a traffic jam or waiting at a traffic light or stop sign. 
Furthermore, tracking of detected vehicles includes an 
interactive component at the current state of implementation. 
 
The boundary conditions of our work are primarily defined by 
the use of medium format cameras of moderate cost. They 
allow a large coverage and still yield a resolution of roughly 



 

25cm. However, due to the high amount of data for each image, 
the frame rate must be kept rather low, i.e. 1 up to a maximum 
of 3 Hz. In the following, we will outline a concept to 
automatically detect and track vehicles which is designed to 
deal with these constraints. The main contribution presented 
here relates to the tracking procedure rather than the detection 
of the vehicles. We focused on this point first since the low 
frame rate is the most influencing factor of the overall concept, 
and the benefits and limitations of this module should be clearly 
analyzed. In addition, also some first results of automatic 
detection will be given.  
 
 

2. OVERALL CONCEPT 

The underlying goal of the concept outlined in the following is 
the fulfillment of near real time requirements for vehicle 
tracking and derivation of traffic parameters from image 
sequences. The general work flow is depicted in Fig. 1. 
 

 
Figure 1. Work flow of online vehicle tracking 

 
The images are co-registered and approximately geo-referenced 
after acquisition. This process is commonly supported by 
simultaneously recorded navigation data of an INS-/GPS-
System. GIS road data, e.g. stemming from NAVTEQ or 
ATKIS data bases, are mapped onto the geo-referenced images 
and approximate regions of interest (RoI) are  delineated(so-
called road sections). Thus, the search area for the following 
automatic vehicle detection can be significantly reduced. For 
further processing, it is helpful to extract the road as well as 
their lanes in addition, since geo-referencing might not be 
accurate enough and GIS data rarely includes the position of 
individual lanes. An example for the automatic determination of 
lane sections using a slightly modified version of the road 
extraction system of Hinz & Baumgartner (2003) is shown in 
Fig 2. This example is generated by a stand-alone module and 
not yet incorporated into the automatic processing chain. 
 
A car detection algorithm is supposed to deliver positions and, 
optionally, additional attributes such as boundary and direction 
constrained to the lanes within the RoI. Tests with matching 
wire frame models of cars showed only limited success due to 
the moderate ground resolution of 25-40cm. More promising 
results were obtained by a differential geometric blob detection 
algorithm similar to (Hinz, 2005), which has to be trimmed for 
colored blobs yet. Results of blob detection are shown in Fig. 3. 

 
Figure 2. Intermediate result of lane extraction 

 

 
Figure 3. Results of a blob detection 

 
After their detection in the first image, the cars are tracked by 
matching them within the next two images. To this end, an 
adaptive shape-based matching algorithm is employed 
including internal evaluation and consistency checks (see 
details in Sect. 3). From the results of car tracking, various 
traffic parameters are calculated. These are most importantly 
vehicle speed, vehicle density per road segment, as well as 
traffic flow, i.e. the product of traffic density and average 
speed, eventually yielding the number of cars passing a point in 
a certain time interval.  
 
In our tests of vehicle tracking, the first three parts are 
simulated, thereby accounting for potential impreciseness and 
uncertainty of the data. Their implementation is due to future 
work: i) The co-registration between image pairs is done by an 
affine 2D-transformation using least-squares optimization. This 
approximation seems reasonable, since our focus is on roads, 
which are generally almost planar objects. ii) GIS data have 
been simulated by digitizing road lines for each carriage way of 
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a road. These lines will be referred to as “road polygons” in the 
sequel. They consist of “polygon points” P, while two of these 
enclose a “polygon segment” L. For each segment, the length as 
well as the orientation angle ang(L) are determined. iii) Cars are 
selected manually by digitizing the approximate center of the 
car including the shadow region since the shadow is an 
important indicator in detection and tracking a vehicle. 
However, since this step will be replaced by an automatic 
procedure in the near future (see Fig. 3), we will call them 
“detected vehicles” or “detected cars” in the following. 
 

 
3. VEHICLE TRACKING 

Before outlining algorithmic details of the tracking procedure in 
Sect. 3.2., we will first sketch the underlying vehicle motion 
model. 
 
3.1 Vehicle Motion Model 

The frame rate of the image sequences dictates the change of 
locations of a car, i.e. the possible maneuvers a car has 
undergone in the inter-frame time interval. Cars possibly move 
sideways and forward quite far within a period of half a second 
or more. Therefore, a motion model for predicting a vehicle’s 
position in the next image is necessary. 
 
3.1.1 Motion Model for Single Vehicles: We suppose that 
cars generally move in a controlled way, i.e. certain criteria 
describing speed, motion direction and acceleration should be 
met. To better incorporate the continuity of motion direction, 
we consider also a third image of the sequence. Figure 4 
illustrates some of these cases. For instance, there should be no 
abrupt change of direction and change of speed, i.e. abnormal 
acceleration, from one image to the others. In general, the 
correlation length of motion continuity is modelled depending 
on the respective speed of a car, i.e., for fast cars, the motion is 
expected to be straighter and almost parallel to the road axis. 
Slow cars may move forward between two consecutive images 
but cannot move perpendicular to the road axis or backwards in 
the next image. These model criteria are incorporated in our 
tracking evaluation described in section 3.2. 
 
3.1.2 Motion Model for Vehicle queues: In more complex 
traffic situations, the motion model can be extended to consider 
also vehicle queues. For images taken with a frame rate of 1-3 
Hz, the car topology within a queue changes very rarely from 
one image to the other, although one could think of more 
complex queue motion models that describe the interaction of 
cars in a Markov-Chain manner.  
 

 
Figure 4. Examples for possible and impossible car movement 

Hence, we currently analyze only pairs of cars as shown in Fig. 
5. The distance of two cars following each other might increase 
or decrease, of course with a lower bound depending on the 
vehicles’ speed. The trailing car may start to pass the leading 
car and change lanes. However, the cars cannot switch their 
relative positions. 
 

 
Figure 5. Vehicle queue behavior 

 
 
3.2 Tracking procedure 

In the current implementation, we focus on single car tracking 
in three consecutive images. Figure 6 shows the workflow of 
our tracking algorithm. As it can be seen, image triplets are 
used in order to gain a certain redundancy allowing an internal 
evaluation of the results. Of course, one could use more than 
three images for tracking. However, vehicles that move towards 
the flying direction only appear in few images so that the 
algorithm should also deliver reliable results for a low number 
of frames.  
 
We start with the co-registration of the three images I1, I2, and 
I3, followed by car detection in I1 and the determination of a 
number of vehicle parameters which describe the actual state of 
a car, i.e. the distance to the road side polygon and the 
approximate motion direction (Sect. 3.2.1). Then, we create a 
vehicle image model C1 by selecting a rectangle around the car. 
By using a shape-based matching algorithm, we try to find the 
car in the other images. In order to reduce the search, we select 
a RoI for the matching procedure based on the motion model 
(Sect. 3.2.2). The matching procedure delivers matches M12 in 
image I2 and the matches M13 in image I3. It should be 
mentioned, that both M12 and M13 contain multiple match 
results also including some wrong matches (see Fig. 7). As 
output of the matching algorithm, we receive the position of the 
match center. 

  

 
Figure 6. Workflow for the vehicle tracking algorithm 
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Figure 7. a) First image with detected car; b) second image with 
two matches M12 for C1; c) third image with three matches M23 
for each C2 (corresponding matches are indicated by the same 
color; note the overlapping rectangles); d) third image with 
matches M13 
 
For each match M12, vehicle parameters are calculated and new 
vehicle image models are created based on the match positions 
of M12. These models are searched in image I3, eventually 
resulting in matches M23, for which vehicle parameters are 
determined again. Finally, the results are evaluated and checked 
for consistency to determine the correct track combination of 
the matches (see Sect. 3.2.3). 
 
3.2.1 Vehicle Parameters: The vehicle parameters are 
defined and determined as follows: 
 
Distance to road polygon: The road polygon closest to a given 
vehicle is searched, and root point PF is determined. This point 
is needed to approximate the direction of the car’s motion. 
 
Direction: A given vehicle’s motion direction dir(Car) is 
approximated as a weighted direction derived from the three 
adjacent polygon segments, thus also considering curved road 
segments. The situation is illustrated in Fig. 8. The distances d0 
and d1 between PF and the end points of the central line 
segment Ln are determined. The weight of the angle of Ln is set 
to 1. The weight of the adjacent line segments’ angles is 
computed using the relative distances d0 and d1. Note that d0 is 
used to determine the weight of ang(Ln+1) while d1 contributes 
to the weight of ang(Ln-1). This results in a higher weight for the 
angle of the closer adjacent line segment. The weights for both 
ang(Ln+1) and ang(Ln-1) add up to 1. Therefore, the overall 
weight sum is 2. The formula for dir(Car) is 
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3.2.2 Matching: For finding possible locations of a car in 
another image, we are using the shape-based matching 
algorithm proposed by (Steger, 2001) and (Ulrich, 2003). The 
core of this algorithm is visualized in Fig. 9. First, a model 
image has to be created. This is simply done by cutting out a 
rectangle of the first image around the car’s center. The size of 
the rectangle is selected in such a way that both car and shadow 
as well as a part of the surrounding background (usually road) is 
covered by the area of the rectangle. 
 

 
Figure 8. Approximation of the car’s motion direction 

 
 
Still, no other cars or distracting objects such as neighboring 
meadows should be within the rectangle. The rectangle is 
oriented in the approximate motion direction that has been 
calculated before. 
 
A gradient filter is applied to the model image and the gradient 
directions of each pixel are determined. For run time reasons, 
only those pixels with salient gradient amplitudes are selected 
and defined as model edge pixels, in the following also referred 
as model points. In the RoI of the search image, the gradient 
filter is also applied. Finally, the model image is matched to the 
search image by comparing the gradient directions. In 
particular, a similarity measure is calculated representing the 
average vector product of the gradient directions of the 
transformed model and the search image. This similarity 
measure is invariant against noise and illumination changes but 
not against rotations and scale. Hence the search must be 
extended to a predefined range of rotations and scales, which 
can be easily derived from the motion model and the navigation 
data. To fulfill real-time requirements also for multiple 
matches, the whole matching procedure is done using image 
pyramids. For more details about the shape-based matching 
algorithm, see (Ulrich, 2003) and (Steger, 2001). 
 
A match is found whenever the similarity measure is above a 
certain threshold. As a result, we receive the coordinates of the 
center, the rotation angle, and the similarity measure of the 
found match. To avoid multiple match responses close to each 
other, we limited the maximum overlap of two matches to 20%. 
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Figure 9. Principle of the shape-based matching 
method, taken from (Ulrich, 2003), p. 70 

a) b) c) d) 

Pn 

Pn+

Pn-1

Pn+

d0 

d1 

c 

r 

PF 

Ln-1

Ln+

Ln 

dir(Car



 

3.2.3 Tracking Evaluation 
The matching process delivers a number of match positions for 
M12, M23, and M13. In our tests, we used a maximum number of 
the 6 best matches for each run. This means that we may 
receive up to 6 match positions for M12 and 36 match positions 
for M23 for each C1. Also having 6 match positions for M13, we 
need to evaluate 216 possible tracking combinations for one 
car. At a first glance, this seems quite cost intensive. Yet, many 
incorrect matches can be rejected through simple thresholds and 
consistency criteria so that the computational load can be 
controlled easily. 
 
Evaluation scheme: As depicted in figure 10, we employ a 
variety of intermediate weights that are finally aggregated to an 
overall tracking score. Basically, these weights can be separated 
into three different categories, each derived from different 
criteria: i) First, a weight for the individual matching runs is 
calculated (weights w12, w23, and w13 in Fig. 10). Here, we 
consider the single car motion model and the similarity measure 
as output of the matching algorithm which is also referred to as 
matching score. ii) Based on these weights, a combined weight 
w123 for the combination of the matching runs M12 and M23 is 
determined. In this case, the motion consistency is the 
underlying criterion. iii) Finally, weights w33 are calculated for 
the combination of the match positions M23 and M13. For a 
correct match combination, it is essential that the positions of 
M13 and M23 are identical within a small tolerance buffer. 
 

 
Figure 10. Diagram of the match evaluation process for one car 
 
To avoid crisp thresholds and to allow for the handling of 
uncertainties, each criterion is mathematically represented as a 
Gaussian function 
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with parameters mean µ and standard deviation σ evaluating the 
quality of an observation with respect to the criterion. By this, 
the weights are also normalized. 
 
In the following, we will outline the calculation and 
combination of the different weights. 
 
Single Tracking Run: The score wmatch of the shape-based 
matching is already normalized (see (Ulrich, 2003) for details). 
In order to take into account the continuity criterion of a single 
car’s motion, the difference between the motion direction in the 
first image (say of model C1) and its conjugate in the next 
image (say match M12) is considered. In addition, a 

displacement angle ang12 is also included, that essentially 
reflects the direction difference between the orientation of the 
trajectory from C1 to M12 and the motion directions in C1 and 
M12. From this, the criteria value Dcross12 is derived, penalizing 
across displacements regarding the expected direction dirS12. 
To accommodate the fact that fast cars should move almost 
straight, Dcross12 is multiplied by the distance vel12 between M0 
and M12. 
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The final weight wdir for this criterion is obtained again by 
measuring its fit with the expected values represented by a 
Gaussian function.  The combined weight w12 then calculates to 

dirmatch www ⋅=12 . 
Please note that the formulae above also hold for very slow or 
even parking cars, since a very small motion distance vel12 will 
scale down Dcross12 and thereby allowing for nearly arbitrary 
direction differences. 
 
Motion consistency: In order to exclude implausible 
combinations of matches, we examine the consistency of a car’s 
trajectory over image triplets. The first criterion of this category 
is the change of velocity, i.e. the difference between vel12 and 
vel23.  

231213 velveldvel −= . 
In typical traffic scenarios accelerations of more than 1.5m/s2 
rarely happen, while a (nearly) constant speed is common. 
Again, such values are used to parameterize a Gaussian 
function resulting in weights wvel. 
 
In order to address the continuity of the trajectory, we carry out 
the very same calculations as for the single tracking run, now 
using C1 and M23, and compare it with the sum of Dcross12 and 
Dcross23 of the single displacements. If no difference appears, a 
car moves totally straight. Deviations from it are again modeled 
with a Gaussian function, eventually yielding weight wdis. The 
weights wvel and wdis are combined to w123 by multiplication.  

disvel www ⋅=123  
 
Identity of M13 and M23: As a last criterion, the identity of 
Matches M13 and M23 is checked (see Fig. 10). Weight w33 is 
simply the distance between the match positions of M13 and M23 
put into a Gaussian function. 
 
Final Weight: Assuming that the five individual measurements 
w12, w23, w13, w123, and w33 reflect statistically nearly 
independent criteria (which, in fact, does not perfectly hold), 
the final evaluation score W is computed as the product of the 
five weights: 

12333132312 wwwwwW ⋅⋅⋅⋅=  
 
The correct track is selected as that particular one yielding the 
best evaluation, however, as long as it passes a lower rejection 
threshold. Otherwise, it is decided that there is no proper match 
for a particular car. This may happen when a car is occluded by 
shadow or another object, but also when it leaves the field-of-
view of the images. The latter case can of course be predicted 
based on a car’s previous trajectory. Please note that the track 
evaluation allows a straightforward extension to more frames or 
even the tracking of multiple hypotheses if, e.g., the second best 
track reaches nearly the score of the best track. This option will 
be included in future work. 
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4. RESULTS AND DISCUSSION 

We tested our algorithm on image triplets. These images have 
been acquired with a Minolta DiMAGE 7i 5Mpixel camera at a 
frame rate of 2 Hz. The focal length was approximately 50mm. 
The approximate flight altitude was between 2000 and 3000 m, 
therefore we have a ground pixel size of roughly 25-40 cm. 
  

 
Figure 11. Results of the tracking in the test image.  
a) Detected vehicles in the first image; b) associated cars in the 
second image; c) final track positions in the third image; see 
text for explanation of the color coding. 
 
Figure 11 shows the tracking results for one cut-out of an image 
triplet. It depicts a quite busy highway with cars traveling with 
different velocities. What makes it also challenging is the 
presence of the severe shadows on the left carriage way of the 
highway.  
 
Correctly tracked cars are marked green while incorrect track 
results are marked red. Black rectangles mark cars which were 
correctly matched in the second image but moved out of the 
field-of-view of the third image. Blue marked vehicles are 
correctly matched in the second image but could not be tracked 
in the third image even though they were present. In this triplet, 
16 out of 20 cars could be correctly tracked. One car moved out 
of sight in the third image, therefore the comparison with the 
third image failed. One car was incorrectly tracked. Two cars 
couldn’t be found in the third image although they were 
present, one of those was at least correctly found in the second 
image. Note that it is possible that correct and incorrect tracks 
overlap in the third image. This is the case for the car in front of 
the yellow bus in Fig. 11. The car itself was tracked correctly, 
but was also falsely assigned to another car. 
 
In other image triplets with less dominant shadows, correct 
tracks were found for roughly 90% of the vehicles. However, 
more testing especially with larger and more variable scenes is 
still essential. The results reached so far are nonetheless very 
promising and show the potential of our approach. 
 
The total computation time for all tracks was approximately 5-6 
seconds on a 1.8 GHz standard computer. The tracking time for 
the fourth and following images will further decrease since 
prior knowledge from the first image triplet can be introduced 
to better restrain the regions of interest. In addition, we have to 
mention that the current C++ implementation is by far not yet 
optimized. 

5. FUTURE WORK 

As mentioned in Sect. 2 , we want to integrate the tracking 
approach with an automatic vehicle detection module including 
lane extraction in the near future. Concerning the tracking, it is 
planned to apply our approach not only to individual image 
triplets but – sequentially – also to longer image sequences in 
order to recover the whole trajectory of each car. Furthermore, 
when tracking vehicles in longer image sequences, we are 
planning to extent the motion model by an adaptive component 
so that besides evaluating the speed and acceleration of a car, 
the relations to neighboring cars can also be integrated into the 
evaluation. This would allow a more strict limitation of the 
search area and deliver a much more precise measure for 
tracking evaluation. Another area of research would be the 
detection and integration of context information such as large 
shadow areas or partial occlusions to be able to also track 
vehicles that were partially lost during the tracking.  
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