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ABSTRACT: 

 
Relative (actual / potential) evapotranspiration (RET) was derived using ten-day composite NOAA PAL datasets (8km x 8km spatial 
resolution) over Indian landmass and an operational energy balance algorithm for five agricultural years (June-May) between 1996 to 
2001. This was used to characterize ‘Kharif’ (June-October) rice growing environment and its yield prediction in rainfed conditions. 
Inverse correlation (r = 0.6 to 0.75) was found between RET and Keech-Byram meteorological drought index (KBDI) only in rainfed 
rice growing regions but least correlation (r = 0.4) was found in irrigated rice growing region.  Substantial reduction in RET was also 
found in a sub-normal (2000) than normal (1999) monsoon season for rainfed rice growing regions only.  RET based crop response 
factor (Ky), averaged from three intermediate years (1997, 1998, 1999) for five different durations within growing period, varied 
between 0.9 to 1.4. The RET based yield prediction at district level for Kharif 1996 and 2000 in Madhya Pradesh state produced root 
mean square (RMS) error in the order of 34.4 to 47.5 percent of observed mean. The sources of errors suggest the use of diurnal 
observations from geostationary sensors at relatively finer spatial resolution and crop simulation model at potential level for better 
yield prediction. 

 
1. INTRODUCTION 

The assessment of in-season variation of growing environment 
and the study of its effect on agricultural outputs such as biomass 
and yield, are required for regular agricultural monitoring. Rice is 
the first staple food worldwide including India. It is grown in a 
wide range of agroclimatic conditions (Yoshida, 1981; Ladha et 
al, 2000) as rainfed or irrigated, direct seeded or transplanted, in 
extreme cold to warm climates in summer, rainy, autumn and 
winter seasons. Its productivity is most vulnerable to early, 
middle and late season stresses during its growing period 
(Bouman and Toung, 2000; Mahmood et al, 2003; Sharma, 1989; 
Wopereis et al, 1996). So, the assessment of its production 
information depends on the monitoring of inter and intra seasonal 
fluctuations of growing conditions. 
 
Evapotranspiration process is linked to crop growth process such 
as photosynthesis (Giardi et al, 1996). Stresses arising from 
nutrient, water deficiencies or infestation of pests and diseases 
reduce evapotranspiration (Polley, 2002). Actual 
evapotranspiration (AET) as a fraction to its potential (PET) can 
be used to assess the deviations from potential crop water demand 
and growing conditions. 
 
Various spectral and thermal indices such as NDVI (normalized 
difference vegetation index), VCI (vegetation condition index), 
TCI (temperature condition index) were formulated using either 
narrow optical or thermal bands data from satellite observations 
for evaluation of vegetation health and productivity (Kogan et al, 
2003; Singh et al, 2003). Spectral yield models were also 
developed using single or multi-date normalized difference 
vegetation index (NDVI) (Quarmby et al, 1993) or vegetation 

condition index (VCI) (Hayes and Decker, 1996) with coarser 
resolution remote sensing data. These statistical models based 
on spectral indices could explain only upto 55 percent yield 
variability. Recently, combination of Land Surface 
Temperature (LST), NDVI and soil moisture from coarse 
resolution data (≥ 8km) were used to develop statistical yield 
models to predict IOWA state wheat and soyabean yield 
(Prasad et al, 2006). 
 
The relative evapotranspiration, RET (AET / PET), is direct 
physical input as stress factor to crop water productivity 
functions and yield modelling (Doorenbos and Kassam, 1979). 
RET derived from Meteosat geostationary sensor could explain 
yield variability to the extent of 70 – 94 percent for maize in 
Africa and Europe (Robeling et al, 2004) at national scale. In 
present study, relative evapotranspiration (RET) was derived 
from time series of NOAA Pathfinder AVHRR land (PAL) data 
sets (8km x 8km spatial resolution) using a modified EARS 
(Environmental Applications and Remote Sensing, 
Netherlands) operational energy balance algorithm, to 
characterize rice growing environment and predict its yield. 
 

2. DATA SETS 

NOAA Pathfinder AVHRR land (PAL) data of India subsets 
(680 –1000E, 50-400 N) from Asia continental datasets between 
June 1996 to April 2001 were used. These correspond to five crop 
growing periods of rainy season, called ‘kharif’ and winter season, 
called ‘rabi’, the terms commonly used in almost all parts of India 
(ICAR, 2000) except Tamil Nadu state. The ‘Kharif’ generally 
extends from June to October or upto November in some regions. 
The ‘rabi’ season generally spans over November or December of 
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preceeding year to April or May of subsequent year. These two 
‘crop growing seasons’ generally constitute an ‘agricultural year 
(June to May)’.  

 
Though the datasets were generated for the period 1981 and 2001, 
the continuous time series over Asia is available 
(ftp://disc1.gsfc.nasa.gov /data/avhrr/global_8km/) between 1996 to 
August 2001 only. The datasets are ten-day composites having least 
cloud contamination with a spatial resolution of 8km x 8km in 
Goodies homosoline projection with geolocation accuracy of better 
than one pixel. There are three ten-day composites in each month 
numbered as June1, June2, June3, …….., May1, May2, May3 and 
twelve parameters generated in scaled numbers (byte / integer) in 
each ten-day composite. The listing of parameters and gain-offsets 
for their conversion to actual values is given by Agbu and James 
(1994).  Eight out of twelve parameters, normalized difference 
vegetation index (NDVI), cloud cover flag (clavr), time of overpass  
(TOP), solar zenith angle (sza), red reflectance (Ch1), near infrared 
reflectance (Ch2), thermal infrared brightness temperatures (Ch4 
and Ch5), were then plugged into energy balance algorithm to 
generate relative evapotranspiration (RET). The temporal 
smoothening of reflectance, brightness temperatures and NDVI 
across cloudy events was made on spatial scale using HANTS 
(Harmonic Analysis of Time Series) software (Verhoef et al, 1996; 
Roerink et al, 2000). 
 
Keech-Byram meteorological Drought Index (KBDI) (Keetch and 
Byram, 1968) was computed for Kharif season from ground 

measured daily air temperature and rainfall observatories of India 
Meteorological Department (IMD) in the proximity to four 
selected agroclimatically different kharif rice growing regions. 
But these were computed only for four kharif seasons, 1996, 1998, 
1999 and 2000. The meteorological data of 1997 were not 
available, so KBDI could not be computed for ‘Kharif’ 1997. 
Detailed computational procedure is described in section 3.2. 
 

3. METHODOLOGY 

3.1 Computation of Energy balance 

Relative evapotranspiration was derived following an 
operational energy balance algorithm developed by EARS 
(Environmental Applications and Remote Sensing Ltd.), 
Netherlands using Meteosat data. The original algorithm was  
described by Rosema (1993) and later on used to derive energy 
balance components and relative evapotranspiration at 
continental scales over Europe, Africa and China (Rosema et al, 
2004). The relative evapotranspiration during crop growing 
season was successfully used to forecast crop yield (Robeling et 
al, 2004). The algorithm basically uses Meteosat geostationary 
noontime broad optical band data in 0.3 -1.1µm, and noon-
midnight thermal infrared (TIR) (10.5-12.5µm) data. The 
flowchart for RET computation using NOAA PAL datasets is 
given in Figure 1. EARS algorithm estimates RET both for 
clear and cloudy sky conditions, but the present adaptation is 
for clear sky conditions only.  

 

 
Figure 1.  Computation of relative evapotranspiration in clear sky conditions using PAL datasets 
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3.2 Keetch-Byram Drought Index (KBDI) 

This is a meteorological drought index computed from daily 
rainfall, maximum air temperature and mean annual rainfall. 
Conceptually, it describes soil moisture deficit in rainfed system 
only. It is defined as a number representating the net effect of 
evapotranspiration and precipitation in producing cumulative 
moisture deficiency in soil layers. This index (KBDI) has been 
used for over 30 years in some areas of United States and it is 
used currently to find out relationship with fire activity in Hawaii 
islands (Dolling et al, 2005). It was also used for drought 
monitoring of meteorological sub-divisions (Fujioka 1991; Heim, 
2002; Johnson and Forthum, 2001).   
 
The physical theory for the KBDI is based on a number of 
assumptions (Keetch and Byram, 1968). The first assumption is 
that soil moisture is at field capacity with a water depth 
equivalent of 200 mm. The second assumption is that the rate of 
moisture loss in an area depends on the vegetation cover in the 
area, and vegetation density is a function of mean annual rainfall. 
Hence, daily transpiration is approximated by an inverse 
exponential function of the mean annual rainfall. Finally, the 
evaporation rate of soil moisture with time is assumed to be 
exponential function of the daily maximum temperature.  
 
This index was chosen to compare with PAL data derived RET 
that represents root zone wetness. KBDI is also simple to 
compute on daily basis. Its values range from 0 to 800, with 800 
indicating extreme drought and 0 indicating saturated soil. The 
initialization of KBDI usually involves setting it to zero after a 
period of substantial precipitation (25 mm) at the onset of 
southwest monsoon in ‘kharif’ season. KBDI can be computed 
using the following equation :  
∆Q = ((800 – Q)*((0.968*EXP (0.0486T) – 8.30)* ∆t) * 
(0.001/(1+10.88*EXP(-0.0441M)                                        (1) 
Where, Q is the current KBDI, T is the daily maximum 
temperature, M is the mean annual rainfall, ∆t is a time 
increments set equal to one day 
 
3.3 Rice Mask Generation  

The advanced techniques of land cover classification using single 
date high resolution Linear Imaging Self Scanner (LISS)-III 
(23m) multispectral data from Indian Remote Sensing Satellite – 
P6 (IRS-P6) to ‘full resolution’ AVHRR time series data are 
available now days. The techniques of global land cover 
classification using coarse resolution satellite data have been 
demonstrated by Sato and Tateishi (2004) using SPOT-VGT data 
of 1km resolution and Hastings and Tateishi (1998) applying 
NOAA PAL climatological data resampled at 16km resolution. 
Different land cover categories were generated in present study 
using hierarchial decision tree classifier and temporal NDVI 
profiles of NOAAPAL datasets. Same classifier was used to 
discriminate forest, agriculture, bare and scrub lands for June 
1996 to April 1997, June 1997 to April 1998, June 1998 to April 
1999, June 1999 to April 2000 and June 2000 to April 2001. 
NDVI profile consists of monthly maximum NDVI generated 
from ten-day composites. Ultimately, the mask containing rice-
dominated pixels of Madhya Pradesh state in India were retained 
for spatio-temporal analysis. The forest map published by Forest 
Survey of India (SFR, 1998) was used as reference guide to 
discriminate forest pixels. The spatial distribution of croplands 
derived from PAL NDVI data at 8km resolution was again cross 
checked with cropland mask (not shown here) derived from 
relatively finer resolution SPOT-VGT monthly NDVI temporal 

profiles generated using 1km resolution data in 1999 and 2000 
applying same classifier. Over or under classification was 
evident with 8km resolution PAL data as compared to 1km 
SPOT VGT data due to mixed pixel response, but the major 
agricultural patches with pixels having predominant rice were 
quite similar in both the cases. 
 

4. RESULTS AND DISCUSSION 

4.1  Rice growing environment characterization 
 
Four selected rice growing regions falling in north, central, 
southeastern and eastern part of India having differences in 
agroclimatic conditions were chosen for growing environment 
characterization. These study regions are located in the 
proximity of either State Agricultural Universities (SAUs) or 
Indian Council of Agricultural Research (ICAR) research 
stations such as: Punjab Agricultural University (PAU), 
Ludhiana (30056/N, 75052/E), Jawaharlal Nehru Krishi 
Vidyalaya Vidyalaya, Jabalpur (23010/N, 79057/E), Water 
Technology Centre (ICAR) research farm, Khurda (20012/N, 
85042/E) and Bidhan Chandra Krishi Viswavidyalaya, Kalyani 
(23006/N, 88001/E), respectively. These are represented as NSR 
(northern study region), CSR (central study region), SESR 
(south-eastern study region) and ESR (eastern study region). 
The different agroclimatic parameters such as: physiography, 
soil, crop calendar, atmospheric thermal regime, water regime 
(rainfall / irrigation), nutrient management for rice crop over 
these study regions are given in Table 1. This clearly showed 
substantial differences in average rice growing environment 
among four, NSR with fully irrigated rice having highest 
fertilizer (NPK) application rates, ESR with rice grown with 
rainfall plus protected irrigation and low NPK application rates, 
SESR and CSR having rainfed rice with differences in NPK 
application rates. 
 
4.2   Relative evapotranspiration and KBDI  
 
The daily KBDI was computed using available ground 
measured daily rainfall and air temperature data obtained from 
nearest IMD meteorological observatories for ‘kharif’ rice 
season 1996, 1998, 1999 and 2000. Ten-day composites were 
computed from daily values.  The RET averages of study 
regions, extracted from ten-day composites were compared with 
KBDI. The plots are shown in Figure 2a-d. KBDI values falling 
outside 0-800 were not considered because the lower and upper 
limits correspond to extremely wet and dry conditions, 
respectively.  
 
The focus of present analysis is to investigate whether inverse 
correlation exists between RET and KBDI, rather than 
developing empirical relations between these two because of 
scale mismatch. The correlation (r) was least (0.42) in fully 
irrigated rice growing system and increased from less irrigated 
system (0.6) to rainfed systems at SESR (0.64) and CSR (0.75). 
Agricultural drought depends on water availability to crops 
throughout crop growth cycle. It will not show up signals 
during meteorologically dryspells in the areas having assured 
water supply from canals or ground water. Under such 
circumstances, RET will not be correlated to KBDI as in NSR. 
The correlation (r) increases with increasing dependence of 
water availability from rainspell as in the case of ESR 
(protected irrigated), SESR (rainfed), CSR (rainfed). 
 



 

              Study regions 
Parameters  

NSR 
 

ESR 
 

SESR 
 

CSR 
1. Physiography     

a) Latitude-longitude  
    bounds  

30°61’ N  - 30°71’ N 
to 

75°49’ E  - 75°59’ E 

23°3’ N  - 23°13’ N 
to 

87°46’ E  - 87°56’ E 

20°10’ N  - 20°20’ N 
to 

85°47’E  - 85°57’ E 

23°7’ N  - 23°17’ N 
to 

80°02’  - 80°12’E 
b) Elevation (m) from    
     m.s l 247 90 36 393 

c) Land type Northern plain Eastern plain South Eastern plain Central plain 
2. Soil     

a) Order Alfisols Oxisols Ustisols Cambisols 

b) Texture Sandy loam Silty loam Sandy loam Clayey loam 
3. Monsoon crop (rice)     
a) Sowing and harvesting  
dates 25th May-10th Oct 15th July-30th Nov 20th June –10th Nov 15 th July - 31st Oct 

b) Crop growth duration 
(days) 138 138 140 108 

c) Major planting type Transplanted Transplanted Transplanted Direct seeded 
4. Thermal regime     
a) Maximum air temperature 
(°C) 

    

i) Mean 33.3 32.1 31.9 32.0 
ii) Range 22.8 - 41.4 22.0 - 40.5 25.0 - 42.0 18.0 - 45.0 
iii) SD 3.4 2.2 2.4 3.2 
b)Minimum air temperature 
(°C) 

    

i) Mean 22.1 24.3 24.5 21.1 
ii) Range 8.2 -30.6 7.5 -28.4 11.0 –29.0 3.0  - 31.0 
iii) SD 6.05 3.4 3.1 4.1 
5. Water regime     
a) Annual rainfall (mm) 850 1200 1570 1560 
b) No. of irrigation 18 7 NIL NIL 
c) Irrigation amount (cm) 5 each 4.5 each NIL NIL 
6.Nutrient management      
 Average N: P: K     
application   (Kgha-1) 120 :30 :30 21 : 38 :49 50 :20 :20 28 :28 :20 

                   NSR = Northern study region, ESR = Eastern study region, SESR = South eastern study region  
                   CSR = Central  study region. 

Table  1. Agroclimatic characteristics of four selected rice growing study regions 
 
Relative evapotranspiration, being average soil wetness (1 – 
dryness), can be used as an indicator to distinguish normal and 
sub-normal monsoon years.  The comparison between two 
seasonal RET variation was made (Figure 3a-d) for ‘kharif’ rice 
growing periods falling in two contrasting year 1999 (normal) and 
2000 (sub-normal) as declared in drought bulletins of IMD based 
on rainfall distributions. RET was substantially low in rainfed 
systems (SESR and CSR) throughout growing period in 2000 
than 1999 as compared to irrigated system (NSR). The 
occurrences of substantial RET reduction (> 0.2 units) were more 
in less irrigated rice at ESR (4 dekads) than irrigated conditions at 
NSR (one dekad). The irrigated rice system generally has assured 
water supply irrespective of rainfall occurrences. This resulted 
into least difference in RET between a normal and sub-normal 
years unlike other stations. 
 
4.1 Yield prediction 

Attempt has been made to predict rice yield in Madhya Pradesh 
state of India dominated with rainfed agriculture. The irrigated 
area in this state is about 39 percent of net sown area. The growth 

response of crops to water stress in relation to yield was 
reported by Doorenbos and Kassam (1979) after analyzing data 
from various crops worldwide. The relation between RET and 
relative yield (Ry) is given below: 
 
Crop response factor (Ky) = (1-Ry)/(1-RETt)  (2) 
 
      Ry = Actual yield / Potential yield   (3) 
         
     RETt = ΣAETt / ΣPETt    (4) 
t  =  Time in days after spectral emergence. Here, it is in dekads 
(days = i -th dekad after spectral emergence X 10) 
PET = potential evapotranspiration computed from daily net 
radiation (Rn)       using Priestly -Taylor (1972) formulation 
Potential yield =  Maximum historical district yield in a time 
series (Rosema et al, 2004) of 10 years. Here, the districtwise 
potential yield was determined from maximum within the time 
series between 1995 to 2004 (FAI, 2001). 

 

 



 

Figure  2: Relative evapotranspiration versus Keetch-Byram Drought Index (KBDI) in different rice growing conditions 
 
 
 

Figure  3. Seasonal variation of  relative evapotranspiration in two contrasting years over four different rice growing conditions 
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c) SESR
 (Rainfed rice) r = 0.64
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d) CSR
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The dekads corresponding to spectral emergence (to) and 
physiological maturity (tend) representative for a district, were 
determined from temporal profile of rice fractional vegetation 
cover averaged over each district. District wise crop growing 
period (G) was computed as ‘tend – to’ in dekads. Fractional  
vegetation cover was computed from NDVI as {(NDVI – 
NDVImin) / (NDVImax – NDVImin)}^2 given by Carlson and Ripley 
(1997). The upper (NDVImax) and lower NDVI (NDVImin) limits 
were kept at 0.75 and 0.10, respectively. 
District wise crop response factor (Ky) was computed for crop 
growth cycle (t = G) as well as for G –1(one dekad less), G –
2(two dekads less), G –3(three dekads less), G – 4(four dekads 
less) and G – 5(five dekads less) periods from rice RET and Ry of 
three intermediate years, 1997, 1998 and 1999. The average Ky 
for different periods within growth cycle was computed by 
averaging from all districts and three years. These (Table 2)  
 

G = Whole growing period, G-1  = one dekad less than G,  
G-2 = two dekads less  than G, G-3 = three dekads less than G,  
G-4= four dekads less than G, G-5= five dekads less than G 
 

Table 2: Summary of crop response factors, correlation and  
errors of yield prediction in Madhya Pradesh state in India. 

 
varied from 0.9 to 1.4. Kassam and Smith (2001) have reported 
1.1 and 1.05 crop response factors for Alfafalfa grass and spring 
wheat, respectively.  The reported district yield representing 
potential yield (Ry = 1) of corresponding district and falling 
within these three years was not considered for Ky computation.  
Finally, the Ky and potential yield were used to predict rice yield 
using RET determined as a ratio of AET and PET accumulated 
for G, G -1, G-2, G-3, G-4 and G-5. Here, the predictive seasons 
were Kharif 1996 and 2000. The root mean square error (RMSE) 
of predicted yield at district level varied from 275 to 379 Kgha-1 
that constitute 34.4 to 47.5 percent of observed mean with least 
occurring at G –2 and highest at G – 5. These two generally 
correspond grain filling and booting stages of rice crop, 
respectively. The correlation (r) between predicted and reported 
yield varied from 74.8 to 86.0 percent with highest in G-2. The 
1:1 plot of predicted (when RET was computed for whole crop 
growth cycle) and observed district rice yield of Madhya Pradesh 
state for Kharif 1996 and 2000, is shown in Figure 4. 
 
The district level yield prediction using RET from coarser 
resolution NOAA PAL composited datasets showed relatively 
larger errors (mean RMSE ~ 38 percent). The possible sources of 
errors are enumerated below: 
 
(a) Only clear sky RET from dakadal composites were used for 

yield prediction. The process of compositing takes maximum 
values from ten daily datasets to minimize cloud interference. 
This smoothes out the actual daily RET. The sensitivity 
analysis (not presented here) showed the transmissivity is the 
most crucial parameter for RET estimation followed by air 

temperature, LST and NDVI. Generally, substantial 
reduction of transmissivity occurs in cloudy skies to the 
tune of 0.3 – 0.5 that reduce RET in the range of 30-40 
percent.  RET generated on daily scale for both clear and 
cloudy sky conditions need to be used for better 
representativeness. So, use of insolation in clear and cloudy 
skies as well as clear sky LST, albedo and NDVI from 
geostationary satellite would be ideal. 

(b) Present algorithm generates ET at noon time that was 
converted to daily scale. ET averaging on daily scale from 
diurnal observations contribute less errors. The diurnal 
observations can only be met from geostationary sensors. 

(c)There is significant orbital drift in NOAA AVHRR  
observations from 13:30 to 15:30 hrs. IST for the same 
location between 1996 to 2000. These might have added 
less errors to angular normalized reflectances and NDVI, 
but could contribute errors in LST from single noon time    

    observations. It is better to use same noon time   
    observations from same platform. 

(d) RET was generated at coarser (8km) spatial resolution and       
   then district average of RET was made from pixels   
   dominated by rice crop. The weightage of RET of rice area   
   occupying less than 64 sq. km area is not included in district  
   averaging. This could add to RET errors for rice yield  
   prediction. 
 

 
     Figure  4. Comparison of district wise predicted and 

observed rice yield 
 
 
(e)The maximum historical reported district yield was used as    
     surrogate for potential yield. This is not always true which  
     could add more errors to actual yield estimates from relative   
     yield.  Crop simulation model can be used to estimate  
     district potential yield using climatology of weather  
     parameters. 
 
 

5. CONCLUSION 

The present study demonstrates the use of relative 
evapotranspiration as growing environment indicator in rice 
agro-ecosystem and its further use for yield prediction in 
rainfed system. RET was able to differentiate a normal and sub-
normal monsoon years. It has inverse correlation with 
meteorological drought index (KBDI) only in the rainfed  

Period for 
prediction 

Common  
crop 

response 
factor (Ky) 

Correlation 
(percent) 

RMSE 
(Kg  ha-1) 

RMSE 
(% of 

observed 
mean) 

G 1.1 85.4 286 35.7 

G-1 1.2 74.8 353 44.2 
G-2 0.9 86.0 275 34.4 
G-3 1.3 84.5 292 36.5 
G-4 1.4 85.3 278 34.8 
G-5 1.3 77.8 379 47.5 
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agriculture but has no correlation in irrigated agriculture, which is 
not dependent on rainfall.  

The accuracy of yield prediction using coarser resolution RET 
was evaluated at district level and five different time duration 
within the crop growth cycle between 50 days before maturity to 
end of growing season. The overall mean RMS error was within 
38 percent of observed mean using two years validation datasets. 
The enumeration of possible sources of errors suggest that the 
diurnal observations from relatively finer resolution satellite 
sensors and use of crop simulation model may be ideal to reduce 
errors in yield prediction. 
 The present INSAT 3A mission has VHRR and CCD sensors. 
VHRR has broad optical band at 2km apart from water vapour 
and single thermal band at 8km spatial resolution. The daily 
NDVI at 1km is derivable from CCD Data. The future INSAT 3D 
will have six band ‘Imager’ with optical (1km) and split thermal 
(4km) bands, and 19 channel ‘Sounder’ (10km). The retrieval 
accuracy of LST, albedo and insolation from ‘Imager’ would be 
better than VHRR. The near surface air and dew point 
temperatures are derivable from their atmospheric profiles using 
sounder data. So, the use of the RET estimation technique within 
the framework of energy balance approach is feasible on daily 
scale both for clear and cloudy skies with multiple observations 
from India’s present (3A CCD) and future (3D Imager and 
Sounder) geostationary sensors. 
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