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ABSTRACT: 
 
Mapping of tidal channels is significant and fundamental in intertidal hydrodynamic studies.  This paper is an attempt to develop a 
new approach for tidal channel identification from remotely sensed data, by accounting for the spectral and shape properties of 
channels.  The method begins with segmentation of the image ensuring similarity of neighbouring pixels in each segment.   A few 
training pixels selected in the channels locate the training channel segments.  The image is classified in non-channel and channel 
segments based on the statistical similarity, which is established here by T2 statistic, of unknown segments to known channel 
segments.  It is obvious at this stage, owing to the spectral complexity of tidal regions, that several non-channel areas are also 
classified as channels.  The curvilinear shape of channels, which is established using shape indices, is used to eliminate the falsely 
classified non-channel areas.    The paper presents the methodology and some initial results obtained.  It also outlines the scope for 
further research.   
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1. INTRODUCTION 

Tidal channel networks are significant and fundamental for the 
study of tidal hydrodynamics (Fagherazzi et al. 1999, Pethick 
1992, Rodriguez-Iturbe and Rinaldo 1997).  Mapping these 
channels through field surveying is a time-consuming and error-
prone process.  The remotely sensed data offer considerable 
potential for channel mapping.  The channels may be manually 
traced from remotely sensed data as is conventionally done.  
However, this approach is fraught with several problems 
(Lohani et al., 2006).   In view of this, there have been several 
attempts to identify channels from remotely sensed data through 
computer-based methods (Fagherazzi et al. 1999; Lohani and 
Mason, 2001; Mason et al., submitted).  Use of DEM based 
methods has not been found suitable for tidal channels (Lohani, 
1999).  However, the image processing based methods have 
shown considerable potential for both geometric (LiDAR) and 
spectral (multispectral) data.   
 
The approach suggested by Lohani et al. (2006) for 
identification of channel networks from multispectral  images is 
based on the feature-constrained classification.  In this method 
the edges in the image are detected and localised.  The anti-
parallel edge pairs of channels and also non-channel areas are 
associated using a distance-with-destination transform.  The 
centrelines of channels and non-channel areas are also located 
with the help of this transform.  Training data are collected from 
a statistically similar and small neighbourhood of a selected 
seed pixel.  A multiple of these neighbourhoods pooled together 
results in a set of pixels as training samples.  The unknown 
pixels of image are classified as channel or non-channel based 
on a rule which checks their Mahalanobis distance from training 
data.  Beginning from the seed pixels selected by user the 

centrelines of channels are extended if these are continuous and 
also classified everywhere as channels.  This results in as many 
channel segments as there are seed pixels.  The final step 
extrapolates these segments at their endpoints and joins these 
with other segments, which are classified as channels but were 
not connected to the seed pixel.  The results obtained by this 
method are acceptable.  However, the method fails to 
distinguish between error blobs (non-channel areas which are 
spectrally similar to channels and also connected to channels by 
centrelines) and curvilinear channels.  Further, the method 
classifies pixels as channels and non-channels without 
accounting for their neighbourhood.   
 
This paper describes a new approach, which is an improvement 
on the method described above.  This method produces 
equivalent or better results while minimising the limitations of 
the above method.  Furthermore, the proposed method conforms 
better to the inherent spectral and spatial characteristics of tidal 
channels, thereby promising a more generic solution.   
 
 

2. DATA USED 

The multispectral data used in this paper is the TopoSys 
linescanner image of the lagoon of Venice in Italy (Figure 1 
(a)).  The image was captured at low water on October 2002.  
The image consists of near infrared, red, green, and blue bands 
and has 1000 by 1000 size.  The other data used is from 
Morecambe Bay in UK (Figure 1(b)).  The Morecambe Bay 
image (400*600) is comprised of red, green and blue bands and 
was obtained on June 2000.  The spatial resolution of both 
images (Morecambe Bay photo scale 1:10000, Venice 



Linescanner pixel size 0.5m) is sufficient to map the majority of 
the channels.  
 

3. CHANNEL IDENTIFICATION  

The various image-processing steps employed for channel 
identification are discussed in the following paragraphs. 
 

  
(a) 

 

 
(b) 

 
Figure 1: (a) Linescanner image of part of Venice Lagoon; (b) 

Aerial photograph of part of Morecambe Bay in 
U.K. 

 
 
3.1 Determination of threshold 

Selection of an appropriate threshold is a crucial step in a 
region-based segmentation. An arbitrary threshold may yield a 
useless segmentation. In present work the Otsu method (Otsu, 
1979) has been employed to find the threshold value.  An 
optimal threshold is selected by the discriminant criterion to 
maximize the separation of the resultant classes. The 
formulation of the objective function is as follows: 
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i.e., the global mean in the window of interest which may be of 
any size.  L is dynamic range of image.   Here pi is the 
probability of occurrence of grey level i in the window of 
interest.   
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are the cumulative probability and grey level mean up to the 
grey value of  k.    The optimal threshold k* is determined by: 
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To implement this, a differenced image is derived from original 
image using the operator: 
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Where x(i,j) and d(i,j)  are the grey level and differential value 
respectively at pixel (i,j) and k and  l are integers. 
 
An odd sized window (5 by 5 in the present case) is run over 
this differenced image to determine the threshold value for each 
window position using the objective function discussed above.  
The threshold value with highest frequency of occurrence for all 
window positions is selected as the global threshold value. 
Using this operation the threshold value has been found for each 
spectral band of the multi-spectral data set. Threshold values 
obtained for Venice image are 27, 28 and 28 for green, red and 
infrared bands, respectively.  For Morecambe Bay photograph 
the threshold values are 14, 14 and 13 for red, green and blue 
bands, respectively.   
 
3.2 Region growing 

After finding the threshold value for each band, region growing 
is started from the very first pixel in the image. At this stage, a 
region is initiated and a label is assigned to it. All the 
neighbouring pixels of this pixel are assessed for their inclusion 



in the current region. A pixel will be included in a region if the 
difference between this pixel and the current region mean is less 
than the threshold value in all the bands. For region growing 
eight-connected neighbours of a pixel are considered for 
inclusion in the segment. A region will stop growing when no 
new pixels are added to it and a new region will be initiated 
from the next pixel which is not included in any region. This 
process continues till every pixel in the image gets included in 
one of the regions. The output of this process is a segment 
image with a label number assigned to each segment. 
 
3.3 Segment-based classification 

Having obtained the segment image, the next step is to classify 
each segment as channel or non-channel segment. As a first step 
the user selects a few pixels in the channel area on the FCC 
(False Colour Composite) of the image (50 for the present 
cases).  The segments in which these seed pixels lie become the 
training segments.  The spectral property of channels in an 
image varies with space and time, thus resulting in training 
segment, with different spectral properties.  The classification 
scheme adopted aims at classifying the entire unknown segment 
instead of its individual pixels, based on its statistical nearness 
to the training segments.   The unknown segments which are 
found statistically similar to any of the training segments are 
classified as channel segments, while the rest of the segments 
are classified as non-channel.     
 

In the present work a multivariate analysis approach is used to 
classify the images. In this approach an inference will be made 
about 1 2µ µ− , where µ1 and µ2 are the mean vectors of 
population 1 and population 2, respectively. A squared 

statistical distance 2T is computed for testing the equality of 
vector means (i.e. testing the hypothesis 0 1 2: 0H µ µ− = ) 
from two multivariate populations. This statistic is computed 
using the following expression (Jhonson and Wichen, 1982).  
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Complexities may arise due to unequal variance-covariance 
matrices, but are avoided because of large sample sizes (i.e. N1, 

N2). This squared distance has an approximate 2χ -
distribution. After computing the statistic, it is tested against a 

critical value which is derived from 2 ( )nχ α -distribution, 
where a is the significance level and n is the degrees of freedom 

(95% and 3, respectively, here.) If the statistic 2T  comes 
greater than the critical value the hypothesis will be rejected, 
i.e., the vector mean of unknown segment differs from that of 
known segment.   In this way all candidate regions, which 
qualify to be classified as channel area, are identified.  The 
classified images are shown in Figure 2. 
 
 

 
 

 
 
Figure 2:  Result of segment-based classification.  Non-channel 

areas also appear along with channels. 
 



3.4 Shape analysis 

Not all segments classified as channel in the above step are 
channel on the ground.  This is because the spectral property of 
some non-channel areas is similar to that of channels.  These 
segments are part of intertidal mud flats or depressions in mud 
flats that are moist or filled with water or saltmarsh vegetation 
regions etc.   In manual interpretation of remotely sensed data 
these segments are not classified as channels due to their non-
connectivity to the major channel network and, more 
importantly, due to their unlike-a-channel shape.  The channels 
are characterized by their curvilinear shape and connectivity to 
a network.  While the latter can be ensured by channel joining 
mechanism (Lohani et al., 2006) the former is employed here to 
distinguish channel from non-channel areas in the classified 
images.   
 
To realise the above, shape analysis is performed on all the 
candidate regions in the classified image. Two shape 
parameters, namely Extent and Elongation are employed jointly 
to detect and reject the blob shaped non-channel segments.  
They are calculated as: 
 

net area of the region
Extent=

area of bounding rectangle of the region
major axis

Elongation=
minor axis + major axis

 (4) 

Major axis is the direction in which the spread of segment is 
more.   Perpendicular to the major axis is the minor axis. The 
approach to extract shape features is based on the concept of 
eigenvalues (Costa and Cesar, 2001). The lengths of the major 
and minor axis are defined as the associated eigenvalues. The 
eigenvalues are computed using the boundary pixels of a region. 
The shape measure Extent will be smaller for thin and elongated 
regions, i.e. channels. However, this is not true for thin and 
elongated regions that are nearly vertical or horizontal. In these 
situations to identify these segments as channels the second 
shape measure, i.e., Elongation is employed. The conditions 
shown in the flowchart (Figure 3) are imposed on candidate 
regions in order to classify them as channel or non-channel.  
There are three classes of segments at the end of the first step 
(Figure 3(a)), i.e., channels, non-channels and those which 
have potential to be classified as channels but need further 
confirmation, which is realised in the subsequent process 
(Figure 3(b)).    In this step, the suspect segment is classified as 
channel provided it is a neighbour of an already classified 
channel, has the desired shape properties and is spectrally 
similar to its said channel neighbour.   
 
The strategy adopted works well in identifying isolated non-
channel segments.  However, it fails in case of segments that 
consist of a non-channel blob and a channel joined together, as 
shown in Figure 4.  These blobs were cleaned by scanning all 
segments in horizontal and vertical to determine their width at 
the level of scan (i.e. at each scan line and column of image).  
This width was compared with the maxima width at the 
locations of seed pixels.  Those parts of the segment where its 
width is larger than maxima channel width in both directions are 
deleted from segment.  This operation serves to cut off the blobs 
from the channels.   
 

The channel images with finally identified channels are shown 
in Figure 5.  It can be noticed in this image that most of the 
blob shaped features of Figure 2 have been eliminated.   
 
In order to assess the accuracy of identification validation data 
are prepared by manually tracing the channels from images 
shown in Figure 1.  The comparison (pixel by pixel) shows that 
for Venice data 52% of channel area is correctly identified 
while the errors of omission and commission are 48% and 14%, 
respectively.  For Morecambe Bay aerial photograph the 
correctly identified pixels are 51% while the omitted and 
committed areas are 49% and 30%, respectively.   The overall 
performance of this method is similar to the method proposed in 
Lohani et al. (2006).  Moreover, with the attempt to join 
channels, as done in Lohani et al. (2006), the performance 
should improve.  
 

 

 (a) 

 
(b) 



Figure 3: Flow diagram for channel identification using Extent 
and Elongation jointly.  The retained segments in (a) 
are fed in (b).    

 
 
 

                  
 
Figure 4: Elimination of non-channel segment part using 

scanned widths in horizontal and vertical.  
 
 

4. CONCLUSION 

The method proposed is closure in emulating manual 
interpretation as it accounts for both shape and spectral 
properties of channels.  This is a more generic approach to solve 
the problem of channel identification.  In the presently adopted 
segmentation method it was noted that some of the resulting 
segments were not pure, with some being even bi-modal.  A 
better method of segmentation, which should work on adaptive 
instead of global threshold, should improve segmentation.  
Further attempts are being made to employ better segment 
classification procedures, e.g., classification of a segment based 
on the joint likelihood, of all pixels in the segment of belonging 
to training segment (determined using Maximum Likelihood 
algorithm).    
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Figure 5: Final channel images for Venice lines scanner data 

and Morecambe Bay photograph. 
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