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ABSTRACT: 
 
Stereoscopic analysis of target images is the primary and conventional method for photogrammetric 3D range data construction. For 
object detection in high resolution satellite images, it is advantageous if the processing method can exploit a stereo derived DEM so 
that the technique can be applied anywhere in the world. Central to this is the need for a very reliable stereo matching algorithm and 
an improved camera model to perform such an analysis. Object detection using a stereo DEM is described in this article, including 
optical image processing and data fusion techniques and how these were applied to the IKONOS image. 
Results are here presented for stereo IKONOS images over several residential areas which are occupied by dense woodland and 
small housing building unis at a rural location called Barton-Bendish in central England. Derived bare earth DTMs from DEM  show 
< 3m rms height difference compared with OS® PANORAMA. Also, a quality assessment by visual inspection of object detection 
results shows reasonable accuracy. The tree detection process gives a higher detection ratio than 85% consistently and the building 
detection process attains up to a 80% detection ratio even with relatively small scale targets.   
 
 

                                                                 
 
 

1. INTRODUCTION 

High quality 3D range data produced through direct range 
measurement by an active sensor (usually LiDAR) is a very 
useful tool for automated landscape object detection. However, 
such data is not usually available and is very expensive to 
collect. In such cases, spaceborne stereo very high resolution 
imagery can be considered as a replacement. Stereo DEMs from 
high resolution stereo satellite images or aerial photos can have 
a higher resolution than direct range measurement products 
such as LiDAR but the vertical accuracy of individual height 
points is  not comparable and is usually lower for speaceborne 
imagery. Therefore, automated boundary detection of landscape 
objects in a stereo DEM is usually not very reliable. The 
purpose of this research is the development of new stereo 
matching schemes for high-resolution satellite stereo image of 
residential areas, specifically IKONOS, to address such object 
boundary delineation problems and apply them to the 
automated object detection of trees and buildings when 
combined with multi-spectral clues. 
To start with, camera information from  the IKONOS images 
(Rational Polynomial Coefficient (RPC)) is updated using bias 
correction with a few GCPs and it will be demonstrated that a 
maximum 3m positional accuracy can be obtained. 
To build a more reliable DEM, epi-polarity is exploited and 
combined with the Adaptive Least Squares Correlation (ALSC) 
method. We developed an optimization scheme for epi-polar 
constraint – based on a cooperative algorithm by Zitnick and 
Kanade (2000).  
The object detection process consists of a combined processing 
chain consisting of first a bare Earth construction (DTM) 
routine from the stereo height points, followed by a multi-
spectral classification scheme employing normalized height 
points as training vectors. It should be noted that this approach 

has already successfully been applied to a LiDAR based object 
detection (Muller et al., 2004).  The DTM is applied to derive 
normalised height points which are feed-forwarded to a local 
classification stage to split building segments, tree and grass 
areas. Then through a channel point detection and ellipse fitting, 
individual tree crowns are split and building outlines are 
simplified to polygons. 
 

2. BACKGROUND 

2.1 Data sets description 

Data over the Barton-Bendish test area in Eastern England 
comprises a stereo pair of IKONOS panchromatic 1m and 4m 
multi-spectral images covering an 11 x 11km area. Table 1 and  
Figure 1 show the main image characteristics and the resized 
outlines of the IKONOS images. As described in the Open GIS 
specifications (2001) on RPC, the original image pair is divided 
into two pieces to maintain the accuracy of the RPC coefficients 
and their epi-polarity. 
 

Processing Level Standard Geometrically Corrected 
Image Type PAN/MSI 
Interpolation Bicubic 

Stereo Stereo 
Datum WGS84 

Nominal Collection 
Azimuth Right :344.3 deg, Left :233.7 deg 

Nominal Collection 
Elevation Right : 69.4 deg, left 70.9 deg 

Table 1. IKONOS image characteristics for the Barton Bendish 
test area 

 



 

 
  

 
(a) Right stereo image (b) Left stereo image 

 

Figure 1. IKONOS Stereo image pair over Barton 
Bendish area split into 2 sections as described in the text 

 
 
2.2 Updating of IKONOS sensor models  

IKONOS Geo products normally have 15-metre CE90 
positioning accuracy (Space Imaging, 2005). It means that the 
sensor model needs to be updated to derive accurate 3D data.  
RPC (Rational Polynomial Coefficient) is provided instead of 
physical sensor information with each IKONOS image. 
Therefore, the first starting point in IKONOS stereo processing 
is to update the RPCs.  A detailed specification for RPCs is 
fully described in the Earth Image Geometry models of the 
Open GIS abstract specification (Open GIS Consortium, 2001). 
Basically it uses a ratio of two polynomial functions to 
transform ground X, Y and Z coordinates to image row and 
column as shown as: 
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where p1,p2 are the numerators of the RPCs and q1,q2 are the 
denominators of the RPC. 
Usually the format of a generic polynomial can be given as: 
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where aijk is the polynomial coefficient in i,j,k order, Xn is the x 
ground coordinate , Yn is the y ground coordinate and Zn is the 
elevation of the ground level above a reference surface. 
Usually with commercial optical images, a 3rd order 
polynomial results in 80 coefficients (20 for each p1, q1, p2, q2) - 
the maximum power of ground coordinates is limited to 3 such 
that the polynomial coefficient should be set to zero if i+j+k is 
more than 3.  
 
A simpler method was employed based on the results of 
analysing positional error properties of IKONOS. Here, the 
RPC update is tried with only 2 constant terms. As seen in the 
previous section, most of the error is directional such that by 
moving the space plane in the (x,y) direction, which is labelled 

as a bias, an improvement in accuracy is expected of at least 
several pixels.  
 
Hanley et al. (2002) proposed a bias corrected RPC using the 
following relationships:  
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where 2,...BAo  are the bias factors, (r,c) are the image row and 
column and p1,..p4 are the RPCs. 
Therefore bias-corrected RPCs, incorporating shift terms A0, B0 
can be given by: 
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We tested the accuracy of bias-corrected RPCs with GPS and 
paper map based GCPs and check points (see Table 2). 
For each GCP, the back-projected row and column value can be 
calculated from an updated RPC. On the other hand, real row 
and column values can be identified in the image plane.  
 

RMS error of check 
points 

Std.dev of checks 
shift Number 

of 
GCPs 

Numbe
r of 

Check 
points

x y x y 

27 23 2.275 2.557 2.752 3.970 
35 15 2.002 2.229 3.192 2.823 

Table 2. Errors of bias compensated RPC 

 
Another approach is to update IKONOS positional information 
by using an 3D affine transformation, which is even simpler 
than RPC (Fraser et al., 2001a and 2001b) as follows: 
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The basic assumption of their research is that high correlations 
exist between exterior orientation parameters with a perspective 
projection. The narrow bundle of rays effectively approaches a 
skew parallel projection as the field of view angle of the 
IKONOS sensor is less than 1 degree. Using a multi-image 
orientation/triangulation, sub-pixel accuracy can also be 
achieved. Table 3 shows the positioning accuracy by affine 
transformation. 
 

RMSE error of 
check points 

Standard deviation 
of check points GCP 

number 

Check 
point 

number 

x Y X y 

26 25 3.639 3.404 3.150 4.188 
34 17 2.503 2.028 3.137 2.258 

Table 3. Positional accuracy of IKONOS affine camera model  

Both methods show high reliability but in this research, Bias-
corrected RPCs were employed as the default. In some areas 



 

where RPC intersection did not converge, affine transformation 
was used instead of RPC updates. 
  

3. ALGORITHMS 

The processing flow is similar to the methods described by 
Muller et al. (2004). The primary difference is the source of 3D 
measurements. Hence the focus was on the stereo matching 
process with subsequent steps such as DTM construction and 
height-multi-spectral data fusion were somewhat modified 
considering the characteristics of 3D stereo measurements. 
 
3.1 Image matching 

Urban areas incorporate a number of discontinuities. Therefore, 
a specially optimized image matcher is necessary because the 
traditional Sum of Squared Differences (SSD) or Normalised 
Cross Correlation (NCC) cannot address problems associated 
with discontinuities in the image. The UCL in-house Pyramidal 
Gruen-Otto-Chau (P-Gotcha) (Day et al., 1992) used Gruen’s 
Adaptive Least Squared Correlation (ALSC) (Gruen, 1985) for 
the cost calculation and aggregation of costs. Previously, Otto 
and Chau (1989) developed a region-growing method as the 
global optimizer of disparity, but the method was not suitable 
for areas containing any significant discontinuities.     
This study uses ALSC for cost calculation and aggregation but 
a different method for global optimisation. The method uses a 
strategy for global optimisation that involves introducing a pre-
processing matcher prior to ALSC. This pre-processing matcher 
(hereafter referred to as the “up-front matcher” or UFM) was 
designed to exploit epi-polarity and suitably address 
discontinuities.  
The UFM consists of two main components: a simple corner 
point-matcher based on a Log-Polar transformation to define 
the disparity range and the cooperative algorithm from Zitnick 
and Kanade (2000). The “costing” part of the ALSC was 
modified by the use of Okutomi and Kanade (1992)’s adaptive 
window method.  
The overall structure of the image matcher for 3D range data 
extraction for urban areas is shown in Figure 2 and the details 
of the individual components will be elaborated in a future peer 
review publication. 
 

 
Figure 2. The overall structure of the image matcher for stereo 

IKONOS 

This image matching flow appears to address the delineation 
problem in the landscape object boundary as seen in the 
examples in  Figure 3.  
 

Figure 3. Examples of stereo DEMs using the modified image 
matching scheme 

 
3.2 DTM construction 

The construction of a DTM was an indispensable precursor 
process for object detection. A DTM construction algorithm 
was used which was originally developed for Lidar data  using 
local extrema detection, hierarchical refinement using height 
residual, and gridding. The method described by Chaudhuri and 
Shankar (1989) is employed for local extrema detection. Then 
the slope analysis and region growing updated ‘natural surface’ 
and Smith and Wessel’s (1990) minimum curvature method is 
used as the gridding component. A newly constructed “bare 
earth surface” is initially subtracted from the original DEM 
heights and an iterative process is applied to refine the mask of 
natural surface. Further details on these algorithms are given in 
Muller et al. (2004). Here we used  stricter slope criteria to split 
“natural” and landscape object surface considering the 
characteristics of the stereo DEM. This “bare earth” DTM is 
integrated with NDVI to produce a preliminary building and 
tree targets through thresholding. These potential building and 
tree targets are known as Region of Interests (RoIs). 
 
3.3 Object detection 

3.3.1 Buildings: Building footprint refinement and 
generalisation occur in three consecutive stages of multi-
spectral processing. In the first stage, supervised classification 
is applied using the training vectors defined by NDVI together 
with 3D information (i.e. the RoIs). A 3D point distribution 
check is applied twice to fuse the results of the supervised 
classification with the segments produced by Fuzzy Clustering 
and Fuzzy Merging (FCFM) (Looney, 2002) of the multi-
spectral image. Then a seeded region growing (SRG) method 
(Adams and Leanne, 1994) is applied to extract the correct 
building roof parts. An algorithm for construction 3D building 
models is not developed here; instead, a simple boundary 
generalisation is performed. Further details can also be found in 
Muller et al. (2004). 
 



 

3.3.2 Trees: This stage consists of two steps: supervised 
classification to discriminate grass and trees and individual tree 
crown fitting and splitting. The latter comprises iterative 
morphological filtering and ellipse fitting (Fitzgibbon et al., 
1996).  The grass and tree splitting scheme is almost identical 
with the classification stage of building detection. With NDVI 
and n-DEM (formalised heights of the landscape objects above 
the DTM) values, a supervised classification was applied to 
high NDVI area. Then the channel points between individual 
tree crowns’ pixel intensity are detected by the method of Wood 
(1996). By applying morphological erosion continuously 
around the channel points, the tree crown can be segregated as 
seen in Figure 4 (a). The remnant of these iterative operations is 
called the “core” of the tree crown  (Figure 4 (b)) and an ellipse 
can be fitted on the reconstructed boundary of the core. In our 
method, the eccentricity of fitted ellipses can be used as a 
verification parameter for the detected trees. If the fitted ellipses 
do not satisfy the criteria, then the failed part is used to provide 
feedback to unprocessed “preliminary” tree parts. The final 
result shows reasonable reliability as can be observed in  Figure 
4 (c).        
 

(a) tree crowns detected by 
channel point detection and 
morphological operations 

(b) Core of tree crowns  

 
(c) Detected tree crowns and ellipse fitting result 

Figure 4. Tree detection process by morphological operation 
and ellipse fitting 

 
4. RESULTS & EVALUATION 

To assess these algorithms, three sub target areas were chosen 
(Figure 5) which contain different types of building and tree 
mixtures. Area 1 consists of  an area of large buildings on an 
airbase and has regularly arranged houses. Areas 2 and 3 consist 
of small housing areas and a few farm buildings so these assess 
more severe conditions for the building and tree detection. 

In all the test areas, there is insufficient ground truth for 
assessment, so it was necessary to depend on manually 
extracted landscape objects. Firstly, a building detection ratio 
was manually assessed. The Building Detection Metrics 
(Shufelt & McKeown, 1993) scheme is used here to evaluate 
the accuracy of building outlines compared with GIS data. In 
the Shufelt and McKeown’s scheme, quality assessment factors 
are defined as below.  
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where TP is True Positive (Both data sets (detected building 
and OS data) classify the pixel as being part of a building), TN 
is True negative (Both data sets classify the pixel as being part 
of the background), FP is False Positive (Detected data set 
classifies the pixel as a building, ground truth classifies it as 
background), FN is False Negatives (Detected data set classifies 
the pixel as background, ground truth classifies it as a building) 
 

 
 

Figure 5. The location of the three test areas Barton Bendish 
image  

 
In this research, these building detection metrics were not 
directly available because there were no reliable extracted 
building polygons available to calculate these metrics. The 
number of buildings in the limited regions were therefore 
counted manually and compared with the detected building 
footprints. The resulting extracted detection ratio (Table 4) is a 
little bit lower than that of the automatically detected building 
RoIs based on LiDAR processing which we found in Eastern 
London where detection percentages are 78-85%. The reason 
for the lower detection ratio is mainly due to the small building 
sizes in the target area and errors in the derived DEM, 
especially in building boundaries. Since the region growing of 
the DTM construction process climbs across low slopes, 
building boundaries extracted by unsuitable image matching 
results, the n-DEM (DEM-DTM) can not be correctly 
determined. Some part of this error can be solved by supervised 
classification but the issue cannot yet be fully addressed.  
Another error source was the “improper” camera model. 
Because of the positional errors of the non-rigorous camera 
model, building heights were determined to be lower than their 



 

actual heights. This phenomenon can be quite significant for 
such small scale housing areas, and the n-heights lower than the 
real value must be frequently thresholded in the training vector. 
Tree detection in very densely wooded areas, which exist over 
much of the entire IKONOS image, was not attempted because 
there is no ground truth to assess the results and it is not feasible 
to assess such dense areas visually. However, the tree detection 
results around housing areas show a very high accuracy even 
though trees are frequently “attached” to artificial objects (see 
Table 5). That’s because the detection algorithms exploit the 
image intensity rather than inaccurate height information.    
Normally the quality of stereo 3D products has good quality as 
observed in Table 6 and Figure 6. 
However, the stereo matcher doesn’t appear to work well in 
very homogeneous areas such as ponds, cultivated regions, 
shadows, roads and cloudy area. Also the highly populated 
building areas or big forests can result in erroneous DTMs 
during the gridding process (see “E” area in Figure 6). 
Therefore the DTMs and n-DEM of these areas are not 
correctly determined and produce erroneous building detection. 
Pre-defined masks of urban areas, which may be extracted 
manually or using pre-existing GIS, and improved shadow and 
road masks may be necessary to eradicate such error. 
 
Finally, details of tree and building detection results and the 
DEM in the test areas are shown in Figure 7 so that the quality 
of products can be visually assessed. 
 

Area TP FP FN Tree 
Detection 
Percentage 

Branching 
Factor 

Quality 
Percentage

 1 220 17 74 74.8% 0.077 70.7% 
 2 146 15 42 77.6% 0.103 71.9% 
 3 119 26 24 83.2% 0.126 70.4% 

Table 4. An assessment of the building detection results 

 
Area TP FP FN Tree 

Detection 
Percentage 

Branching 
Factor 

Quality 
Percentage

1 302 42 32 90.4% 0.139 80.3% 
2  220 43 32 83.9% 0.191 74.8% 
3 190 32 24 88.7% 0.126 77.2% 

Table 5. An assessment of the tree detection results 

 
Area Max(m) Min(m) Mean(m) Stddev(m)

1  8.533 -3.103 3.793 1.870 
2 6.755 0.023 1.546 1.360 
3 7.323 -1.011 1.844 1.722 

Table 6. Constructed DTM accuracy (Extracted DTM - OS® 
PANORAMA) 

 
(a) Test area 1 

(b) Test area 2, one poor DTM area due to the artefact of stereo 
height points 

 
(c) Test area 3, one poor DTM area by the behaviour of min-

curvature gridding method 
 

Figure 6. The comparison with constructed DTM and OS® 
PANORAMA DTM (“E” means erroneous DTM)  

 
5. CONCLUSION 

Tree and building detection based on stereo IKONOS derived 
DEMs and multi-spectral classification was performed and 
validated. The detection ratios of buildings appear a little bit 
lower than the corresponding ones using IKONOS images and 
LiDAR DEMs. However, considering the building sizes of 
Barton-Bendish, which are mostly smaller than the big urban 
area, the algorithm provides almost the same accuracy using 
two different 3D range sources, i.e. stereo and LIDAR. A full 
quantitative quality assessment of the tree crown detection 
could not be performed due to the absence of ground truth. 
However, visual inspection indicates partial tree detection 
algorithm works well. Therefore, the potential of stereo 
IKONOS for landscape object detection can be concluded to be 
reasonable.   
The most crucial factor for improving the detection ratio is a 
more efficient stereo matching algorithm to address the building 
delineation problem and/or an improved generalisation method 
for building extraction. We are implementing more improved 
image matcher scheme such as based on dynamic programming. 
In addition, to compensate for ambiguous object boundary lines, 
a linear feature matching technique using an eigenvector 
approach should be employed and then these matched linear 
features  can used for the break-lines in a separate gridding step.  
In conclusion, the newly developed technique appears to have 
great potential for automatic landscape database construction 
solel;y from high resolution stereo satellite image which is 
much more readily accessible than LiDAR + optical image.  We 
look forward to applying an advanced version of this method to 
the next generation of high resolution satellites such as 
Worldview, which will be equipped with finer resolution 
sensors especially with more spectral bands.  
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(a) Stereo DEM in test area 1 



 

 
(b) Building detection results in test area 1 
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(c) Tree detection results and details in test area 1 

Figure 7. DEM and object detection results in test area 1 


