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ABSTRACT:

The point cloud alignment problem has always attracted the interest of the researchers. Two are the procedures usually applied for
the close range surveys: the ICP method with all its variants, and the method based on the use of tie points identified by reflecting
targets properly located on the overlapping part of two range images. The two methods are not concurrent. ICP requires an initial
sufficiently accurate pre-alignment and does not work with regular surfaces; the tie points method requires the materialization and the
recognition of the corresponding points, task that it is not always feasible and realizable in economical terms. This paper proposes a
new hybrid technique to automatically execute the alignment of close range point clouds by evidencing the corresponding
morphological singularities in the various scanning models. The point recognition is based first on the study of the local surface
Gaussian curvature values, second by running a clustering procedure of laser points having extreme curvature values, and third by
determining the centroids of each cluster. The computation of the local Gaussian curvature is carried out by applying to each sampled
point a Taylor’s expansion local nonparametric algorithm with respect to its surrounding points. This makes it possible to locally
estimate the surface function value, and its first and second order partial derivatives. The computation of the Weingarten map matrix
elements, from second order Taylor’s expansion differential terms, allows to easily determine the Gaussian curvature for each point.
For each point cloud, the above defined centroids, generate a vertex configuration. The punctual correspondence with the analogous
vertices of an adjacent point cloud are automatically defined, according to the analysis of the respective adjacency matrices. From
these sets of pairs, the pre-alignment rototranslation parameters are computed by a SVD algorithm. The final alignment is completed
with an ICP method. The experimental results obtained for the alignment of the various parts of one of the well known Stanford
models are shown. The paper also reports a general model, derived from the Generalized Procrustes Analysis, to obtain the
simultaneous global registration of a set of point clouds. The method is able to simultaneously consider pairs of correspondent points
automatically obtained by the ICP algorithm, pairs of tie points manually defined, and control points.

1. INTRODUCTION

Laserscanning surveys of large and complex 3D objects require
the execution of many point clouds acquired from sensor
locations properly distributed in space. This allows the view and
the measurements of the different parts composing the complete
object surface. Since the point clouds acquired from different
sensor locations are expressed in their own independent
reference frame, it is necessary to join and match the various
partial point clouds, so to seamlessly recompose the surveyed
object. This is analytically carried out transforming the
surveyed points coordinates into a unique reference system. The
definition of the best transformation parameters constitutes the
core of the registration problem.
The laser point cloud registration problem has been considered
by many authors. A recent general overview of the various
proposed solutions is reported by Gruen and Akca (2005).
According to Goshtasby (1998), and to the common sense, the
various methods can be catalogued into two main families:
surface matching and feature matching.
Surface matching techniques have been developed in the
robotics and computer vision sectors. After an initial
approximated manual alignment, these methods iteratively
improve the registration, gradually reducing the distance
between the points belonging to overlapping areas of adjacent
scans. The most famous and implemented method is the so-
called ICP – Iterative Closest Point – proposed by Besl e
McKay (1992), soon improved by Chen and Mediani (1992). In
the following, many authors have proposed various
improvements so to make it more robust and efficient. Turk and
Levoy (1994) for instance, neglect the points falling along the

borders of the overlapping areas, while others as Godin et al
(1994), Dorai et al. (1997), Masuda et al. (1996), Godin et al.
(2001) do not consider, or differently weight, the pairs of
corresponding points whose geometric or qualitative attributes –
colour, reflectivity, curvature, surface normal direction, incident
angle of the beam with respect to the surface etc. - are mutually
very dissimilar. Other authors (e.g. Zinßer et al., 2003;
Greenspan et al., 2000; Greenspan and Godin 2001) have
developed more efficient procedures to speed the search of the
closest point, that is the most expensive task in terms of
computation time. An interesting critical overview about the
variants of the ICP method is reported in Pulli (1999) and,
mainly in Rusinkiewicz e Levoy (2001). Although these
updates, the method still presents some limitations: it requires
an accurate manual pre-alignment; it does not work for regular
surfaces, and the solution can converge to local minima.
Feature matching techniques are conceptually the same as those
largely employed in photogrammetry, and they correspond to
the procedures that use tie and control points. A series of links
among pairs of manually, or automatically defined
correspondent points are established. According to these points
the unknown transformation parameters for the optimal
matching of the various point cloud models can be obtained.
This approach is largely applied in the practice of terrestrial
laser scanning, where often exists the possibility to fix some
artificial target points to the object. The targets are constituted
by geometric signals (e.g. spheres), or by proper adhesive
stickers collocated on the object surface (i.e. on the building
walls), easily and accurately identifiable on the point clouds by
their particular shape, or by the high reflectivity of the
composing material. Not always it is possible or convenient to



signalize the object, like in the case, for instance, of a very large
building, or of a rock wall subjected to rock falls. In these cases
some morphological details, univocally detectable among the
various point clouds, are used as tie points.
This operation, if manually carried out, is tedious and not
always easy to do. Furthermore, the number and the level of
accuracy with which the tie points are defined, directly
conditions the geometric quality of the registration. For this
reason (see e.g. Audette et al., 1999; Bae and Lichti, 2004),
since the end of the last decade, methods for the automatic
detection of significant morphological details, allowing to
establish correspondences between partially overlapped
adjacent point clouds, have been suggested.

2. THE PROPOSAL

This work reports a completely automatic registration
technique, that does not require the knowledge of approximated
initial orientation parameters, manual point clouds pre
alignment, prior search of corresponding points, pre-signalized
surveyed objects.
The method is based on the study of physical characteristics
variations of the object surface; the only requirement is that the
surface presents at least one unambiguous time and space
invariant property, variable from point to point of the surface.
The parameter can be the morphology, like in the case of this
paper, or one of its attributes like colour, normalized
reflectivity, or both. The solution is useful for a lot of laboratory
or real world applications.
The method proposed is composed of the following main steps:
- extraction from the different point clouds of the most
significant morphological details (singular feature detection);
- determination of the most probable morphological
correspondences between clouds partially overlapped (feature
labelling);
- pre alignment of the clouds by feature matching and SVD
algorithm;
- final alignment by surface matching ICP algorithm;
- global alignment by iterative hybrid feature and surface
matching.
All these operations are carried out in a completely automatic
way and are described in the following.

2.1 Gaussian curvature analysis and feature detection

A set of significant morphological details allowing the link of
adjacent point clouds, are identified at first.
The automatic association of the corresponding features is based
on the study and mapping of the surface local Gaussian
curvature. Some authors have already devoted their attention to
this invariant surface feature (eg. Besl and Jain, 1986; Thirion,
1993; Boulanger and Cohen, 1994). Our proposal to compute
the local Gaussian curvature is based on the application of a non
parametric local polynomial regression. This approach, carried
out by a Taylor’s expansion extended to a prefixed number of
points round the studied one, makes it possible to locally
estimate the value of the surface function and its k-order
derivatives. A proper weighting of the contribution of the
various points, according to their distance to the considered one,
is also taken into account. From differential geometry, the
curvature parameters can be detected from the elements of the
Weingarten map matrix, that can be locally computed from
estimated non parametric Taylor’s expansion parameters.
Let us consider at first the analytical model ε+µ= )()(z xx  for
a certain function value z acquired at the generic position

D∈x , ( 2D ⊂ ℜ ), where ( )µ x  is the true value of ( )z x , ε is a

random variable with ( ) 0E =ε  and 2var( ) εσ=ε . If ( )µ x
admits partial derivatives, then according to the Taylor’s
expansion, ( )µ x  can be approximated by a polynomial of order
k in the neighbourhood of x. The resulting Taylorized model,
approximated to the second order terms, is:
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where ,i ix y  and ,j jx y  are the 2-D Cartesian coordinates of the
generic point i, and of its j neighbour point, respectively.
From differential geometry, is well known that to determine at a
certain point i the values of the Gaussian curvature (invariant
with respect to the reference system), it is necessary to locally
compute the Weingarten map of the surface (Do Carmo, 1976).
For a surface S, parametrized according to Formula (1), the
Weingarten map matrix A is given by:
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of the tangent plane Ti(S) to the regular surface S at point i.
They are given as:
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The terms e, f, g are the coefficients of the “second fundamental
form” 2II ( ) ( ), 0i i i

w dN w w w= − = ≥  of S at i, in the basis

{ },u vx x , where dNi is the differential of the normal vector to
the tangent plane Ti(S). The coefficients are given as:
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The Gaussian curvature K corresponds to the determinant of
matrix A, that is:
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The main advantage of computing the terms of the Weingarten
map matrix A from the differential terms of the Taylor’s
expansion is that the computation of the invariant curvature
parameters can be carried out in the original reference frame,
without any transformation in the so called “Monge coordinate
system” (Cazals and Pouget, 2003) characterized by a diagonal
Hessian matrix. The latter is defined, for the point i of the
surface S, by the principal directions of the tangent plane, and
of the normal vector.
Once the Gaussian curvature values are determined in
correspondence of all the cloud points, a region growing
algorithm is applied to cluster the points having homogeneous
geometrical characteristics. Among the identified clusters, only
those points having greatest Gaussian curvature value are
selected. These are the best candidates, from the geometrical
point of view, to represent tie points. For each cluster having
extreme Gaussian curvature values, the corresponding centroid
coordinates, obtained as a mean of the 3D point cluster
coordinates, are computed. The set of centroids constitute the
first point configuration to submit to a correspondence search.
This process is repeated for all the point clouds that have to be
aligned, defining in this way a set of centroid configurations.

2.2 Automatic Feature Matching and Labelling

The centroids identified above, form a set of possible candidates
to be homologous points of adjacent point clouds. The next step
consists in the recognition of topological relationships among
the clusters (labelling problem).
Let us consider two partially overlapped point clouds, from
which two sets p and q, respectively constituted by m and n tie
points (the centroids), have been identified. The problem
consists in defining the intersection p∩q, and in automatically
finding out, within the intersection, the probable
correspondences between the tie points of the sets p and q.
With respect to other methods already proposed in the past (i.e.
Beinat, Crosilla e Sossai, 2004), in this case, no scale variation
between the coordinate systems of p and q are considered. This
simplified hypothesis is correct according to the purpose of this
operation. The implemented method runs in the following way:

a. Let us consider p = {p1 … pm} the arbitrary m
corresponding point configuration. To this configuration,
the m×m symmetric adjacency matrix Dp is associated,
whose elements are the Euclidean distance ,

p
i j i jd p p= −

between the points pi e pj;
b. Analogously, once the arbitrary n point configuration q

= {q1 … qn} is defined, it is possible to associate to it the
n×n symmetric adjacency matrix Dq, whose elements are the

,
q
k l k ld q q= −  Euclidean distance between the points qk

and ql;
c. The row of maximal asymmetry max

p
id is searched in Dp

(or in Dq), whose distinct elements, ordered in terms of

magnitude, present the “maximal minimal difference”, that

is: ( ){ }max , , 1 , , 1 max, 1... 11...
: ; max minp p p p p p

i i j i j i j i j ii j mi m
d d d d+ += −=

 = ≥ − ∈  
d d

This search minimizes the ambiguity of the geometrical
configuration.

d. In the row max
p
id of maximal asymmetry, the greatest

element , max maxmaxp p
i j id  =  d  is selected.

Next step consists in searching in Dq the values

{ }, , max ,: ; ,q p q
k l i j k ld d d k l kε= − ≤ ∀ ∀ < , where ε  is a prefixed

tolerance. The values k,l satisfying the previous relationship
are stored into an array of pointers, that represents the list of
the possible pairs (qk,ql) corresponding to (pi,pj)max. If this
set is empty, the search is repeated considering the next
component to , max

p
i jd  in terms of magnitude;

e. The various pairs of possible correspondences (qk,ql) are
orderly considered. For each row of Dq, where one of the
correspondence pairs is present, the equivalence of the
remaining elements of the same row, with respect to
possible elements of max

p
id , within a fixed tolerance, is

verified. This allows to generate a binary table, of size m×n,
where the elements express the potential correspondence
among the points of p and of q, according to the initial
choice for i max and k, respectively.

f. If this table has at least two not null elements, a cross-
validation of all the possible correspondences is carried out.
This is performed verifying the equivalence among all the
remaining distances defined by point pairs of p and the
point pairs of q  inserted into the table.

g. This process is repeated for each pair (qk,ql) identified at
step (d.), adopting the pair generating the largest number of
correspondence pairs valid between p and q.

The procedure here described is schematic. A set of
implemented tests, makes it possible to solve ambiguous
situations. According to current literature, to evaluate the
correspondence point degree, the use of some attributes
associable to the points, e.g. curvature, will be applied in future.

2.3 SVD pre-alignment

Thanks to the pairs of tie points identified and linked by the
preceding phases, two matrices Xi and Xj of k corresponding
point coordinates are obtained. The translation t and rotation R
parameters to transform the coordinates of a point cloud onto
another one are directly determined by applying the SVD
method (Schoenemann, 1966). An alternative procedure
consists in computing also an isotropic scale factor c
(Schoenemann and Carrol, 1970), and to use it as a registration
quality index. By computing the SVD of the following product:

( ) T
s

T T T
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where I is the identity matrix, and j is a k×1 predefined
auxiliary unitary vector,
- the rotation matrix: T=R VW ,
- the global scale factor:
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can be directly computed.



2.4 Pairwise registration refinement by ICP

Once the pre-alignment is obtained, the pairwise registration
process is completed by ICP. In our case, the basic version of
the method proposed by Besl and Mc Kay (1992), has been
implemented, updated by some improvements proposed in the
literature (e.g. Rusinkiewicz and Levoy, 2001).

2.5 Global registration by Generalised Procrustes

The proposed method, up to now, is employed to mutually align
pairs of 3D point clouds. For redundant point clouds, or for
scans spatially disposed so to define a sequence of clouds
connecting the first and the last one, there exists the necessity or
the possibility to distribute the alignment errors among the
various composing 3D clouds.
It must be stressed how the original global alignment model
proposed by the authors for the feature matching solution
(Beinat and Crosilla, 2001) can be easily adopted within the
ICP, offering to the latter method the possibility of using control
points. In fact, it is only necessary to consider the various
matrices Xi of homologous points, associated to each 3D point
cloud, like constituted by tie points manually defined, and by
automatically identified correspondences within the ICP, with
the option to discriminate the two sets by proper weights. All
this without introducing any variation to the solving scheme,
even better emphasizing the common and extended use of the
SVD function by the two algorithms.
The simultaneous global registration problem requires the
definition of the transformation parameters ci, ti and Ri (i = 1 …
m), for each homologous point coordinate matrix Xi, so to
minimize the following objective function:
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The satisfaction of the previous condition represents the
Generalized Procrustes problem solution (Gower, 1975;
Goodall, 1991). Once p Tci i i i i= +X X R jt  is defined, it is
possible to prove the equivalence of the following formulations
(i.e Borg e Groenen, 1997):
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From this correspondence, it is possible to iteratively minimize
Formula (15) instead of (14), obtaining for each configuration
Xi (i = 1 … m), the unknown {c, R, t}i that transform it in p

iX ,
in such a way to find the simultaneous least squares matching
among the all configurations. For this solution, the term

p

1

1ˆ
m

m

i
i=

= ∑C X (16)

Represents the least squares estimate of the unknown term C,
geometrical centroid of the m aligned configurations of
corresponding points. C is composed by the matched point
coordinates expressed in a mean common reference system.
Please note that every p

iX corresponds to C, unless a random
error component Ei, that is: p

i i+ =C E X .

The parameters {c, R, t}i, relative to the various configurations
Xi of homologous points, are applied to the remaining points of
the 3D model, performing in this way the corresponding
alignment.
In real world applications, each pair of point clouds is partially
and differently overlapped, therefore the GPA model has to be
further extended to account for missing correspondences among
point clouds.
This can be done considering coordinate matrices p

iX  (i = 1 …
m) pre-multiplied by a proper real diagonal weight matrix Di
The equivalence of the measurements, expressed by Formula
(15) becomes now:
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while , the estimate of the geometric centroid C becomes in that
case:
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This formulation allows to handle the missing homologous
points among the various models, like happens in practice. A
binary diagonal matrix Mi is introduced, with the terms equal to
1 where the corresponding points of Xi are effectively present,
and 0 in the other cases (Commandeur, 1991). Pi (optional), is
the so called diagonal weight matrix.

i i i i i= =D M P P M (19)

This method presents some significant advantages: it does not
require the solution of equation systems and does not require the
computation of approximate values of the unknowns. However,
the most relevant aspect is that it furnish the mathematical
model to implement the global alignment, both for tie points
model or with ICP. Conceptual investigation and details of the
procedure, are reported in Beinat and Crosilla (2001) and
Crosilla and Beinat (2002).

3.  ONE EXAMPLE

The proposed method has been implemented in C++ in a specific
software for multipurpose Lidar data processing.
We report the results of the automatic alignment of the point
clouds composing “The dragon”, the famous Chinese symbol,
one of the case studies in The Stanford 3D Scanning Repository
(see: http://graphics.stanford.edu/data/3Dscanrep/).
The full dataset is composed by 70 point clouds, produced by a
Cyberware 3030 optical range-finding system. In operation, the
head of this scanner emits a low-intensity laser beam on the
object surface to create a lighted profile. A high-quality video
sensor captures this profile from two viewpoints (see:
http://www.cyberware.com/products/scanners/3030.html). For
the aim of the test we processed a subset of 30 point clouds, for
a total amount of 912000 points, relative to the “stand” and to
the “up” scan sequences, enough to provide a redundant
coverage of the entire object surface.
The results are explained graphically. In Figure 1, two
overlapping point clouds (red and green) are represented in their
proper initial reference system. Figure 2 shows the mapping of
the areas containing equal Gaussian curvature values, evidenced
by an arbitrary colour scale. This analysis has been performed



for each point cloud. Figure 3 and 4 put in evidence, for two
overlapping point clouds, the possible tie point detection carried
out by centroid computation of the points clusters having
extreme Gaussian curvature values. The number of
correspondences is variable and depends on the extreme values
interval considered. An excessive number of possible tie points
slows down the automatic feature matching and labelling step.

Figure 1. Two overlapping point clouds before registration.

Figure 2. Mapping the areas of equal Gaussian curvature values
(evidenced by a colour scale).

Figure 3. Tie point detection by centroid computation of the
clusters of points having extreme Gaussian curvature values.

Figure 5 shows the two overlapping point clouds after the
automatic pre-alignment, and the pairwise ICP registration.
From the graphical point of view, there is no detectable
difference between the pre-alignment and the ICP registration:
i.e. the pre-alignment is close to the ICP solution. Figure 6,
shows the 30 point clouds composing the dragon, evidenced by
a different colour, merged together to compose the model.

Figure 4. Same as Fig. 3, but relative to a different point cloud

Figure 5. The two overlapping point clouds after the automatic
pre-alignment and the pairwise ICP registration.

Figure 6: Thirty point clouds of the dragon, evidenced by a
different colour, registered together to form the model.



3.  CONCLUSIONS

A full automatic method for the global registration of
laserscanning point clouds has been developed. The approach is
hybrid, and acts along five main steps. At first, a tie point
detection is performed, based on morphologic feature extraction
by way of Gaussian curvature analysis. Then a labelling
procedure is carried out in order to establish valid
correspondences among tie points of the overlapping scans.
From these tie points coordinates, the transformation parameters
are directly computed, and the different point clouds pairwise
aligned into the same reference frame. Furthermore, an ICP
algorithm improves the pairwise alignment. Finally, the global
registration of the full set of point clouds is obtained by merging
together all the tie points of the different point clouds, by way
of the Generalised Procrustes algorithm.
The method has been implemented, and successfully tested on
laser point clouds of 3d objects. Current developments are
addressed to improve the efficiency of the procedure, by
optimizing the tie point labelling procedure, and the ICP
algorithm, through a more efficient and robust closest point
search, able to take advantage of the point attributes.
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