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ABSTRACT:

The widespread use of optical 3D measurement in inspection and prototyping continues to demand improved strategies for planning
the next best view (NBV). During the scanning process, better viewpoints can be chosen and fewer views need to be taken, if a NBV
algorithm is able to use available a-priori information about an object to-be-scanned. The proposed extension to a voxel space based
NBV algorithm initialises the planner with a low detail geometric model of the object. Iterative updates of this model, according to the
data of the scanning process, enable the adaptation to possible inconsistencies. First promising results from tests with fringe projection
ray-tracing simulations are presented.

1. INTRODUCTION

To sample all visible surfaces of nontrivial objects requires mul-
tiple range measurements from different viewpoints. In an au-
tomated surface acquisition system a NBV algorithm is used to
determine the next viewpoint. The object/scanner is moved and
a new measurement starts. Incrementally, surface data sampled
from those positions is added to the partial object model. After
sufficient surface data has been acquired, the algorithm should
terminate the scanning process.

Different strategies have been employed for the different vision
tasks at hand. If the object’s geometries and poses are known
(e.g. in model-based object recognition or in the “art gallery
problem”), optimal sensor positions can be determined (see e.g.
(Roberts and Marshall, 1998)). On the other hand, in situations
with very limited object information, e.g. reverse engineering,
NBV algorithms used simpler approaches to determine areas to
scan. Nearly all researchers, according to (Pito, 1999), address
this problem by identifying range discontinuities. Principles used
herein include, but are not limited to, occlusions as a guide for
planning the next view (Maver and Bajcsy, 1993) and volumetri-
cally representations of the viewing volume (Massios and Fisher,
1998), (Banta, Wong, Dumont, and Abidi, 2000). See (Taraba-
nis, Allen, and Tsai, 1995) for a survey of sensor planning in
computer vision.

One of the goals of this work is to make use of some of the avail-
able object knowledge while maintaining the intuitiveness and
simplicity of the volumetric approaches. This targets at scenarios,
where a prototype CAD model of the object (e.g. in inspection)
at hand or a rough scan or some other sort of abstraction gives
clues about the object geometry. Two aspects should benefit from
such an improvement: the early stage of the scan (“begin game”
according to (Hall-Holt, 1996)) completes with less views. Sec-
ondly, a better initial quality of measured points is achieved due
to better chosen viewpoints in respect to object surface normals.

The rest of this paper is organized as follows. Section 2. dis-
cusses assumptions and terms used by the remainder of this arti-
cle. Section 3. outlines available optimality criteria and develops

the furthermore utilised criterion. Thereafter, the proposed NBV
algorithm is introduced, which is based on these criteria. Sec-
tion 4. describes an implementation and the results of scanning
in a fringe projection simulation framework. Finally this paper is
summarized by Section 5., which also depicts future work.

2. ASSUMPTIONS

In order to concentrate on the question, how a-priori information
about the geometry of the to-be-scanned object can improve the
NBV planning procedure, some assumptions have been made.

First, when speaking ofthe sensor, we refer implicitly to at least a
fringe projector and one camera in a fixed setup. Similarly,sensor
positionstands for the positions of both - the exact positions of
camera and projector can easily be calculated. This basic setup
can be compared to a stereo camera system with a fixed base and
orientation. However, to limit the effects of the resulting stereo
visibility constraints, a rather small triangulation angle has been
chosen.

To reduce the computational burden of the NBV algorithm, po-
tential sensor positions are chosen from a circular path with the
object in its centre. The sensor is always targeting the point of
origin, in which the object is located (see Fig. 1 for illustration).

The actual intensity images used as input to the given fringe pro-
jection coordinate calculation kernel were created from a ray-
tracing simulation using POV-Ray1. The object surface is as-
sumed to be lambertian. This ensures easy, controlled, and repro-
ducible sensor positioning.

As camera model we deal with the ideal pinhole model. Since the
projector can be viewed as an inverse camera, this also holds for
the projector. In the rendering stage of the NBV algorithm, the
intrinsic parameters of the cameras are set to the values used by
the ray-tracing.

1Persistence of Vision ray-tracer:http://www.povray.org



Figure 1. Simulated measuring setup and corresponding viewing
volume. The resulting classification intoEMPTY, SEEN, UNSEEN

andOCCLUSION PLANEvoxel of a measurement is shown.

2.1 Definitions

The whole measurement volume is divided into cubes with equal
side length. Those cubes, commonly calledvoxels(short for vol-
umetric pixel), are internally arranged in a 3-D array. In contrast
to an occupancy grid, as seen in (Banta, Wong, Dumont, and
Abidi, 2000), each voxel can store more information associated
to the measurement points it represents. For instance, we assign
both a quality and a voxel status to each voxel.

Local voxel spacedenotes the “scratch pad”. Here basic mark-
ing is applied to the data coming from individual measurements.
Global voxel spaceon the other hand accumulates all the infor-
mation from the views taken so far.

Each voxel is associated with a set of attributes. The voxel’s nor-
mal vector (norm) describes the surface normal of the patch of
object surface within the voxel’s volume. It is approximated via
a plane fit over the voxel’s points. The quality estimate (0≤
qual ≤ 1) should describe the confidence in the measurement
of the points in this voxel. A typical measure of confidence for
triangulation-based range scanners at a measured point is the co-
sine of the angle between the surface normal and the viewing ray
at a particular point (Pito, 1999). Here we approximate it as the
dot product between the viewing directionv̂ of the sensor and this
voxel’s surface normal:qual = norm· v̂.

To allow for viewpoint evaluation, all voxels in a voxel space are
classified as follows (according to (Massios and Fisher, 1998),
see also Fig. 1):

EMPTY : (E) The volume of the voxel is free of measured points.

SEEN: (S) Measured points lie within this voxel’s volume. At-
tributes likequal andnormare associated to this voxel.

UNSEEN: (US) The volume of this voxel has not been seen yet.
Other voxels might occlude it.

OCCLUSION PLANE : (OP) The area of space of this voxel lies
on an occlusion plane (see Fig. 1 and Fig. 2c). These are
voxels on the border between unseen and empty voxels.

To aid the planning process in the first phase of measurement,
it would be beneficial to rely on supplementary information in

addition to the points scanned so far. Possible occlusions could
be avoided and better viewpoints be chosen, if the planner would
have access to even very approximate model information (see Fig.
2a and b for an example).

To consistently extend the given framework to use this kind of
a-priori information, voxels which include only points from such
a prototype model are treated asSEEN voxels with quality set to
0. We will refer to these voxels asHINT voxels.

3. CRITERIA OF OPTIMALITY

There are many different goals a NBV algorithm can strive for.
Among the most popular is to achieve the “optimal” result after
each particular scan. “Optimal” often means the highest score
in some weighting function still satisfying a set of constraints.
For instance, constraints can be the sheer possibility of a object
surface to be scanned, with regards to the characteristics of the
sensor positioning and the sensor itself. The weighting function
usually guarantees the knowledge increase in terms of scanning
so far unseen areas or enhance confidence in previously taken
measurements. The weighting functionf2(v̂) presented in this
paper tries to maximise the information gain solely for the next
view.

Other goals could include an optimal result aftern scans, which
takes time and memory considerations into account. Graceful
abortability, which warrants optimality aftern more scans, can be
seen as a subclass of this goal.

One important constraint not handled in our approach is the over-
lap constrain. If there is sufficient overlap between a scan of so
far unseen and already seen areas of the object, overall quality of
the resulting aggregated data set increases. This is due to the fact
that many algorithms for registration and integration of range data
perform best when the range data overlaps (Pito, 1999). How-
ever, since within our ray-tracing simulation environment exact
sensor positions are known, no special registration / integration
steps are needed.

3.1 Evaluation criteria for the NBV

The proposed NBV algorithm is an extension to the algorithm
described in (Massios and Fisher, 1998). As such, it maximises
the amount of visibleOCCLUSION PLANEvoxels in order to scan
still unseen areas. Furthermore it tries to rescan voxels with low
estimated quality.

However, to aid the NBV algorithm in finding good views during
the start phase, when large portions of the viewing volume are
still unseen, the concept is enhanced as follows. Often knowing
the prototype geometry and pose of the object to be scanned, one
can create a point cover2 of this object. This can either be done
by a coarse scan using uniformly distributed sensor positions (if
no CAD model is available), or by creating one using the CAD
model.

We used this abstraction of the object, called thehint model, to
initialize the global voxel space. As long as a sufficient amount
of HINT voxels are still visible, the planner uses only the hint
criterion (see Sec. 3.2) to compute the next view. During fusion
of new views by repeatedly merging their local into global voxel
space,HINT voxels are gradually replaced byEMPTY or SEEN

voxels or are occluded and therefore not visible anymore. If the

2The point cover function creates a point model based on an existing
polygon or CAD model.



(a) the ideal pipe model (b) approximation of the pipe model for use as
HINT data

(c) seen and occlusion plane voxels

Figure 2. The pipe model (Fig. a) and its abstraction (Fig. b) for use as a hint during early planning stages. Fig. c) showsSEEN and
resultingOCCLUSION PLANEvoxels from a range measurement.

maximal amount of visibleHINT voxels in any evaluated sensor
position drops below a certain threshold, the evaluation uses the
conventional approach for the remainder of views.

To summarise, our NBV algorithm maximises the following in
order to determine where to look next:

• during start phase: number and quality of visibleHINT vox-
els with sufficient quality

• during model refinement: number of visibleOCCLUSION

PLANE voxels as well as number ofSEEN voxels with low
quality

3.2 Weighting functions

The projection of the global voxel space onto potential sensor
positions allows for their evaluation. The visibility criterionfv(v̂)
introduced in (Massios and Fisher, 1998) maximises the number
of visible OCCLUSION PLANEvoxels from position̂v:

fv(v̂) = sizeo f(OP∩V(v̂)) , (1)

whereV(v̂) is the set of visible voxels from sensor positionv̂.

The quality criterionfq(v̂) maximises the number of alreadySEEN

voxels with low quality, which could be rescanned from the cur-
rently evaluated position:

fq(v̂) =
∑sizeo f(S∩V(v̂))

i=1 (1−qual(S[i]))(|v̂·norm(S[i])|)
sizeo f(S∩V(v̂))

. (2)

This criterion favours sensor positions, which rescans voxels with
low quality estimate vertically (i.e. where|v̂·norm(S[i])| ∼ 1).

To combine both criteria according to (Massios and Fisher, 1998),
the weighted sumf1(v̂) is calculated as follows:

f1(v̂) = wv ∗ fv(v̂)+wq ∗ fq(v̂). (3)

The weights were empirically set towv = 1 andwq = max( fv) in
order to ensure comparability between the two criteria.

As an extension to these principles from (Massios and Fisher,
1998), we use given a-priori information to choose better view-
points during the first measurements. The evaluation criterion is
similiar to the quality criterion, but takes onlyHINT voxels into

account. To prefer sensor positions, which not only view many so
far UNSEEN voxels, but also favour good viewing angles3, only
HINT voxels which are seen under smaller viewing angles than
θb are considered. The breakdown angleθb, according to (Pito,
1999), must be smaller than 90◦ and is, in most scanners, around
60◦. The equations 4 and 5 express this condition:

spmin(v̂, n̂) =
{

|v̂· n̂| if |v̂· n̂|> cos(θb)
0 otherwise

(4)

spcmin(v̂, n̂) =
{

1 if |v̂· n̂|> cos(θb)
0 otherwise

(5)

fh(v̂) =
sizeo f(H∩V(v̂))

∑
i=1

spcmin(v̂, norm(H [i]))∗ (6)

∑sizeo f(H∩V(v̂))
i=1 spmin(v̂, norm(H [i]))

sizeo f(H ∩V(v̂))
.

The hint criterion according to Eq. 6 scales the amount of vis-
ible HINT voxels, which meet this breakdown angle condition,
with the quality and number of all visibleHINT voxels. This con-
sciously penalises viewpoints which scan large object areas under
questionable conditions.

If a-priori information is available, our NBV algorithm starts view-
point evaluation with the hint quality criterionfh(v̂). If the max-
imum amount of visibleHINT voxels over all evaluated possi-
ble viewpoints drops below thresholdtvh, viewpoint evaluation
switches to criterionf1(v̂):

f2(v̂) =
{

f1(v̂) if max(sizeo f(H ∩V(v̂))) < tvh
fh(v̂) otherwise

(7)

with tvh empirically set to 10% of the number of maximum visible
HINT voxels in “view 0” (before the start of NBV determination).

3A voxel is scanned under a good viewing angle, if it is sampled nearly
vertically, i.e.|v̂·norm(S[i])| ∼ 1



3.3 Termination criteria

Some examples of possible termination criteria are:

1. An already visited position is chosen as next sensor position
(Massios and Fisher, 1998).

2. Realisation of the required completeness and minimal qual-
ities in at leastx% of the seen voxels.

3. Low estimated information gain during the next view.

For our system we chose criterion 3. Iff2(v̂) is below a threshold
tsc, we stop the measuring process. In our experiments we settsc
to approximately 1% of the maximumf1(v̂) during evaluation of
“view 1” (after the first measurement was integrated).

3.4 Priority of voxel marking

The integration of newly acquired views into the global voxel
space is the key to planning success. To ensure consistency be-
tween the planning model and the real object, the following rules
are applied when updating the global voxel space:

• SEEN voxels are allowed to updateUNSEEN, EMPTY, HINT

andOCCLUSION PLANEvoxels

• EMPTY voxels can overwriteUNSEEN, HINT and OCCLU-
SION PLANE voxels

• OCCLUSION PLANEvoxels may overwrite onlyUNSEENvox-
els

Some conflicts, however, arise due to the discrete nature of the
voxel space. Empty voxels shouldn’t be updated to seen, for in-
stance. Also, voxels with just very few points inside should per-
haps be considered empty. Plans to deal with such situations are
explained in Sec. 5..

3.5 Sequence of evaluation

After each measurement, the acquired data has to be transformed
into the global coordinate system in order to make it available to
the planning process. First, the local voxel space is initialized and
every voxel’s status is set toEMPTY.

The following basic marking is then applied while still in the lo-
cal voxel space. Measured points within a voxel set its status to
SEEN. Voxels on the ray from aSEEN voxel away from the sen-
sor get markedUNSEEN. Voxels, which lie on the ray from a
SEEN or bounding box voxel towards the sensor, will be marked
asEMPTY.

After basic marking, the voxel status of the local system is inte-
grated into the global system. This is done according to the status
update rules (see Sec. 3.4). Then voxels on occlusion planes are
determined in the resulting global model

Following this global integration the evaluation of possible next
sensor positions takes place. First, a number of reachable and
allowed positions are generated. Second, the voxel space is pro-
jected onto each of those positions. The projections, which in-
cludeSEEN, HINT andOCCLUSION PLANEvoxels, are then eval-
uated according to the weighting functions in Sec. 3.2.

Finally, the view pose with the maximum score inf2(v̂) is chosen
as the next view. Its parameters are used to generate the next view
with the ray-tracing simulation. This sequence is repeated until a
termination criterion from Sec. 3.3 is met.

4. EXPERIMENTAL RESULTS

4.1 System integration

First test were conducted by implementing the core functionality
in C/C++ and using OpenGL to perform the projections and cal-
culate, for instance, dot products in image precision. The actual
measurement process was simulated by creating ray-traced input
pictures to our fringe projection system. This was done due to the
better controllability of view positions in this early stage. Later,
tests with a six degrees of freedom eye-in-hand robot positioning
system will take place.

Voxels were drawn as actual cubes with several information en-
coded. The colour of a voxel of a projection of the global model
onto a possible sensor position can represent its index in voxel
space, approximated angle between its surface normal and the
viewing direction or the distance to the sensor. Furthermore, vis-
ibility of a given voxel with respect to other already measured
points and a chosen sensor position is determined automatically
by the rendering process.

4.2 Results using the pipe model

In this section, we present first results from the NBV system. The
resolution of the rendered intensity images used as input for 3D-
calculation is 640×512, and the resolution of the voxel space is
160× 160× 160. All tests were conducted using a pipe model
(see Fig. 2a, similar to the one used in (Banta, Wong, Dumont,
and Abidi, 2000)). This low complexity object consists of cylin-
ders in a grid pattern, such that the model contains many self
occlusions. Status update and evaluation of 36 possible sensor
positions (equiangular distributed every 10◦) took approximately
15 s each on an Intel Pentium IV 3.0 GHz with a low cost graph-
ics accelerator.

To compare our approach against the basic strategy described by
the f1(v̂) criterion (Eq. 3), we took two series of measurements.
One with model initialisation through hint data (see Fig. 3 and
4), one without (see Fig. 5). Both terminated after seven single
measurements with reasonable4 and comparable completeness.

4.3 Problems

The basic challenge of our approach will be the alignment of
the hint model with respect to the measured data. While this is
no problem in our simulation environment or when using rough
scans of the object as hint data, strategies for alignment of a CAD
model need to be integrated as prerequisite for the usage of such
data.

The handling of voxels inside the object also needs to be im-
proved. This would also lead to proper determination of the sur-
face normals of the hint model, which is a minor visual flaw.

5. CONCLUSIONS AND OUTLOOK

We presented an extension to voxel space based NBV algorithms,
which enables the usage of available a-priori information. This
geometric object information, which can be generated from a
rough scan or CAD model, works well as planning base. How-
ever, no clear advantage above other NBV algorithms using vol-
umetric representations could be achieved. Reasons probably lie

4Since the allowed sensor positions were on a circular arc above the
model, the bottom side of the model remained unscanned.



Figure 3. The hint criterionfh(v̂) (Eq. 6) during the evaluation of the pipe model (usingHINT data from Fig. 2). View 0 denotes the
determination of the first view. After four simulated scans (angles 40◦, 220◦, 110◦ and 290◦) the number of visibleHINT voxel drops
below the thresholdtvh. Further scanning is conducted using thef1(v̂) criterion.

(a) 40◦ (b) 220◦ (c) 110◦

Figure 4. The global voxel space (HINT andSEENvoxel) projected onto the chosen viewpoints from Fig. 3. The hint model is gradually
overwritten (black voxel result from flipped surface normals).

Figure 5. Thef1(v̂) criterion (Eq. 3) during the evaluation of the pipe model (noHINT data used). The first scan was arbitrarily chosen
to be 0◦. The planner selected 320◦ as next view (“View 1”), followed by 120◦, 220◦ and 270◦.



in the hitherto existing inability to model the characteristics of the
sensor consisting of camera and fringe projector (keyword: stereo
visibility). Additionally, inaccuracies during voxel marking and
the used discrete voxel states still limit the application to the first
phase of measurement.

Future work will therefore concentrate on enhancing the discrete
voxel states with floating point measures of confidence and voxel
fill level. Furthermore, precision of the iterative update of the
planning model can be increased, if hierarchical voxel structures
(octrees) will be used. This enables also larger voxel spaces and
faster operation. Eventually, planning of more than one view
ahead, while minimizing the number of needed scans, can be re-
alised using this approach. Another interesting possible field of
application is the scanning of large measurement volumes, where
the sensor’s field of view is small compared to the entire volume.
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