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ABSTRACT:  
In this paper we present an efficient edge detection algorithm for the extraction of linear features in both range and intensity image 
data. The purpose is to simplify the dense datasets and to provide stable features of interest, which are used to recover the positions 
of the 2D cameras with respect to the geometric model for tasks such as texture mapping. In our algorithm the required features of 
interest are extracted by an analysis of the mean curvature values. This additionally allows the discrimination of different edge types 
like crease or step edges. As it will be demonstrated, the algorithm features computational efficiency, high accuracy in the 
localization of the edge points, easy implementation, and robustness against noise. The algorithm was initially developed for range 
image segmentation and has been extended to segment intensity images with some modifications. The generality and robustness of 
the algorithm is illustrated during processing of complex cultural heritage scenes.  

                                                                 
∗ Corresponding author 

1. INTRODUCTION 

Terrestrial laser scanning has become a standard tool for 3D 
data collection to generate high quality 3D models of cultural 
heritage sites and historical buildings [Boehler and Marbs, 
2002]. Based on the run-time of reflected light pulses these 
systems allow for the fast and reliable measurement of millions 
of 3D points allowing for a very effective and dense 
measurement of the surface geometry. In addition to the 
geometric data collection, texture mapping is particular 
important in the area of cultural heritage in order to allow a 
complete documentation of the respective sites. For this reason, 
some commercial 3D systems provide model-registered color 
texture by the simultaneous collection of RGB values of each 
LIDAR point. For this purpose a camera is directly integrated in 
the system. However, the ideal conditions for taking images 
may not coincide with those for laser scanning [El-Hakim et al, 
2002]. For this reason, these images frequently will not be 
sufficient for high quality texturing as it is usually desired for 
documentation and visualisation purposes. In addition, laser 
scanning is frequently required from many viewpoints to 
capture complex object structures, which results in a relatively 
time consuming process. For outdoor applications these large 
time differences will result in varying light conditions and 
changing shadows, therefore the captured images will feature 
different radiometric properties. Such problems will 
considerably disturb the visual appearance of the resulting 
textured model. In order to allow for an image collection at 
optimal position and time for texturing it is advantageous to 
acquire geometry and texture by two independent processes. 
This is especially true for the high requirements, which have to 
be met for the realistic documentation of heritage sites. 

To allow for a combined evaluation of the collected range and 
image data sets, co-registration or alignment has to be 
performed as the first processing step. For this purpose 
corresponding elements are required. However, the automatic 
extraction and matching of suitable primitives such as points, 
corners, and lines is extremely difficult especially in complex 

scenes [Ferencz, 2001]. An alternative way is the use of 
artificial targets like spheres or signals, which can be detected 
and identified more easily in both laser range data and intensity 
images [Yu et al, 2000]. However, this requires additional effort 
during data collection and management. Additionally, time-
consuming high-resolution scanning is required to accurately 
measure the position of the target center. Moreover, these 
artificial objects may occlude important parts of the intensity 
images, which are required for texture mapping [Lensch et al, 
2000]. Alternatively, user supplied corresponding primitives 
like 3D points or lines and their 2D projections on the image 
plane can be used. Many solutions have been developed for 
pose estimation based on such 2D-3D correspondences. 

 
Figure 1 Limited perception in finding the corresponding points 

in point clouds and range image. 

A number of traditional photogrammetric approaches use point 
matches, which allow for direct solutions based on three, four or 
six corresponding points [Haralick et al, 1994]. However, the 
perception of such point structures is limited within range data 
and can result an accuracy of manual measurement which is not 
appropriate for registration [Liu & Stamos, 2005]. This is 
demonstrated exemplarily for a cultural heritage application in 
Figure 1. While point features can be identified well in the 
image (left), an exact measurement within the corresponding 3D 
point cloud (middle) or the range image (right) from laser 
scanning is difficult. For this reason, the use of linear features is 
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advantageous. From a practical point of view, line detection is 
more accurate and more reliable than points, line matching is 
also more robust than point matching with respect to partial 
occlusions [Christy & Horaud, 1999]. Those features can also 
help to increase the reliability of the adjustment during spatial 
resection. In addition to the fact that linear features frequently 
occur within images of man made environments, it is easier to 
automatically extract such edge structures compared to a 
measurement of distinct points [Horaud et al, 1997, Lee & 
Habib, 2002]. In order to automatically provide stable features 
of interest, efficient segmentation algorithms are required. Most 
of these segmentation algorithms are based on range images 
instead of unordered 3D point clouds [Yu & Ferencz, 2001]. 
For such 2.5D raster grids neighborhood relations are available 
implicitly and tools from image processing can be adopted. 
Thus, the implementation of segmentation algorithms is 
simplified considerably. 

Within the paper an efficient algorithm for the detection of edge 
structures in both range and intensity images is presented. By 
these means, stable features of interest are provided. They allow 
for an accurate alignment of the range and image data which is 
required for the generation of high quality and photo-realistic 
3D models. Within the paper, the presented approach is 
demonstrated in the framework of a project aiming at the 
generation of a 3D virtual model of the Al-Khasneh, a well-
known monument in Petra, Jordan. 

2. RELATED WORK  

Algorithms developed for the segmentation of intensity image 
have been discussed extensively in the literature. Well known 
examples for the real time segmentation of intensity images are 
[Palmer et al, 1996; Canny, 1986]. In the other hand, ready-
made solutions for range image segmentation are not available 
to a comparable extend [Gächter, 2005]. Similar to image 
processing, existing approaches can be categorized in region-
based and edge based techniques. Region based approaches 
group range pixels into connected regions using some 
homogeneity measure. For each region, an approximating 
surface model is computed. Different range image segmentation 
algorithms based on region growing were analyzed 
systematically in [Hoover et al, 1996]. There the authors also 
conclude that range image segmentation is still not really a 
solved problem even for simple industrial scenes containing 
polyhedral objects. More recent publications are e.g. given in 
[Marchall et al, 2001; Melkemi & Sapidis, 2002]. Range data is 
usually well suited for the extraction of smooth or planar 
surface patches, while the accuracy of directly extracted edges is 
limited. This results from the fact that range measurement is 
usually noisy at such discontinuities mainly due to multipath 
effects. For this reason only a few segmentation algorithms use 
edge based techniques [Sze et al, 1998; Vitulano & Maniscalco, 
2004; Katsoulas & Werber, 2004]. Most of these approaches 
are again focused on simple polyhedral objects and are limited 
to the detection of specific structures such as straight lines or 
circles. 

While in the past range data collection was mainly applied for 
industrial scenes captured at close distances, nowadays long-
range laser scanners are available for many users. By these 
means detailed data sets of complex outdoor scenes are 
collected, which pose much more serious challenges for range 
image analysis than the traditional polyhedral world. The 
difficulties result from the fact that range data of natural scenes 
are relatively noisy. These measurement errors affect the 
approximation of the surfaces during segmentation. In addition, 

the natural scenes are complex since lots of individual objects 
or irregular surfaces occur. For segmentation of this type of data 
[Sappa et al, 2001] propose a two step approach. The first step 
generates a binary edge map based on a scan line approximation 
technique as e.g. proposed by [Jiang & Bunke, 1999]. The 
second step aims on contour extraction by a weighted graph. A 
minimum spanning tree (MST) is computed to obtain the 
shortest path, which links all the edge points. One of the main 
drawbacks of this algorithm is the fact that during the MST 
filtering many edges are eliminated. Recently [Han et al, 2004] 
presented a stochastic jump-diffusion algorithm for the 
segmentation of range images in a Bayesian framework. The 
algorithm can be used for processing of complex real-world 
scenes. Although it is considered as the most advanced 
algorithm for complex scene segmentation, some drawbacks 
such as computational complexity and the large number of 
required parameters are still mentioned. In addition, suitable a 
priori assumptions are required.  

Some existing algorithms are limited to high quality range 
images and will fail in the presence of noise. Others are 
complicated and have a large numbers of parameters while 
generic and efficient edge detectors for range images are still 
missing. This was our motivation for the development of an 
edge detection algorithm for range images, which is presented 
in the following. 

3. ALGORITHM DESCRIPTION 

3.1  Methodology  

The approach is based on the analysis of classical differential 
geometry of 3D surfaces. In our algorithm, the distinguished 
points, which will comprise the edges within the range image, 
are extracted by the spatial analysis of the numerical description 
of the mean curvature values. For this purpose, the surface is 
locally approximated by an analytic representation. The 
different properties of the patch at the respective points of 
interest are then calculated analytically. In order to benefit from 
the behaviour of the mean curvature at edges, the algorithm 
detects local maxima or zero crossings in the range image. 
Further processing steps like a multi-scale edge detection and a 
subsequent skeletonization are used to increase the reliability 
and accuracy during the edge detection and localization. 

3.2 Mathematical Properties of Mean Curvature Values 

In general, successful segmentation requires an appropriate 
surface description. This description should be rich, so that 
matches of similar elements can be detected, stable so that local 
changes do not radically alter the descriptions, and it should 
have a local support so that the visible objects can be easily 
identified. These characteristics are provided by the 
mathematical properties of the mean curvature, which is closely 
related to the first variation of a surface area. Unlike the 
Gaussian curvature, the mean curvature depends on the 
embedding, for instance, a cylinder and a plane are locally 
isometric but the mean curvature of a plane is zero while that 
for a cylinder is non-zero. Mean curvature is invariant to 
arbitrary rotations and translation of surface, which is important 
for surface shape characterization. Since mean curvature is the 
average of the principal curvatures, it is slightly less sensitive to 
noise during numerical computations. Due to these 
characteristics, mean curvature values can provide stable and 
useful measures for detecting surface features in range and 
intensity images.  
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Figure 2. Spatial distribution of the mean curvature values for block and wye range image. 

Several techniques are known for the efficient estimation of the 
mean curvature. The frequently applied analytical methods fit a 
surface in a local neighbourhood of the point of interest. This 
surface approximation is then used to compute the partial 
derivatives needed to calculate the curvature values. As an 
example [Besl & Jain, 1988] proposed an analytical technique 
for estimating the mean and Gaussian curvature. The advantage 
of this approach is its flexibility to estimate the curvature values 
at multiple scales, and the efficient computation of the values by 
optimized convolution operations. For these reasons, the 
estimation of the mean curvature values in our algorithm is also 
based on a modification of this approach. It can be summarized 
as follows: For a given odd N N×  window, each data point is 
associated with a position (u, v) from the set U U×  where 

 ( ) ( ){ }- -1 2,...,-1,0,1,..., -1 2U N N=  

The local biquadratic surface fitting capability is provided using 
the following discrete orthogonal polynomials: 

 Ø0 (u)=1, Ø1 (u)=u , Ø2 (u)= (u2 – M(M+1)/3); M= (N-1)/2 

To estimate the first and second partial derivatives, an 
orthogonal set of di(u) functions using the normalized versions 
of the orthogonal polynomials Øi (u) is used:  
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Since the discrete orthogonal quadratic polynomials over the 
2D window are separable in u and v, partial derivative estimates 
can be computed using separable convolution operators. These 
derivatives estimates can then be plugged into the equation for 
mean curvature. The equally weighted least squares derivative 
estimation window operators are then given 
by:

0 1 1 0 0 2 0 12 1[ ]  , [ ]  ,[ ]  , [ ]  , [ ]  T T T T TD d d D d d D d d D d d D d du v uu vv uv= = = = =

 ( , )g i j represents the noisy, quantized discretely sampled 

version of a piecewise-smooth graph surface. Then the partial 
derivative estimate images are computed via appropriate 2D 
image convolutions. 

( , )  ( , ) , ( , ) ( , ), ( , ) ( , )    
                          ( , )   ( , ), ( , )   ( , ) 

g i j D g i j g i j D g i j g i j D g i ju u uuvv uu
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The mean curvature is then computed using the partial 
derivatives estimates as the following: 

2 2

2 2 3
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3.3  Mean Curvature Spatial Analysis  

The behaviour of the mean curvature for specific object 
properties can be demonstrated well by the filter results for 
synthetic range images. Thus the mean curvature was computed 
for range images of a block and a wye, which are depicted in 
Figure 1. The curvature values were then extracted at the 
horizontal profile represented by the line overlaid to the 
respective range image. From the analysis of these curvature 
values as they are depicted in the bottom of Figure 1 one can 
conclude the following: 

a) For jump edge boundaries (J) where surface depths are 
discontinuous, the mean curvature exhibits a zero crossing. 
Two distinct peaks of opposite algebraic sign are clearly 
visible in the profile of computed curvature values.  

b) For crease edges (C) at discontinuities in the surface 
normal direction, the curvature response is a smooth peak. 
Concave (Cv) and convex (Cx) edges can be discriminated 
by the different algebraic sign of the curvature values. The 
exact position of a convex crease edge is defined by the 
maximum curvature value, while the concave crease edge 
is given at a minimum.  

c) At ridges (R) the mean curvature also indicates a change in 
the orientation of the surface normal, however, the 
response is smaller compared to crease edges. 
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(a) (b) (c)  
Figure 3 a) Depth and discontinuites detection using mask size 5, the red arrows show the missing parts in the junction and the 

corners of the object. b) Handling the junction problems using different scale threshold parameters. c) Segmentation result 
after thinning process to yield one pixel wide edge. 

d) Compared to crease edges, the values of the mean 
curvature are larger at jump edges. Their value mainly 
depends on the magnitude of the depth discontinuity.  

e) For jump edges, the exact position is defined at a zero 
crossing between two peaks of the mean curvatures, 
whereas for both crease and ridge edges the true edge is 
given by the maximum and minimum value of the peaks. 

After computation of the mean curvature values ( ),H x y a pixel 

represents an edge location { }( , ) : ( , ) 1x y E x y = if the value of 
the gradient exceeds some threshold. Thus:  

1       
( , )

0 
if H T for some threshold T

E x y
otherwise

>⎧
= ⎨
⎩

  

In order to locate the position of crease, ridge and step edges, 
zero crossings as well as smooth peak values are searched 
within the computed mean curvature values during the edge 
detection process. 

3.4 Multi-Scale Approach  

Of course the effectiveness of edge detection is related to the 
signal-noise ratio of the data. Small-scale operators can detect 
fine details within range images but are sensitive against noise. 
In contrast, the mean curvature can be estimated more reliable 
using larger mask sizes of the filter operator. However, in this 
configuration a number of edges can not be detected. This is 
especially a problem for closely neighboured edges e.g. at 
intersections. This is clearly visible in Figure 3a, where missing 
edge pixels are marked by the red arrows. 

  
Figure 4. Segmentation results for wye image 

Since no single edge operator performs optimal for all scales, a 
compromise between edge localization and noise sensitivity is 
aspired by a multi-scale approach. By these means the missing 
edges are recovered correctly, as it is visible in Figure 3b. Such 
multi-scale approaches apply different sizes of edge operators 
on an image, thus different descriptions are generated where 
new extreme points may appear. Since the width of an edge will 
expand as the scale increases, a thinning process is performed to 

yield one pixel wide edges. One criterion during evaluation of 
edge strength is that the extracted edges should be continuous 
and provide a connected thin line in the binary image. The 
result of this skeletonization is depicted in Figure 3c.  Figure 4 
depicts an additional result of edge extraction and 
skeletonization for the wye data set. The figure shows that the 
algorithm has the ability to detect the ridges lines, which are 
correspond to local extrema of the mean curvature values. 

4. ALGORITHM CHARACTERISTICS 

Good edge detection requires an operator, which is designed to 
fit the nature of a specific image. Additionally, some other 
characteristics of the proposed edge detector related to the 
nature and properties of the mean curvature will be discussed in 
the following. 

4.1 Crease-step edge Classification 

As it was already discussed in section 3, the value of the mean 
curvature is smaller for crease edges than for jump edges. Based 
on this definition, the edge types of an object can be classified 
easily by applying different threshold values. Low threshold 
values are used to detect the small peaks of crease edges while 
larger values can be used for step edge detection.  

 

 
Figure 5. Curve block segmentation using different thresholds 

to detect step edges (red) and crease edges (blue). 

The example of a curve block in Figure 5 demonstrates this 
ability of our algorithm to reliably characterize these edge types. 

4.2 Real Scene Segmentation  

The main challenge for most of segmentation algorithms is the 
robustness against noise. Thus, a number of edge detection 
techniques apply a smoothing process before the extraction of 
range changes. However, this smoothing limits the accuracy of 
the edge localization. In general, mean curvature is slightly less 
sensitive to noise in numerical computation since it is the 
average of the principal curvatures.  

In order to examine the robustness of our approach against 
noise, and to demonstrate its ability to deal with a variety of 
object surfaces, a test with a complex real world scene was 
applied.  
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Figure 6 a) Range images for 3D model of Al-Khasneh. b) Binary edge image produced using the proposed segmentation algorithm. 

c) Segmentation results after thinning process projected in the corresponding range image. d) Segmentation results of 
colored images using the proposed algorithm, the red arrows show some selected edges used for registration of 2D-3D 
data sets. 

Figure 6a displays two range data sets for the 3D model of Al-
Kahsneh (Petra treasury), which were collected by a Mensi 
GS100 laser scanner. The processing is based on range images, 
which maintain the original topology of a laser scan. Thus, 
compared to the processing of unordered 3D point clouds the 
segmentation can be implemented more easily. The top row of 
Figure 6 depicts data from the outer façade of Al-Kahsneh, 
while the bottom row shows data collected for one of the 
interior rooms. Since such data are usually contaminated by 
noise, a large mask size of 11 pixel was used to allow for a 
reliable edge detection. Figure 6b shows the binary edge maps 
as they are generated using the proposed segmentation process. 
As it is visible, most of the main features are detected. Since a 
large mask size was used, the edges are rather blurred. For this 
reason, the edges are then sketolonized by the thinning process. 
Figure 6c depicts the results of this process overlaid to the 
corresponding range image. As it is depicted in Figure 6d the 
technique described above for range image processing can also 
be used to segment intensity images.  

5. CONCLUSION 

Frequently a combination of terrestrial LIDAR and image data 
is applied during 3D reconstruction of complex terrestrial 
scenes in the context of cultural heritage applications. A 
successful integration of both data sources will support tasks 
like surface reconstruction and will facilitate subsequent 
processing activities such as the generation of 3D textured 
models. The combination of the different data sets requires an 
exact co-registration, which has to be solved by a 2D-3D pose 
estimation algorithm. The most common methods for solving 

such registration problems between two datasets are based on 
the identification of corresponding points. Such methods are not 
applicable when dealing with LIDAR surfaces, since they 
correspond to laser footprints with limited scanning resolution 
rather than distinct points that could be identified in the 
imagery. Additionally, in the application of point clouds and 
range images, the perception of objects structure is limited and 
not very appropriate for registration.  

Hence, our goal is to reach a very precise and reliable co-
registration of data sets. Linear features possess higher semantic 
information, which is desirable for this purpose. In this case, the 
correspondence problem between the image and object space 
can be solved easier. In our approach for automatic texture 
mapping [Alshawabkeh & Haala, 2005], we have used the 
methodology for extracting the linear features from range and 
intensity image using the proposed segmentation algorithm. 
Then, aligning of the extracted edges is realized using an 
algorithm developed by [Klinec and Fritsch, 2003]. Figure 6c 
and Figure 6d exemplarily show some manually selected edges 
(lines) used to register both colour and range images for Petra 
treasury (Al-Khasneh).  

The quality of the registration process, which aligns the laser 
scanner data with the imagery, is a crucial factor for the 
combined processing. Since the accuracy of the transformation 
depends on the reliable extraction of primitives from the range 
and intensity images, efficient edge detection as it is feasible by 
the proposed algorithm is an important task for a combined 
evaluation of this type of data. 
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