
SELF-CALIBRATION SYSTEM FOR THE ORIENTATION OF A VEHICLE CAMERA 
 
 

Á. Catalá-Prat a, J. Rataj a, R. Reulke b 
 

aGerman Aerospace Center(DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany 
 – (alvaro.catalaprat, juergen.rataj)@dlr.de 

bGerman Aerospace Center (DLR), Institute of Transport Research, Rutherfordstr.2, 12489 Berlin, Germany  
– ralf.reulke@dlr.de 

 
 

KEY WORDS: Camera, Calibration, Orientation, Orthorectification, Infrastructure 
 
 
ABSTRACT: 
 
The process of calibration is a prerequisite for each computer vision system. Calibration involves calculating both intrinsic and 
extrinsic parameters of the camera. While intrinsic parameters (focal length, principal point, etc.) are usually fixed, extrinsic ones 
(position and angles of the camera) have to be determined when the camera moves in relation to world coordinates. The calibration 
of the extrinsic parameters is usually performed with help of some reference objects or known measured points (GCP’s) in the scene. 
In the case of a vehicle camera, where the coordinates refer to vehicle coordinates, not the extrinsic calibration but the alignment of 
the camera to the Inertial Measurement Unit (IMU) is necessary. This paper proposes a solution for determining the orientation of a 
vehicle camera in relation to the vehicle. This novel approach escapes from tedious laboratory setups and reference measurements. It 
benefits from a known property of the road’s infrastructure, namely the parallelism of the road markers. For this reason lane markers 
are detected and transformed through a fast perspective removal (FPR) to an orthographic perspective. Newton’s Method is used for 
searching an optimal parameter set for this transformation. The algorithm works under the assumptions that the calibration is 
performed when driving on a straight and flat segment and the lane markers are visible. It reaches very good performance (via 
parametrical instead of image transformations) and good accuracy for lateral detection of features in automotive applications (for 
depth information, the algorithm must be improved). 
 
 

1. INTRODUCTION 

1.1 Motivation 

Computer vision has become one of the most important areas of 
investigation in many disciplines like robotics, medicine, 
industrial production and automotive. The extraction of useful 
information from camera images has proven to be a challenging 
but promising task. An accurate calibration of the cameras is a 
prerequisite for most computer vision systems, and especially 
for those which deal with 3D reconstruction. 
 
Through the process of calibration, the relationship between a 
world point and an image point is defined in terms of some 
intrinsic and extrinsic parameters. The intrinsic parameters are 
the principal point, the focal length and the lens distortion. 
They are independent of the environment of the camera and 
usually do not change during the measurement (as long as the 
lenses do not refocus). On the other hand, the extrinsic 
parameters are position and angle of the camera related to 
world coordinates. Any movement of the camera with respect 
to the world reference system implies to determine the extrinsic 
parameters again (unless the movement is exactly known). 
 
At the Institute of Transportation Systems (DLR) an 
experimental vehicle (the ViewCar, see Figure 1) has been 
created in order to investigate new advanced driver assistance 
systems (ADAS) (Vollrath, 2003). The ViewCar is equipped 
with a variety of sensors for recording the environment, such as 
a laser-scanner, a radar sensor, a positioning system (DGPS and 
IMU) and four cameras with a fixed orientation to the 
environment. In order to support the ADAS, the environment 
must be modelled based on the sensor data, and hence, all 
cameras need to be calibrated accurately. 

 
Since we are interested in the vehicle’s environment, the center 
of the “world” coordinates will be placed on a characteristic 
point in the vehicle (e.g. middle frontal axis). For those 
applications where the relation to real world coordinates is also 
relevant (e.g. for road map based approaches), the positioning 
system of the car (DGPS+IMU) could be additionally used. In 
this case, the vehicle’s coordinate system would be related to 
the body frame of the IMU. In this document, extrinsic 
calibration is reduced to the alignment between the photo 
coordinates and the view platform (IMU). 
 
A common problem of vision systems (especially in automotive 
applications) is the loss of validity of the alignment parameters 
in the course of time due to vibrations and sudden movements. 
Ernst et al. (1999) shows the importance of an accurate 
calibration by means of two examples, a lane following and an 
obstacle detection systems. 
 
Since extrinsic calibration is a tedious task and has to be done 
often, a self-calibration system represents an attractive solution. 
Moreover, a self-calibrating system has the advantage of being 

Figure 1. The ViewCar 
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able to be run online at any time (when fulfilling the 
prerequisites). By doing this, accurate results are ensured 
steadily. 
 
The intrinsic parameters of the ViewCar cameras do not vary 
during the drive. Hence, we focus on the calibration of the 
extrinsic ones. Although both the camera position and 
orientation in the vehicle are important, this initial work only 
deals with orientation, which is more susceptible to changes. 
The self-calibration of the position is to be left for further work. 
 
1.2 Structure of the Paper 

The paper is arranged as follows. After the motivation for doing 
this work, a brief state of the art on extrinsic camera calibration 
is presented. Section 2 gives an overview of this solution; 
section 3 goes into detail of the main stages of the process; 
followed by section 4, presenting some experimental results of 
the algorithm. Finally, section 5 gives some conclusions and 
discusses some possibilities of future work. 
  
1.3 State of the Art 

A large number of different systems and methods for camera 
calibration have been developed. Camera calibration in 
photogrammetry was first developed in aerial photogrammetry. 
The calibration of terrestrial cameras was derived from these 
techniques.  An overview can be found in Grün and Huang 
(2001). 
 
Different models and methods are suggested and can be found 
in the literature, like Brown (1971) and Tsai (1986).  
 
There are following different procedures for the determination 
of the interior orientation. 
 
Experimental setup in a lab: The camera is mounted on a 
rotation tilt table. A light spot is imaged into infinity by a 
collimator. Each single pixel can be illuminated. This is a 
parameter free approach. For each pixel, the view angle can be 
determined in the object space (Schuster, 1994).  
 
Known coordinates of reference objects: 3D location, 
dimensions and/or proportions are known, like points, 
chessboards or reference bars. The calibration usually requires 
accurate measurements and carefully controlled laboratory 
setups (Tsai, 1986). The result can be improved with different 
views of the reference objects and applying a bundle block 
adjustment approach (Fraser, 2000). 
 
For a vehicle camera, the solutions proposed by Broggi et al. 
(2001) and by Ernst et al. (1999) use a painted field on a piece 
of road as reference and place the car exactly in front of it.  
 
Self calibration: Camera self calibration uses point 
correspondences in multiple views, without needing interior 
and exterior orientation. The basic assumption is that the 
interior orientation remains invariant (Maybank & Faugeras, 
1992). 
 
Several approaches base on the movement of the camera, and 
use tracked features from images taken at different positions for 
the calibration. Luong and Faugeras (1997) use a camera with 
flexible orientation and assumes a static scene. Dron (1993) 
uses a camera translated along a fixed rail. All these methods 

have to deal with the problem of correspondence between 
different images. 
 
The objective of the work presented in this paper is to carry out 
the calibration of the camera orientation with regard to the 
vehicle’s coordinate system in a fast way and without the need 
of a complex setup. For the method, laboratory setups, complex 
reference objects and multiple images were avoided. Instead, 
the road lane markers were used as reference. This method will 
be useful for any vehicle camera from which road markers are 
visible. 
 
 

2. PROPOSED SOLUTION 

The main idea of the proposed algorithm consists of performing 
a Newton’s search through the camera parameters space until 
they prove to be correct. For testing the current parameters the 
lane markers are transformed to an orthographic projection 
(perspective removal). The removal of the perspective strongly 
depends on the camera parameters (and on a flat road). A good 
parameter set will provoke the inverted lane markers to be in 
parallel and aligned with the vehicle’s main orientation. 
 
For transforming the world to an orthographic projection, some 
authors use a mapping technique on the whole image like IPM 
(Inverse Perspective Mapping). This way, features can be 
analysed on the remapped image, as in Broggi et al. (2001). For 
our solution, we have decided to firstly extract the interesting 
features (road markers) and then do a fast perspective removal 
(FPR) on them. This sequence assures that the features are not 
being lost by remapping and also performs faster, as it avoids 
removing the perspective effect of the whole image plane. 
 
Prior to the FPR, an appropriate camera image has to be 
acquired and prepared. Besides, the lane markers have to be 
detected and provided to the rest of the algorithm. The Hough 
transformation is performed for detecting all image lines. Then, 
lines corresponding to the lane markers are selected manually.  
 
Since the vehicle is driving on a straight road, the Hough 
transformation is a good solution for line detection. Besides, 
Hough offers the attractive advantage of not being susceptible 
to partially occluded or shadowed lines, which often happens in 
driving situations.  
 

Figure 2 shows an overview of the calibration process.  
 
There are following assumptions for using this algorithm: the 
camera is mounted in the vehicle so that the road markers are 
visible; the vehicle is driving on a flat and straight road; and 
last, the vehicle drives in parallel to the road. Hence, the 
algorithm will only be executed on images that approximately 
fulfil these assumptions. Any deviation from the perfect flat and 

Image 
Acquisition 

Line  
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Parameter Test 
(perspective removal) 
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Calib.  
results 
α,β,γ 

Figure 2. Overview of the process 
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straight road will result in noise of the calibration parameters. 
In section 4, some satisfactory experimental results are shown. 
However, it still remains necessary to run a detailed statistic 
analysis of the algorithm in order to study the impact of this 
noise on the accuracy of the calibration. 
 
 

3. PROCESS DETAILS 

3.1 Line Detection and Selection 

The first task of the algorithm is to obtain the lines 
corresponding to the lane markers on the image. For doing this, 
the image is acquired and converted to grey scale. Besides, the 
upper and lower areas of the image are cut out, where there is 
only sky and the cockpit of the car. A Sobel edge filter is then 
passed through the image. As a result, all candidate points that 
possibly constitute straight lines (probably discontinuously) are 
obtained. 
 
Next, the edge image is transformed into the Hough space. In 
this space each possible line is represented by (θ,d), its angle 
and distance to origin, according to 
 

dyx =⋅+⋅ θθ sincos       (1) 
 

Each point of the edge image increments the accumulator of all 
possible lines it could belong to in the Hough space, i.e., a 
sinusoidal curve. After having transformed all points, the actual 
lines of the original image are represented by the local maxima 
of the Hough space, which must be extracted from it. 
 
Last in this stage, the road lines need to be distinguished from 
other noise lines. Currently, this selection is done manually by 
asking the user interactively about every line found. In most 
cases, the lane markers are not detected as a single line but as a 
bundle, which is not problematic to the algorithm (see section 4 
for details). See Figure 3 for an example of an acquired image 
and the detected and selected lines. 
 

 
3.2 Fast Perspective Removal (FPR) 

For testing the camera parameters, the perspective effect of the 
selected lines has to be removed and the slope of the resulting 
lines has to be checked. In the best case, these will be parallel 
to the driving direction. 
 

The perspective removal, different to other work (Broggi et al., 
2001), is not performed on the whole image, but only 
parametrically on the lines (FPR). For doing this, the pinhole 
camera model was used. In this model, a point of the world in 
homogeneous coordinates ( [ ]t

www zyx 1=wp ) is acquired 

by the camera as a point in the image ( [ ]t
ii yx 1=ip ) 

according to next expression: 
 

wextrinsicintrinsici pMMp ⋅⋅=         (2) 
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Here, the position of the principal point (cx, cy) and the focal 
length (fx, fy) are the intrinsic parameters of the camera 
(neglecting the radial and tangential distortions). The extrinsic 
parameters (actually the alignment parameters) are represented 
by both matrices, a rotation matrix R depending on the 
orientation angles ω, φ and κ (respectively equivalent to roll, 
pitch and yaw) and a translation vector T containing the 
projection center (longitudinally tx, laterally ty, and vertically 
tz). Their expressions are:  
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For the aim of this work, both the intrinsic parameters and the 
position of the camera (T) are assumed to be known and 
constant. 
 
Since the combined matrix, , is not 
square, it is not invertible. This is due to the ambiguity of the 
perspective transformation (Mintrinsic). In order to be able to 
invert it, we must constrain the scene we are observing: since 
all lines considered lay in the road plane, the vertical position is 
a constant and can be included in the transformation matrix as 
follows:  
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The new transformation matrix M’ is invertible and can be used 
for removing the perspective effect from any image point by a 
single matrix multiplication: 
 

ipMppMp wwi ⋅=⇒⋅= −1''        (6) 
 

Given a line  (li for an image line and lw for 
a road line), 
 

Figure 3. Acquired image, detected lines and selected lines

extrinsicintrinsic MMM ⋅=

[ ]tCBA=l
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the perspective removal can be done according to the following 
expression: 
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Hence, no matrix inversion needs to be done. Next, Figure 4 
shows an example of some image lines and the same lines after 
the perspective effect has been removed. As can be seen, the 
road lines in this example are not parallel, as the parameters 
have not been calibrated yet. 
 

 
3.3 Search for the Correct Orientation Parameters 

Once the lines can be quickly transformed into the road plane, 
the calibration of the camera orientation is reduced to a 
minimum search problem. If we can define a goodness function 
of a given parameter set, whose first and second derivative can 
be calculated, we will also be able to apply the Newton’s 
method. This iterative method has the following expression for 
a multidimensional function: 
 

( ) 1)f()f( −
+ ⋅−= kkk1k pHpvpp      (9) 

 
Where pk is the parameter set to find (in our case [ω φ κ]), f(pk) 
is the goodness function to be minimized (defined later in this 
section), vf(pk) is the gradient vector of f(pk) defined as  
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and Hf(pk) is the Hessian matrix of the function f defined as: 
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For applying the method, the goodness function was defined as 
the sum of the slopes of the n road lines seen in an orthographic 
projection, which ideally should be 0. The smaller the 
function’s value, the closer the parameter set is to the right 
calibration. 
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Awi and Bwi are the components of the ith line parametrically 
transformed to the road plane (through expression (8) seen in 
subsection 3.2). One can see that the first and second 
derivatives of f(ω,φ,κ), though bulky, are easily calculable. As 
shown in section 4, this function provides good calibration 
results. See, as an example, the first partial derivative of 
f(ω,φ,κ) with respect to ω. The rest of the first derivatives and 
the second ones are analogue. 
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The Newton’s method also needs an initial approximation 
p0=(ω0, φ0, κ0) of the parameters to be searched. If no 
significant changes were done, one can normally use the 
parameters found by the last calibration. Else, and for the first 
time, one can coarsely measure the orientation of the camera. 
 
Last, for using the Newton’s method one has to define an end-
condition of the iteration. There are two different situations to 
consider: a good function’s value was reached (compared with 
a reference value) or the function’s value is stable.  
 
 

4. EXPERIMENTAL RESULTS 

4.1 Experiments Execution 

The first experiments have been carried out on the frontal 
central camera of the ViewCar, a CCD camera with a resolution 
of 640x480 pixels. The coordinate system of the camera was 
defined as being in parallel to the vehicle’s one. Thus, the 
driving direction corresponds to x (orientation around x is ω, 
equivalent to roll), the lateral direction corresponds to y 
(orientation around y is φ, equivalent to pitch) and the vertical 
direction corresponds to z (orientation around z is κ, equivalent 
to yaw). For the tests, some video sequences recorded during 
normal drives were used. The algorithm was run on numerous 
images of the sequences. For checking the correctness of the  

Figure 4. The detected lines before and after 
removing the perspective effect.  
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Original Image 

 

Step 0: 
ω = 0º 
φ = 0º 
κ = 0º 
f(ω,φ,κ)= 0,186489 

 

Step 1: 
ω = -0,22º 
φ = -6,12º 
κ =  3,31º 
f(ω,φ,κ)= 0,000735 

 

Step 2: 
ω = 10,29º 
φ = -6,87º 
κ =  2,60º 
f(ω,φ,κ)= 0,000591 

 

Step 3: 
ω = 10,75º 
φ = -6,64º 
κ =  2,55º 
f(ω,φ,κ)= 0,000311 

 

Step 4: 
ω = 4,72º 
φ = -6,36º 
κ =  3,26º 
f(ω,φ,κ)= 0,000287 

 

Step 5:  
ω = 4,42º 
φ = -6,31º 
κ =  3,28º 
f(ω,φ,κ)= 0,00028 

 

Step 6:  
ω = 4,17º 
φ = -6,29º 
κ =  3,30º 
f(ω,φ,κ)= 0,000281 

 
 Stable value reached! 
 

  
 
results, the calibration parameters were applied to the existing 
lane detection system. 
 
The results of two executions on different images of the same 
drive are shown in Figure 5 and Figure 6. In both, the initial 
approximation is set to 0º for all three orientation angles, ω, φ 
and κ. The examples are presented as a sequence of steps of the 
algorithm.  For each step both   the values of the parameters and 
the value of the goodness function are shown. The first example 
is also accompanied by a graphic of the lines without the 
perspective effect. 
 
 

 
Original  Image 

Step 0: ω = 0º 
 φ = 0º    f(ω,φ,κ)= 0,0725958 
 κ = 0º 
Step 1: ω = -8,91º 
 φ = -7,59º  f(ω,φ,κ)= 0,035388 
 κ =   1,37º 
Step 2: ω = 1,15º 
 φ = -10,16º  f(ω,φ,κ)= 0,0264104 
 κ =   5,89º 
Step 3: ω = -1,79º 
 φ = -5,83º  f(ω,φ,κ)= 0,0008272 
 κ =   4,81º 
Step 4: ω = 5,34º 
 φ = -6,34º  f(ω,φ,κ)= 0,0000885 
 κ =   3,19º 
Step 5: ω = 6,93º 
 φ = -6,65º  f(ω,φ,κ)= 0,0000004 
 κ =   3,01º 
Step 6: ω = 5,88º 
 φ = -6,60º  f(ω,φ,κ)= 0,000000005 
 κ =   3,11º 

 
Stable value reached! 

Figure 6. Second example of execution 
 
4.2 Experiments Evaluation: Performance, Accuracy and 
Availability 

The first example, graphically, seems to reach very rapidly a 
good value. However, the algorithm manages to improve the 
results until a minimum of the goodness function is achieved. In 
the following, some remarks on performance, accuracy and 
availability of the algorithm are given. 
 
The experimental results show that the calibration process 
needs about 6 steps of the Newton’s iteration, which is a good 
performance. It is remarkable that each step only consists of 
parametrically transforming the n lines (n matrix 
multiplications) and calculating the gradient and Hessian 
matrices of f(ω,φ,κ) for advancing the search. No image 
operators are carried out during the search. 
 
Regarding the accuracy, these two examples show a difference 
lower than 2º for ω (equiv. roll), 0,3º for φ (equiv. pitch) and 
0,2º for κ (equiv. yaw). The pitch and yaw angles show that the 
driving direction of the vehicle with respect to the lane is kept 
almost in parallel. For the roll angle, the experimental results do 
not converge as expected. There are some reasons for this. First, 
the orientation of the test camera was very close to pitch 0º and 
yaw 0º. In case they were exactly 0º, the value of the goodness 
function would be completely independent of the roll angle, and 
no minimum could be found. Thus, the more separated the 
orientation from 0º, the better the calibration can be done by 
our approach. Second, the orientation of the vehicle (recorded 

Figure 5. First example of execution 
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by the IMU) is slightly different in both instants.  Third, the 
line detector provides slightly shifted lines in relation to the 
actual lane markers, which also affects the calibration directly. 
 
Some calculations (but no complete statistics yet) have been 
done in order to evaluate the accuracy reached by this first 
proposal. First, a point of the road plane located in a typical 
distance of 50m from the camera was projected into the image 
plane according to the parameter sets from both examples 
(Figure 5 and Figure 6). A difference of half pixel laterally and 
one pixel vertically was detected. Then, the inverted 
transformation was also tested. An image point was 
transformed into the road plane according to the parameter sets 
from both examples. The results show a lateral difference of 
about 1mm but also a big difference in the depth of about 10m. 
This effect is a result of the imaging geometry of the camera. 
 
The availability of the system also plays a decisive role. By the 
test runs one has realized that the lighting and visibility 
conditions are crucial for obtaining good results. If the lane 
markers detected do not exactly coincide with the real ones, the 
procedure can turn to look for a maximum instead of a 
minimum of the goodness function. This is, actually, the most 
important aspect to improve concerning the algorithm in the 
future. 
 
 

5. CONCLUSIONS AND OUTLOOK 

In this paper a solution has been presented for calculating the 
orientation parameters of a vehicle camera. In the bibliography, 
no other methods using the structure of a standard road as 
reference for the calibration (or alignment determination) were 
found. In this first approach to the self-calibration, the 
parallelism of the lane markers was used as calibrating 
information. For applying this principle, a line detector, a fast 
perspective removal (FPR) and a Newton’s search were 
implemented.  
 
The principle has proven to be correct and to offer promising 
calibration results with very good time performance. In this 
sense, it is remarkable that image operators were avoided and 
parametrical transformations were preferred. 
 
Nevertheless, from the few tests that have already been carried 
out, some weak points were also recognized. Below, some of 
them are listed and some future solutions are proposed. A 
prerequisite before starting with the improvements will be a 
detailed statistical analysis of the algorithm’s behaviour. 
 
A first problem detected is that the algorithm does not work 
properly if the pitch and yaw orientations are too close to 0º. 
For solving this, the reference coordinate system should be 
changed to an optimal one in the future.  
 
Besides, the algorithm strongly depends on a reliable line 
extraction, which is not yet available. In order to improve the 
line detector, this algorithm could be combined with the 
existing lane detector, so that a mutual support of either system 
could be achieved. 
 
The algorithm could also be made more robust in the future by 
adding other image features to the goodness criterion, such as 
distance information between lines, vertical features like light 
or electrical poles, building edges, or other horizontal lines, e.g. 
from other vehicles. 

Last, it is also important to check how much influence the 
vehicle’s own movement and orientation have (i.e., noise). For 
analysing this, the measurements from the IMU will be used in 
the future. 
 
In conclusion, this implementation of a self-calibration 
principle for a vehicle camera has proven to be very promising. 
Future work, applications and tests (with help of the positioning 
system) will be continued on the ViewCar, at the Institute of 
Transportation Systems, at the German Aerospace Center 
(DLR). 
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