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ABSTRACT 
 
Remotely sensed images are invaluable to acquire geospatial information about earth surface for the assessment of land resources 
and environment monitoring. In most cases, the information provided by a single sensor is not complete or sufficient. Therefore, 
images collected by different sensors are combined to obtain complementary information.  
 
Each remote sensing sensor has its own advantage and disadvantage over the other sensors. SAR (Synthetic Aperture Radar) sensors 
are active sensors and can collect images during day and night without being affected by weather conditions. SAR sensors are 
capable of sensing the geometry and structure of the features such as terrain topography, thickness and roughness of surface cover. 
They also sense the moisture content and presence of vegetation. However, Visible-Infrared (VIR) sensors are passive sensors that 
sense the electromagnetic energy reflected from surface. Therefore, the information provided by the SAR data alone may not be 
satisfactory for a detailed analysis of the terrain, since it does not has the capability of collecting spectral information about terrain 
cover types. For this reason, fusion of VIR and SAR images provides complementary data to increase the amount of information that 
can be extracted from the individual input images.  
 
For an optimal image fusion, some criteria should be defined for algorithmic development. The success of the fusion strongly 
depends on the criteria selected. In this work, a pixel based image fusion algorithm is proposed. The new method forms the fused 
images as the linear combination of the input images. The method employs adaptive windows to establish statistical relationships 
between the input images to calculate new fused pixels. The fused pixels are calculated using two criteria: 1) Variance of the local 
window in fused image should be equal to the variance of the corresponding window in higher resolution image to transfer spatial 
detail. 2) Mean of the local window in the fused image should be equal to the mean of the window in the original lower resolution 
image to retain the color content.  
 
This paper describes the principles of the proposed approach and assesses its properties. To test the performance of the new 
approach, the images from different sensors are fused as well as images from same sensors using proposed algorithm and PCA, 
Brovey and Multiplicative image fusion methods. For the different type of sensors, SAR image is fused with Ikonos, Quickbird (QB) 
and Landsat Thematic Mapper (TM) XS images. For the same sensor type, QB pan image is fused with QB XS and Ikonos XS 
images. The results are evaluated visually and analytical derivation and graphic results are presented.       
 

1.  INTRODUCTION 

Over the last two decades various pixel level (Pohl and van 
Genderen, 1998) image fusion algorithms have been 
introduced. Their objective is to obtain a new image that has 
superior properties over the individual input images with 
different properties. The input images can be optical images 
with the same or different spatial resolutions such as Pan or XS 
images collected by Visible-Infrared (VIR) sensors. They can 
also be collected by different sensors (e.g., VIR and Synthetic 
SAR images) at the same or different time.  

Expected benefits from the fused images vary, depending on 
the images used for the fusion. For example, if the anticipated 
benefit from fusion is to detect the changes occurred in a scene 
over a period of time, then the images with different acquisition 
time should be used. The other prevalent application area of 
image fusion is to enhance spatial resolution of multispectral 
images using a panchromatic (Pan) image with higher spatial 
resolution. The main purpose is to get a fused image that 
retains the spatial resolution from the panchromatic image and 

color content from the multispectral images. Therefore, a good 
fusion algorithm should not distort the color content of the 
original multispectral image while enhancing its spatial 
resolution. 

VIR sensors are passive sensors that sense the electromagnetic 
energy reflected from surface. Therefore, such sensors offer 
spectral information about terrain cover types. However, 
sometimes it is impossible to distinguish some vegetation 
species using only optical images because of their similar 
spectral responses. VIR sensors are also not capable of taking 
images during night and they do not have the ability of imaging 
targets hidden by clouds, trees, and other ground cover. On the 
other hand, SAR sensors are active sensors and can collect 
images during day and night without being affected by any 
weather condition. SAR sensors are also capable of sensing the 
moisture content and existence of vegetation, the geometry and 
structure of the features such as terrain topography, thickness 
and roughness of surface cover. They also can penetrate 
materials which are optically opaque, and thus not visible by 
optical or IR techniques. Low-frequency SAR technology can 
be used under certain conditions to map the area covered by 
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vegetation by penetrating the foliage (Sandia, 2006). Therefore, 
SAR images complement photographic and other optical 
imaging capabilities to increase the amount of information that 
can be extracted from the individual input images. Therefore 
fusion of SAR and VIR images are getting popular to increase 
the amount of information that can be acquired from only VIR 
or SAR images.   

Existing image fusion methods can be categorized into three 
groups according to their mathematical models. The first group 
is based on color theory. IHS (Intensity, Hue, and Saturation), 
Brovey and Multiplicative methods belong to this group. The 
underlying assumption for the IHS method is that the 
panchromatic image is equal to the intensity image obtained 
from the RGB image (Chavez et al, 1991; Liu, 2000). 
However, this assumption is not always true if the input image 
has more than three bands or is collected by a different sensor 
than the panchromatic image. As a consequence, the fusion 
product will have spectral distortion which causes color 
deformation in the fused product. Brovey method in principle 
also uses the intensity calculated from XS bands. This method 
is based on the chromaticity transform first introduced by 
(Gillespie et al, 1987). It can be easily shown that Brovey 
method and Multiplicative assure that the ratio among the 
original XS bands are kept after fusion. This is an important 
property to keep the spectral content of the original XS bands 
after fusion. The success of both methods depends on the 
intensity calculation from the original multispectral image. All 
the three methods cause color distortion if the XS bands have a 
different spectral range than the panchromatic image (Liu and 
Moore, 1998), which is inevitable if the input images are 
collected from different sensors.  

The second group of image fusion methods employs 
wavelet transform to construct the fused images. Some wavelet 
based image fusion methods use the practical implementation 
of the Mallat algorithm (Li, 1994; Gungor and Shan, 2005a). 
Others use the “A-trous” algorithm for the wavelet transform 
and multi resolution analysis (Nunez et al, 1999). Both methods 
are compared and evaluated in detail in (Gungor and Shan, 
2005a). Since only spatial content of the original multispectral 
image is changed, the spectral content is preserved in the fusion 
result. As the result, wavelet transform in general has a better 
performance than the color theory based methods in terms of 
color conservation. However, it is not as good as the previous 
methods in terms of spatial enhancement. 

The third group is based on statistical properties of the 
images. As a representative, in the principle component 
analysis (PCA) approach, the first principle component is 
replaced by the panchromatic image, and the fused image is 
obtained through the inverse PCA transform (Zhou et al, 1998). 
Price (1999) forms the fused image as the linear combination of 
the input images. The method is successful in preserving the 
color content of the input XS image; however, produces 
blocking artifacts (Park and Kang, 2004). This problem is 
getting worse when different sensors are used. Park and Kang 
(2004) took Price’s algorithm one step ahead and calculated the 
linear combination for every single pixel other than for a 
window. They also developed an algorithm to control the 
contribution of the high resolution image to the fused image by 
adaptive gains to incorporate the difference of local spectral 
characteristics between the high and the low resolution images 
into the fusion (Park and Kang, 2004). 

In this paper, a new image fusion algorithm called σ - µ method 
(Gungor and Shan, 2005b) is used to fuse SAR and VIR 
images. σ - µ method forms fused images as the linear 
combination of the input images. Two criteria are introduced to 

determine such a relationship based on a moving window 
computation. The proposed method has an important advantage 
over the other methods in that the properties of the fusion 
outcome are known. It is possible to control the amount of 
spatial gain or spectral content loss in the fused image simply 
by changing the window size used in fusion process.  
 
This new image fusion approach is tested with two groups of 
images. First group images are from SAR and VIR sensors. 
These images include SAR image and QB XS, Ikonos XS and 
Landsat TM images which have 2.5m and 2.4m, 4m and 30m 
spatial resolutions, respectively. The other group images come 
from two different VIR sensors. These images include QB Pan, 
QB XS and Ikonos XS images that have 0.7m, 2.4m and 4m 
spatial resolutions, respectively. The fusion of VIR images by σ 
- µ method is tested and evaluated in (Gungor and Shan, 
2005b) visually and quantitatively by comparing its results with 
the fused images created by PCA, Brovey, Multiplicative 
image fusion methods. This paper reports the fusion results of 
SAR and VIR images from σ - µ method for different types of 
sensors and evaluates the amount of transferred spatial 
information from SAR image into XS images. Moreover, this 
paper also includes fusion results of different VIR images and 
visual comparisons with other methods mentioned above. 
 

2.  PRINCIPLES OF THE σ - µ METHOD 

The σ - µ method constructs the fused image as the linear 
combination of the input images 
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where m and n  are the row and column numbers, k = 1,2, …., 
N (N = number of multispectral bands); is the fused image, 
I

kF
0 is Pan image, Ik is the XS band and “a” and “b” are the 

weighting coefficients for pixel location (m,n). Evidently, the 
coefficients control the amount of contribution from 
panchromatic image and multispectral bands respectively. The 
fused image can be obtained using Equation 1 if “a” and “b” 
coefficients are determined using the input Pan and XS images.  

Rules or criteria must be set to determine the fusion 
coefficients, which become the key of the image fusion 
mechanism. The selected criteria determine the properties of 
the fusion outcome. Considering that the image fusion is to 
retain the high spatial information or details from the Pan 
image and spectral information or color from the XS image, the 
following two criteria are set  

1) The local variance in the fused image should be equal to 
the corresponding local variance in the Pan image, such 
that its spatial details, described by the variance, can be 
retained in the fused image.  Based on Equation 1 this 
statement can be expressed as follows 
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2) The local mean in the fused image should be equal to the 

corresponding local mean in the XS image, such that the 
color content, described by the local mean, is retained in 
the fused image. Based on Equation 1 this statement can 
be expressed as follows 
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In the above two equations, the notations for window location 
(m,n) are omitted for a clearer expression. The subscript 0 and i 
are respectively for the panchromatic image and the i-th band 
of the XS image.  

iF  : is the band i of the fused image;  

ia and  are the coefficients to be determined to 
construct the fused pixel;  

ib

2
oσ  and are the variances of the Pan and XS images 

respectively,  

2
iσ

oiσ is the covariance between Pan image and the i-th 
band;  

Mean ( ) is the mean of the fused window,  iF
µo and µi are the mean of Pan image and the i-th band.  

The two criteria will yield two equations which in turn 
allow us to determine the two fusion coefficients “a” and “b”.  
Combination of Equation (2) and (3) will yield the coefficients 
a and b. From Equation (3), we obtain 
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Substituting  to Equation (3) will lead to the following 2ia nd 

order polynomial equation about the coefficient  ib
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Equation (5) has two roots for and hence two corresponding 

 values will be obtained from Equation (4). Because the 
fusion process is expected to transfer spatial details from the 
Pan image into the fused one, we keep the solution that “a” is 
larger than “b”. If “a” is larger than “b” in both root pairs, then 
the pair that has the largest “a” is picked. If “b” is larger than 
“a” in both root pair, then the pair that has the largest “a” is 
picked. The other solution would make more contribution from 
XS image, which would result in poor spatial detail in the fused 
image. In some cases, the “b” and “a” coefficients are complex 
numbers. Under such circumstance, the fusion process 
essentially can not contribute to the lower resolution image. 
Under this circumstance, the real components of the complex 
roots are taken as “a” and “b” coefficients, since they can make 
Equation (5) closest to zero in the domain of real roots.   To 
determine these coefficients, local windows in both input 
images will be employed. The “a” and “b” coefficients are 
determined for the center pixels of the local windows. For 
implementation details, readers may refer to (Gungor and Shan, 
2005b). 
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3.  TESTS AND DISCUSSIONS 

This study uses images from four different sensors. 
Images used include Quickbird panchromatic band (0.7 m) and 
XS bands (2.7m), Ikonos XS bands (4m), Landsat TM (30m) 
and SAR image (2.5m) over the Davis-Purdue Agricultural 
Center (DPAC) area. Image fusion essentially occurs when the 
involved images have the same spatial resolution. Thus, XS 
images need to be resampled such that they have the same 

spatial resolution with the Pan or SAR image. For resampling, 
the nearest neighbor method is used. Other options are bilinear 
interpolation, cubic approximation to sinc function and 8-point 
or 10-point sinc function interpolation methods. These methods 
interpolate new pixel values using the surrounding neighbor 
pixels, which changes the spatial distribution and color content 
of the original image. However, in the nearest neighbor method 
the new pixel value is assigned as the value of the nearest pixel. 
i.e., the original pixel values repeat. For this reason, nearest 
neighbor method is selected as the interpolation method, since 
the other methods have a deteriorating effect on the original 
structure of the XS image. 

Histogram matching is needed when the input images are 
collected from different sensors. The images from different 
sensors will have different brightness levels due to different 
angles of the sensor platforms and different illumination 
conditions of the scene resulting from different image 
acquisition times and the difference between the wavelength 
extensions of the different satellites. Histogram matching 
converts the histogram of one image to resemble the histogram 
of another. Thus, histogram matching has to be applied to the 
input images such that histogram of the XS image is matched to 
the histogram of the Pan image. It will adjust brightness level 
of the XS image with respect to the Pan. 

On the other hand, SAR images may have speckle noises 
because of the nature of the radar imagery. These speckles 
affect the quality of the fused products since they are 
transferred into the fused images by image fusion algorithms. 
For this reason, SAR images should be analyzed before fusion 
and these speckles should be suppressed using an algorithm. In 
this study, speckles were smoothed using (Lee, 1981) 
algorithm.  

  

Original images and their fusion results are shown in Figure 1 
and Figure2. Figure 1 contains the fusion results of SAR and 
VIR sensors, whereas Figure 2 includes the results of VIR 
sensors. For the same fusion combination, best results from the 
selected traditional fusion methods, Multiplicative, Brovey and 
PCA are presented, respectively. All of the fusion results will 
gain spatial information from the PAN or SAR images. 
However, the color effect behaves differently from different 
methods. The fusion of SAR with QB XS, Ikonos XS and 
Landsat TM images produces interesting and promising results 
for the σ - µ. As can be seen from the Figure 1, the color of the 
fused image by the traditional method (PCA and Brovey as an 
example) is significantly distorted from the original Ikonos XS 
image. On the other hand, the σ - µ approach reserves the color 
of the input XS image at the cost of blurring certain fine details. 
For the fusion of images from the same sensor Quickbird, the 
first row in Figure 2 suggests that the σ - µ method produces 
results similar to other traditional methods, however, with 
slightly less color distortion. For the fusion of different optical 
sensors (Quickbird Pan with Ikonos XS) in the second row, the 
traditional method (Brovey as a representative in this case) 
quite considerably transfers the spatial information from the 
panchromatic image to the fusion result, such that certain 
features that exist or are visible only in the panchromatic image 
become easily visible in the fusion outcome. Such examples 
include a couple of water bodies in the upper part of the image. 
They are less visible in the fused image obtained from the 
proposed σ - µ approach, which yields, as a trade-off, very 
compatible color with minimum color distortion comparing to 
the input Ikonos XS image.  

One advantage of the proposed method over the other existing 
fusion methods is that it is possible to control the amount of 



spatial gain or spectral content loss in the fused image by 
changing the window size used in fusion process (Gungor and 
Shan, 2005b). Usually, the larger the window size, the more 
spatial detail is transferred from the pan image, whereas the 
more color distortion occurs in the fused outcome. Figure 3 and 
Table 2 supports this statement. Figure 4 contains the fusion 
results of the same image with different windows sizes. As seen 
from Figure 4, when the window size is enlarged, more spatial 
detail is transferred from pan image, while less spectral content 
can be kept from original XS image. Table 2 also displays this 
reality numerically. The correlation coefficients among QB Pan 
vs. fused XS bands and Ikonos XS vs. fused XS bands are 
given in Table 2 and plotted in Figure 3. The correlation 
coefficients among QB Pan and fused XS bands are increasing, 
indicating that the spatial detail from pan is transferred better 
when larger window size is used. Conversely, correlation 

coefficients among original and fused XS bands are decreasing, 
representing that fused images are sacrificing the color when 
larger window sizes are used. Therefore, the new approach 
gives the flexibility to the user that if color is more important 
than the spatial detail gain in the fused product, then user 
should use smaller window size. Conversely, if the spatial 
enhancement is more important than the color information, then 
larger window sizes should be preferred. However, the 
determination of an optimal window size, preferably adaptive 
to the image content, is not trivial. It remains to be an 
unresolved issue for further investigation. On the other hand, 
only band-4, which is infrared band, behaves differently such 
that correlation coefficients among pan and fused XS bands 
takes small values and coefficients among original and fused 
XS bands takes negative values. This behavior can be 
explained by the different nature of the infrared band.   

 
 

 
Original QB XS 

 
Original TM 

 
Original SAR 

 

 
PCA (SAR + QB XS) 

 
Brovey  (SAR + TM) 

 
PCA (SAR + Ikonos) 

 

 
σ - µ  (SAR + QB XS) 

 
σ - µ  (SAR + TM) 

 
σ - µ  (SAR+ Ikonos XS) 

 
Figure 1. Fusion results of SAR and VIR Sensors. Original images (left) and fusion results. (middle: conventional methods; right: 

                         the proposed method) 



 

 

 
Original QB Pan 

 
Original Ikonos XS 
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Brovey (QB Pan + Ikonos XS) 

 

 
σ - µ (QB Pan + QB XS ) 

 
σ - µ (QB Pan + IKonos XS) 

Figure 2. Fusion of VIR Sensors. Original images (left) and fusion results. (middle: conventional methods; right: the 
                              proposed method)  
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Figure 3. Effect of different window sizes on correlation 

coefficients 

 

4.  CONCLUSION 

In summary, the fusion outcome can be regarded as a linear 
combination of the input images. The properties of the fusion 
results are characterized by the two fusion criteria. Statistically, 
the fusion image has the same variance as the input Pan or SAR 
image and the same mean as the input XS images. The fusion 
outcome is optimal under these two fusion criteria. Such a 

modeling allows us to balance the spatial and spectral content 
of the fusion outcome.  It is shown that the fusion window size 
affects the quality of the fusion results. The window size also 
affects the computation time. When the windows size is 
increased, it takes longer time to solve the fusion problem; 
thus, it takes longer time to produce fused images with the new 
method. For this reason a window size should be carefully 
chosen for the optimum solution in terms of spatial detail gain 
and spectral content loss. 

Table 1: Correlation Coefficients among QB Pan vs. Fused XS 
and Original XS vs. Fused XS bands 

  Window 
Size Band 1 Band2 Band3 Band4 

5x5 0.5665 0.6076 0.5751 0.2316 
9x9 0.6264 0.6665 0.6344 0.3003 

15x15 0.6761 0.7124 0.6813 0.3567 
21x21 0.7044 0.739 0.709 0.3924 
27x27 0.7241 0.7569 0.728 0.4175 
33x33 0.7391 0.7706 0.7426 0.437 
39x39 0.7513 0.7815 0.7539 0.4525 
45x45 0.7611 0.7902 0.7633 0.4648 
51x51 0.7695 0.7976 0.7711 0.4751 C
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61x61 0.7815 0.8081 0.7824 0.4897 
5x5 0.963 0.9432 0.9411 -0.095 
9x9 0.9316 0.9145 0.9135 -0.1076 

15x15 0.9022 0.8883 0.888 -0.1031 
21x21 0.8794 0.8673 0.8677 -0.0989 
27x27 0.8616 0.8513 0.8524 -0.0934 
33x33 0.8464 0.8375 0.8392 -0.0883 
39x39 0.8322 0.8248 0.8268 -0.0862 
45x45 0.8218 0.8157 0.8179 -0.0829 
51x51 0.8129 0.8081 0.8102 -0.079 C
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61x61 0.8029 0.7999 0.8018 -0.0707 
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Figure 4. Fusion results with different window sizes (QB Pan 

and Ikonos XS) 
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