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ABSTRACT: 
 
The potential of EO-1 Hyperion data combined with an inverted geometric-optical model for the retrieval of forest structural 
variables in the Longmenhe broadleaved forest natural reserve, located in the Three Gorges region (China), is studied in this paper. 
Based on the principle of Li-Strahler geometric-optical model, we retrieve the per-pixel reflectance as being a linear combination of 
four scene components (sunlit canopy/sunlit background and shaded canopy/shaded background). The fraction of each component is 
subsequently related to several forest structural attributes. With the advantage of having hyperspectral data, we use linear spectral 
unmixing to separate the above classes present in an atmospherically corrected Hyperion image with support of extensive in situ 
measurements. In addition, we include DEM derived parameters (slope and aspect) and measured canopy structural parameters for 
different forest communities to invert the geometric-optical model and retrieve the pixel-based variables forest crown closure (CC) 
and crown diameter (CD). In total 30 sample plots collected in the Longmenhe study region are used for validation, and the results 
of the above parameters show a good agreement (e.g., R2

CC=0.64 / RMSE=0.058; R2
CD =0.54 / RMSE=0.71). 
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1. INTRODUCTION 

Human transformations of ecosystems and landscapes are 
currently one of the largest sources of change on Earth. In 
particular the provision of ecosystem services, directly affecting 
human well-being, demand sustainable development and 
optimal management of natural resources in the coupled 
human-environment system (GLP, 2005). Population change, 
land management decisions and practices – amongst others – 
affect ecosystem properties and therefore require a sustainable 
socio-economic development in any region on Earth (Murai, 
1991). Among the various natural resources that are present on 
the terrestrial Earth surface, forests are one of the most 
important contributors that influence ecosystems with respect to 
carbon storage and release (Schimel et al., 2001). Accurate and 
up-to-date information on forest structure is essential for many 
aspects of forest management and changes in forest structure 
also provide insights related to forest vigor, harvesting, burning, 
stocking levels, disease, and insect infestations (Wulder, 1998). 
Thus, quantitatively monitoring forest structure using remote 
sensing methods strongly supports the conservation and 
management strategies that take into account biodiversity and 
the impact of the global carbon cycle.  
 
Main forest structural variables include crown cover, crown size, 
stem density, tree height, diameter at breast height (DBH), age, 
spatial distribution, and gap presence etc. Traditionally, 
quantitative retrieval methods for estimating these variables are 
grouped into two major categories: statistical and physical 
approaches. Statistical methods are based mainly on a wide 
variety of vegetation indices or correlating features and use 
regression models to infer structural variables directly. Physical 
methods usually rely on inverting or assimilating canopy 

reflectance models (Liang, 2004). An observed trend is that 
more and more empirical, statistical models are being gradually 
replaced by physically based models.  
 
Canopy reflectance models have been used to improve mapping 
of many forest structural variables, particularly geometric-
optical models, which regard canopy reflectance as a mixture of 
discrete canopy components (Ustin, 2004). For example, Hall et 
al. (1995) used geometric shadow and linear mixture models to 
infer several important structural parameters of a boreal forest. 
Woodcock et al. (1994; 1997) estimated the mean tree size and 
cover for each forest stand through inversion of the Li-Strahler 
canopy reflectance model in Stanislaus National Forest and 
found the forest cover estimates more reliable. Gemmell (1999) 
tested the inversion of a geometric-optical forest reflectance 
model and the utility of two spectral indices (NDVI and SAVI) 
for estimating crown cover in a conifer forest site. Scarth and 
Phinn (2000) determined the forest crown cover projection, 
canopy size, tree densities and successional stage using an 
inverted geometric-optical model in mixed eucalypt forests in 
Australia. These studies used inversion of the geometric-optical 
model to monitor forest structural variables are all based on 
Landsat Thematic Mapper (TM) data. In addition, the authors 
also suggested that the development of new-generation imaging 
platforms would provide an opportunity to use multi-angular or 
hyperspectral remote sensing data for improving and calibrating 
the inversion of geometric-optical models. Therefore, the 
objective of this study is to evaluate the benefits of using EO-1 
Hyperion hyperspectral data in combination with an inverted 
geometric-optical model for deriving and mapping two forest 
structural variables, crown closure (CC) and crown diameter 
(CD), in a broadleaved forest. 
 



 

2. STUDY AREA AND DATA COLLECTION 

The study area, namely the Longmenhe forest nature reserve, 
lies in the Xingshan county of Hubei province, towards the 
northeast of Three Gorges Region in China (centred at 31°20′N, 
110°29′E). The total reserve size is about 4’644 ha and the 
altitude varies around 1300 m above sea level. This study site 
belongs to the temperate climate zone (Cwa – Subtropical 
monsoon, Koeppen (McKnight and Hess, 2000)), average 
precipitation is about 100-150 mm per month and in spring-
summer (April-September) season it can be as high as 200-300 
mm per month. The Longmenhe forest reserve is mainly 
dominated by about 650 ha natural evergreen broadleaved 
forest and mixed deciduous broadleaved forest; 223 ha rare 
plant communities and 121 ha planted subtropical evergreen 
broadleaved forest.  
 
Field data were collected in April to June of 2003. With support 
of 1:50,000 topographic maps, a total of 40 sample sites 
(100x100m) located in the study area were measured based on 
different plant strata and topographic distribution, and each of 
them randomly included 5 sample plots (20x20m), which 
provided relevant photos, plant profile and crown cover maps. 
Other measurements in each sample plot include the GPS 
locations and several important forest structural attributes, such 
as crown diameter and DBH from measuring tape; tree height 
and trunk height by altimeter; tree age using increment borer; 
and visual estimations by forest experts for forest type, plant 
species, crown closure and distribution. 
 
For the study area, a Hyperion image was acquired on June 10, 
2004, around 11:00 a.m. local time. Hyperion, one of the three 
sensors on the NASA EO-1 platform, was launched on 
November 2000 and orbited 1 min behind Landsat. As a 
pushbroom imaging instrument, Hyperion provides high 
resolution hyperspectral images capable of resolving 242 
spectral bands (from 0.4–2.5 µm) with a 10 nm spectral 
resolution and a 30 m spatial resolution. Ancillary data also 
consisted of a digital elevation model (DEM) with 30 m spatial 
resolution, which is required for deriving the model inputs.  
 

3. METHODS 

The overall methods used in this study are shown as flowchart 
in Figure 1. The sequence involves:  
1. Hyperion data processing, which includes effective band 

selection, de-striping, radiometric, atmospheric and 
geometric corrections;  

2. Based on the at-surface reflectance data, deriving the per-
pixel proportions of four scene components (sunlit canopy, 
sunlit background, shaded canopy and shaded background) 
by linear spectral unmixing analysis;  

3. Using spectral angel mapping to classify the forest with 
support of field measurements and determine the relevant 
input parameters;  

4. Inverting the Li-Strahler geometric-optical model 
integrated with pixel-based sunlit background fraction, 
canopy structural parameters, slope and aspect data to 
estimate crown closure and crown diameter;  

5. Quantitatively assessing the accuracy of model retrievals 
through field data collected for 30 sample sites.  

 
Therefore, the key of this study is the theory of the geometric-
optical model. 
 

 
Figure 1.  Flowchart of general methods 

 
3.1 Geometric-Optical Model 

The Li-Strahler geometric-optical model (Li and Strahler, 1992; 
1985) was derived from the assumption that the Bidirectional 
Reflectance Distribution Function (BRDF) is a purely 
geometric phenomenon resulting from a scene of discrete three-
dimensional objects being illuminated and viewed from 
different positions in the hemisphere. The reflectance associated 
with a given viewpoint is treated as an area-weighted sum of 
four fixed reflectance components: sunlit canopy, shaded 
canopy, sunlit background, and shaded background. Therefore, 
for each pixel of a remote sensing image the reflectance (S) can 
be modeled as a linear combination of four components (G, C, 
T, and Z: the reflectance of sunlit background, sunlit canopy, 
shaded canopy and shaded background respectively) and their 
areal proportions (Kg, Kc, Kt and Kz): 
 

ZKTKCKGKS ztcg +++=                                (1) 

The Li-Strahler model assumes that the resolution of the remote 
sensing image is much larger than the size of individual crowns 
but smaller than the size of forest stands, and that the individual 
trees are randomly (Poisson) distributed within the pixel 
(Woodcock et al., 1994). In this study, we use an ellipsoid 
model for the shape of a broadleaved forest tree crown. The 
relevant crown geometry parameters are tree height (h) from 
ground to mid-crown, crown radius (b) in vertical direction and 
crown radius (r) in horizontal direction. Based on the principle 
of three-dimensional geometry of an ellipsoid, each proportion 
of four components can be expressed by a combination of these 
structural parameters. For inverting the model, one component 
(sunlit background) can be used for deriving the expected forest 
variables: crown closure and crown diameter. 
 
The proportion of sunlit background (Kg) can be formulated 
using the Boolean model (Strahler and Jupp, 1990): 
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Here, ( )φθθ υ ,,O i  is the average of the overlap function between 
illumination and viewing shadows of individual crowns as 
projected onto the background. φ is the difference in azimuth 

angle between illumination and viewing. υθθ ,i
 are the zenith 



 

angles of illumination and viewing. M, called “treeness, is 
defined as M=ΛR2, where Λ is the number of trees per unit area.  
 
The exact solution for the overlap function on the principal 
plane can be determined as (Li and Strahler, 1992): 
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Where t is valued in [0, 2
π ]. Therefore, in terms of equations 

(2) and (3), M can be inferred as: 
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In this study, for nadir viewed status, integrating the 
topographic effects, the illumination, viewing and slope angles 
corrected for the spheroidal shape of the crown are shown in 
equations (6)-(9) (Li and Wang, 1995; Schaaf et al., 1994): 
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Where (
sθ ,

sϕ ) are the angles of slope and aspect. 
 
Since M is an important parameter in the relationship between 
image variables and forest structure, in the case of Poisson 
distributed trees, the crown closure (CC) and crown diameter 
(CD=2xR) can be calculated as follows (Li and Strahler, 1985; 
Woodcock et al., 1997): 
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Where ( )mV  is the variance of M, and ω  is the coefficient of 
variation of the squared crown radius. 
 
Consequently, according to equations (4)-(11) the necessary 
inverted model inputs for determining CC and CD are the 
proportional image of Kg; the solar zenith and azimuth angles 
(

iθ ,
iϕ ); the view zenith and azimuth angles (

vθ ,
vϕ ); the local 

slope and aspect (
sθ ,

sϕ ) and the mean measured parameters for 
different kinds of forest crown shapes: r/b, h/b and ω . 
 
3.2 Hyperion Data Processing 

The currently used Hyperion Level 1B1 data have 242 bands of 
which 196 are nonzero and not overlapping. For converting 
DNs to radiances ( 2W/m -sr- mμ ), the data were scaled by 40 for 
VNIR and 80 for SWIR (Radiance for VNIR=DN/40; Radiance 
for SWIR=DN/80) (Beck, 2003). Several stripes (data columns 
of poor quality) in the Hyperion data contain no information 
and lower radiance. Those abnormal pixels are detected and 

replaced by the average radiance value of their immediate left 
and right neighboring pixels (Han et al., 2002). The steps are 
comparing each pixel’s value with its neighbors horizontally in 
each band, if the value is smaller than both neighbors this pixel 
is labelled as abnormal. Then the numbers of consecutive 
abnormal pixels is counted vertically, if the percentage of 
abnormal pixels in each column is greater than 55%, it will be 
treated as striping and be recalculated by the mean of their 
neighbors. In addition, a Minimum Noise Fraction (MNF) 
process can reduce the noise of a hyperspectral image (Green et 
al., 1988). Based on the Eigenvalue profile, the effective bands 
containing the most information are selected to obtain the final 
Hyperion data for model inversion. 
 
Remote sensing data with accurate surface reflectance values 
are essential for a successful inversion of a canopy reflectance 
model. Thus, an atmospheric correction is required prior to data 
analysis. In this study, we use ACORN version 4.0, a 
commercially available atmospheric correction program based 
on the MODTRAN 4 radiative transfer code (AIG, 2002). 
ACORN uses two water absorption channels (940 and 1140nm) 
in Hyperion data to evaluate the amount of water vapor in 
combination with the visibility at the moment of data 
acquisition. Due to the low signal to noise ratio at the beginning 
and the end of the spectra (≤436nm and ≥2385nm) and the 
heavy water absorption influences in several bands, a total of 64 
bands are dropped from 196 valid bands. Geometric correction 
is done by 26 GCPs (Ground Control Points) relative to 
1:50,000 topographic maps and the geometric error is less than 
one pixel.  Finally, the corrected Hyperion data with 132 bands 
of surface reflectance in a UTM Zone 49 N WGS-84 projection 
are used in this study. 
 
3.3 Linear Spectral Unmixing  

Linear spectral unmixing has been widely used to calculate the 
percentages of several individual surface components contained 
in each pixel of a remote sensing image (Goodwin et al., 2005; 
Peddle et al., 1999). The method assumes that the reflectance (S) 
from each pixel is a linear combination of each endmember, 
which is the pure reflectance spectrum of a surface component. 
The general equations are  
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Where m is the number of components; j is the bands and K is 
the fractional abundance of an endmember. In this study, on the 
basis of the Li-Strahler model, there are only four components 
(equation (1), G, C, T, and Z) contained in one pixel. Hence, the 
sum of the four proportions is equal to 1:  

1KKKK ztcg =+++                                        (14) 

Since the proportional image of Kg (sunlit background fraction) 
is required for inverting the model, selection of the suitable 
endmembers G, C, T, and Z is the most important issue. Usually, 
the endmembers are obtained from the observation of a field 
spectrometer, or are taken directly from a remote sensing image 
with sufficient field data, or from an existing spectral library. In 
this case, with the support of extensive in situ measurements, 
we select the four endmembers by trial and error from Hyperion 
training samples.                        



 

 
3.4 Spectral Angel Mapping 

Spectral Angle Mapping (SAM) is one kind of algorithms for 
classifying hyperspectral data. In SAM, classification is carried 
out through comparing image spectra to individual endmembers. 
The similarity between an endmember and the per-pixel image 
spectrum is determined by calculating the "spectral angle", 
treating them as vectors in a space with a dimensionality equal 
to the number of bands. If the spectral angle between them is 
very small, it implies that the pixel is close to this endmember 
(Zeng, 2003).  
 
SAM is used for forest classification in the Longmenhe study 
area for determining the required model inputs of the pixel-
based forest crown shape parameters. Thanks to every 
homogeneous forest region is much more than one pixel of 30 
m, 7 endmembers representing the different dominant forest 
communities and species are detected directly from Hyperion 
data based on the field measurements. For each pixel, the 
spectral angles comparing with each endmember are calculated 
and then the pixel will be assigned to the class of endmember 
with the smallest angle. We use a standard angle threshold of 
0.1 radians to identify unclassified pixels. The accuracy of 
SAM classification is estimated by a confusion matrix based on 
40 independent field sample sites. 
 

4. RESULTS 

4.1 Model Input Data  

The processed Hyperion data with surface reflectance is shown 
in Figure 2a. Because of the cloud cover affecting the quality of 
this image, finally we use an image subset of size 208 (column) 
x 173 (line) x132 (band). After analyzing and comparing the 
training samples collected from the fieldwork, such as a small 
playground of a primary school, a bare farming place, closed 
and open forest regions, etc., the purest pixels representing the 
endmembers of four components, sunlit background G, sunlit 
canopy C, shaded canopy T and shaded background Z, are 
selected from the Hyperion image (Figure 3). Combined with 
equation (1) and (14), the areal proportions of Kg, Kc, Kt and 
Kz are calculated for each pixel, and the proportional image of 
Kg is shown in Figure 2b. The brighter regions express higher 
proportions. Here, we assume 0≤Kg≤1, although a few pixels in 
the linear spectral unmixing approach produced negative 
fractions, which subsequently are recoded as infeasible areas. 
Most of these pixels are located in the topographic shadow of 
the sloped terrain. 
 
As mentioned at the end of section 3.1, besides the proportion 
Kg, the other required inputs for inversion of the Li-Strahler 
model, slope and aspect images are derived from DEM data 
using topographic analysis model of ERDAS IMAGINE, see 
Figure 2c-d. In addition, this nadir viewed Hyperion image was 
acquired at a 23.55°solar zenith and 104.50°solar azimuth angle.  
 

 
a. Hyperion image (bands-R: 50 G: 23 B: 16) b. Proportional image of Kg 

 
c. Slope data with 30m resolution d. Aspect data with 30m resolution 

 
Figure 2: Processed Hyperion data and necessary inputs for 

inversion of the Li-Strahler model 
 

 
Figure 3: Four Endmembers derived from the Hyperion image 
(G-sunlit background; C-sunlit canopy; T-shaded canopy and 

Z-shaded background) 
 
4.2 Forest Classification 

In this study area, the dominant forest communities include 
deciduous broadleaved forest, evergreen broadleaved forest, 
and conifer forest. Most of the collected field sample sites 
(100x100m) were chosen in a homogeneous forest with 
different predominant species. Finally, 7 pixels indicating the 
typical forest classes’ spectra as endmembers are detected from 
the Hyperion image. Those are 1. Deciduous broadleaved forest 
(Platacarya strobilacea); 2. Deciduous broadleaved forest 
(Quercus glandulifera var. brevipetiolata); 3. Deciduous 
broadleaved forest (Betula luminifera); 4. Evergreen 
broadleaved forest (Quercus spinosa); 5. Evergreen 
broadleaved forest (Cyclobalanopsis oxyodon); 6. Coniferous 
forest (Pinus tabulaeformis tabulaeformis); and 7. Coniferous 
forest (Larix keaempferi). We separately recode the deciduous 
broadleaved forest, evergreen broadleaved forest, and conifer 
forest into class 1, 2 and 3, respectively. We consider class 0 as 
being unclassified pixels, when a SAM distance of more than 
0.1 radians has been calculated comparing to the remaining 
other 7 endmembers. Class 0 includes both the non-forested 
regions as well as regions that were affected by clouds or 
shadows. 
 

SAM classes Field measurements (40 samples)
DB EB C 

Total Accuracy

Deciduous Broadleaved Forest 17 3 1 21 81% 
Evergreen Broadleaved Forest 2 8 0 10 80% 

Conifer Forest 2 1 6 9 67% 
Total 21 12 7 31/40 78% 

 
Table 1. Confusion matrix of the SAM classification result 

 



 

Using 40 field sample sites to validate the SAM forest 
classification result, the confusion matrix (Table 1) indicates 
that the percentage of correct classification reaches 78%. In 
terms of the field measurements, the corresponding mean value 
of forest crown parameters, h, b, r and ω  for every dominant 
forest class is shown in Table 2.  
 

Dominant Forests h b r w 
Deciduous Broadleaved Forest 9.79 3.97 1.79 1.25 
Evergreen Broadleaved Forest 8.86 3.36 1.61 3.02 

Conifer Forest 8.41 4.63 1.51 1.87 
 

Table 2. Inverted model inputs for each forest class 
 
4.3 Model Output and Validation 

We design and compile an IDL program to implement the 
inversion of the Li-Strahler model integrated with the pixel-
based input data. Figure 4 presents the final mapping results of 
forest structural variables, crown closure and crown diameter, 
distributed in the Longmenhe study area.  

 

 
Figure 4.  Mapping results of forest crown closure and crown 

diameter by the inverted geometric-optical model 
 
For validating the model outputs, we use the mean value of a 
3x3 window for comparison to one field sample site. Figure 5 
illustrates the agreement between model-interpreted CC/CD and 
ground-measured values. In total 30 independent samples are 
included. The closer the points to the 1:1 line, the better the 
predicted results are. The coefficient of determination R2 is 
equal to 0.64 for CC and 0.54 for CD. The calculated root mean 
squared error is RMSECC= 0.058 and RMSECD= 0.71. Although 
most of the interpreted results of CC seem to be less than the 

field measured values as well as the values of CD partly do not 
match the ground data very well, the reliability of model output 
is considered to be acceptable.  

 
Figure 5.  Linear relationship between ground measured CC/CD 

and model derived CC/CD 
 

5. CONCLUSION AND OUTLOOK 

The inverted geometric-optical model combined with the 
spectral unmixing analysis used in this study proved to be 
useful to derive forest canopy structural variables from 
Hyperion data in the Longmenhe broadleaved forest. The 
accuracy of the inverted model results mainly depends on the 
detectability of M (‘treeness’). Thus, as shown in equation (5), 
for a better calibration of the model, a sensitivity analysis may 
be performed, estimating the sensitivity of M to the sunlit 
background fraction (Kg), the crown shape parameters r/b, h/b 
and the calculated slope/aspect angles. 
 
The accuracy of both, the forest classification and the field 
measurements are substantially influencing the model input 
parameters. Several methods using hyperspectral data based 
classification approaches have been documented in literature, 
and this contribution positions itself well in the generally 
achieved classification accuracies. However, choosing 30 
sample sites for validating the model results has been found to 
be at the lower limit to achieve successful model accuracies. 
We will in the future investigate, if high spatial resolution data 
can increase the model accuracy by combining these two 
approaches. 
 
We evaluated the use of spaceborne imaging spectrometer data 
in combination with a physical- based canopy reflectance model 
to determine forest structural variables at regional scale to be 



 

efficient and useful. Even though selected procedures will need 
more careful analysis in the future, the presented results show 
confidence in the approach selected.  Besides the crown closure 
and crown diameter variables, other forest structural and 
biophysical attributes, like stem density, tree height, DBH, age 
and LAI, can also possibly be estimated more exactly by the 
inversion of canopy reflectance models with support of high 
spatial and hyperspectral remote sensing data. Consequently, 
quantitative monitoring the forest ecosystem and its changes 
over time using effective and coherent models will be a major 
future goal. 
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