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ABSTRACT:  
 
High resolution images are rich sources of spatial information and details as well as noises. Because of the spectral similarities 
between different objects, pixel-based classifications of these images do not provide very accurate results. Incorporation of spatial 
data can lead to significant improvements in the accuracy of classifications. Several methods have been proposed for extraction of 
this information and generation of useful features for use in the classification process. In this study, different techniques for 
quantification of texture data including statistical, geostatistical, Fourier-based methods and gray level co-occurrence matrix have 
been investigated. New features have been generated by using spectral bands and the first PC resulting from the PCA transformation. 
The results have shown that the improvement of classification accuracy is significant and varies for different classes and features. 
 
 

1. INTRODUCTION 

Classification is the most common method of extracting 
information from remotely sensed data. In conventional 
classification methods only spectral data are used. High 
resolution images have more spatial information but do not have 
a high spectral resolution, so using the conventional 
classification methods seems to be ineffective. Spatial 
information, which is a reach source of useful information 
especially in high resolution images, can be used to improve the 
classification accuracy. Texture quantization is an effective 
approach for utilization of the spatial information. There is no 
clear definition for image texture, but we can describe how the 
image texture looks e.g. fine, coarse, smooth or irregular, 
homogeneous and so forth. [1] 
Many authors have introduced methods to quantify spatial 
relations between pixels and have used them as an input data in 
the classification. There are a wide range of texture quantization 
methods that can be classified in three main groups, statistical, 
structural and spectral based methods [2]. Statistical methods 
produce statistical measures of gray level variation; Structural 
methods assume that the texture pattern is composed of spatial 
arrangement of texture primitives, so their task is to locate the 
primitives and quantify their spatial arrangement; and Spectral 
features are generated using the spectrum obtained through 
image transformations such as Fourier Transform. 
In this paper, five groups of features based on the first order 
statistics, Gray level co-occurrence matrix, geostatistics, Fourier 
transform and wavelet transform have been generated. The first 
three can be classified as the statistical and the last two as the 
spectral methods. Then different classifications resulting from 
the combination of different texture and spectral features have 
been evaluated. 
 
 

2. GENERATED FEATURES 

2.1 First Order Statistical Features 

If (I) is the random variable representing the gray levels in the 
region of interest, the first order histogram P (I) is defined as 
[1]: 

 

 
 

Now different features can be generated by using the following 
equations: 

 
2.1.1 Moment 

 
 
 

(1) 
 
 

Where        = number of gray levels. 
                    is the simple mean of pixels. Also 2nd, 3rd and other 
moments can be used. 

 
2.1.2 Central Moments 
 
 

(2) 
 
 
2.1.3 Absolute Moments 
 
 

(3) 
 
 
2.1.4 Entropy 
 
 

(4) 
 
 
2.1.5 Median:  Median is the middle value in a set of numbers 
arranged in increasing order. Because the kernel size always 
covers odd number of pixels, median can be extracted simply by 
choosing the mid member of an array which contains gray 
levels of pixels that covered by the mask and then it is sorted.  
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2.1.6 Mode:  Mode is the most frequent value of a random 
variable. So in an image mode is the most frequent pixel gray 
level. 
 
2.1.7 Distance Weighted Mean:  If the distance from center 
pixel is considered as the weight for computing the mean then 
near pixels have more contribution in the results. 

 
 
 

(5) 
 
 
 
 

2.2 Gray level Co-Occurrence Based Features:  Haralick et.al 
[3] proposed this method to extract texture information from 
digital images. First Gray level co-occurrence matrix (GLCM) 
is produced and then several texture measures are computed 
from it. GLCM is a matrix that contains the number of each 
gray level pairs that are located at distance d and direction θ 
from each other. This matrix could be defined for different 
distances, angles and as well as for different lags.   
 
 
 
 
 
 
  
 

(6) 
 
 
 
 
 
 
 
In this research,  following features have been generarted from 
the GLCM matrix : 

 
2.2.1 Mean 
 
 
 

(7,8) 
 
 
 
where P(i,j)=GLCM(i,j) 

 
2.2.2 Variance 
 
 

(9) 
 
 
 

(10) 
 
 
 
Mean and variance of GLCM are not the same as for the image 
because the frequency of occurrence of different pairs is 
modeled here. 
 

2.2.3 Homogeneity (Inverse Differences Moment) 
 

 
(10) 

 
It assigns higher weight to the main diagonal of GLCM so it 
outputs higher value for images that have larger homogeneous 
areas. 

 
2.2.4 Contrast 

 
 

(11) 
 
 

The more the distance from the main diagonal of GLCM the 
higher the weight that is assigned to the P(i,j), so when the 
difference between neighboring pairs becomes large, the 
contrast increases. 

 
2.2.5 Dissimilarity 
 
 

(12) 
 
 
It works like contrast but gives lower weight to the difference of 
each gray level pairs. 
 
2.2.6 Entropy 
 
 

(13) 
 
 
It outputs higher value for a homogeneous distribution of P(i,j), 
and lower otherwise. 

 
2.2.7 Angular Second Moment 
 
 
 

(14) 
 
 
 
It is a measure of image smoothness. It outputs higher values 
when P(i,j) is concentrated in a few places in the GLCM and 
lower if the P(i,j) are close in value. 
 
2.2.8 Correlation 
 
 

(15) 
 
 
It measures linear dependency of gray levels on those of 
neighboring pixels. 

 
 

2.3 Geostatistical Features 

Geostatistics is the statistical methods developed for and applied 
to geographical data. These statistical methods are required 
because geographical data do not usually conform to the 
requirements of standard statistical procedures, due to spatial 
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autocorrelation and other problems associated with spatial data 
[4]. 
Semivariogram that represents half of the expectation of the 
quadratic increments of pixel pair values at the specified 
distance can quantify both spatial and random correlation 
between the adjacent pixels. [5] It is defined as: 
 
 

(16) 
 
 
That is the classical expression of variogram (h) here represents 
a vectorial lag between pixels. In this study direct variogram, 
madogram, cross variogram and pseudo-cross variogram have 
been used. The first two operate separately for each image 
bands and the second two operate for pairs of image bands. 
 
2.3.1 Direct Variogram 
In this approach the following equation is used to estimate: 

 
 

(17) 
 
 

 n(h) is the number of pairs that are in mask filter. 
 

2.3.2 Madogram:  This is similar to direct variogram except 
squaring differences, but uses the absolute value of differences. 

 
 

(18) 
 
 

2.3.3 Cross Variogram:  Two image bands are used to quantify 
the joint spatial variability between bands. 

 
 
    
 

(19) 
 

2.3.4 Pseudo-cross Variogram:  It is similar to direct 
variogram, but uses pairs which are from two different bands 
(m,n). 

 
 

(20) 
 
 

2.4 Fourier Based Features 

Fourier transformation, transforms a signal from space/time 
domain to frequency domain. The amplitude and phase 
coefficients are two outputs of a Fourier transformation. So 
different texture patterns could be identified by their Fourier 
coefficients but because in this research one value for each pixel 
is required, raw Fourier coefficients couldn’t be used. Several 
features can be generated using sum of the Fourier amplitude 
under different masks [6]. These are comprised ringing, 
sectorial, horizontal and vertical which are shown in figure 1. 

 
 

(21) 
 

 

 
 
 
 

Figure 1. Different mask which can be used to generate features 
from Fourier coefficients 

 
 

3) Wavelet Based Features 

Mallat (1989) developed the multiresolution analysis theory 
using an orthonormal wavelet basis. The multiresolution 
wavelet transform decomposes a signal into low frequency 
approximation and its high frequency detail information at a 
coarser spatial resolution. [7] 
 
 
 
 
 
 
 
 
 

Figure 2. Decomposition procedure using multiresolution 
analysis 

 
New features could be generated using wavelet transform 
outputs. We generated four defined features using 
approximation output of first and second level of transformed 
image. To obtain second level we use first level approximation 
to do the same decomposition. Those were defined by different 
authors [7] and they are: 

 
 

(22) 
 

 
(23) 

 
 

(24) 
 
 
 
 
 

(25) 
 
 
 
P(i,j) is the (i,j)th pixel of approximation band of wavelet 
transformed image in specific level. 
We used first and second level of wavelet transformation. 
 
 

3. CASE STUDY 

For evaluation of the above methods, we selected nine 128*128 
size subsets from the IKONOS pan-sharpend ortho image of 
Pishva and its suburb area (Fig 3). Then we generated a test 
image of 384*384 pixels using those nine subsets. Nine land 
cover classes (each subset contains a specific land cover) were 
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defined in test image (Table 1), and two images were produced 
to be used as training and testing sets. Some of these classes are 
spectrally similar and therefore they are confused in the pixel-
based classification algorithms but they display different 
textures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The features as mentioned in the table (2) were generated by 
using different kernel sizes (3 by 3 to 25 by 25) for each image 
bands and also for the first PC. So there were four features for 
each formulation, one for each of the four original image bands. 
In geostatistical method cross variogram and pseudo cross 
variogram were produced by using the six image band pairs. For 
the case of first PC, cross features of geostatistical methods 
could not be generated because there was only one band. 
Fourier based features were generated in two ways: first by 
using low frequencies (from center of mask with half mask size 
symmetrically around center for all four masks) and second by 
using high pass masks (the remaining mask area), but sectorial 
one being one type. 
For GLCM and geostatistical methods, one length lags in four 
main directions were used and numerous features were 
generated. ((1,0), (0,1), (1,1) and (-1,1)). 

For evaluation of different features the images were classified 
using the maximum likelihood classification method and 
different inputs as follow: 
In the first stage each generated feature from the original bands 
together with the image bands were used. In the second stage, 
usefulness of a combination of spectral bands and features of 
one group (belonging to a similar feature group) were tested. 

 

 
Table 2. List of generated features in five groups 

 
 

Features generated by the use of the first PC were combined 
with the spectral bands and were used for classification of the 
images.  
Independent test samples were used for evaluation of the 
accuracy of different classifications. Producer’s accuracy, 
overall accuracy, variance and mean of the producer and 
normalized overall accuracy were considered. 
 

 
4. RESULTS AND CONCLUSIONS 

Results have shown that combination of textural and spectral 
features can improve the classification accuracy noticeably. 
Therefore texture features are capable of capturing and using 
more information in the classification process. An important 
advantage is that, these features are generated from the image 
itself and no external information and data are required. 
Depending on the goal of classification, e.g. extracting a 
specific class, increasing the overall or mean accuracy or 
producing an output with the acceptable minimum accuracy, 
appropriate features can be selected and used. It may also be 
argued that the ratio of mean to variance of accuracies stated as: 

                                           
 

 
 
is a better criteria for evaluation of different results than the 
overall accuracy. Because the overall accuracy works in favor 
of dominant classes and in many cases accuracy of all classes 
may be as important as the accuracy of dominant class. 

No. Class Name Sample 
1 Urban Area  
2 Road  
3 Cultivated 1  
4 Cultivated 2  
5 Cultivated 3  
6 Cultivated 4  
7 Tree  
8 Row Tree  
9 Dense Trees  

Statistical 
 ( First Order ) 

GLCM 
based 

Geo-
statistical 

Fourier 
based 

Wavelet 
Based 

Mean  
(first moment ) Contrast Direct 

Variogram Horizental LOG 
Energy 

Distance weighted 
mean Dissimilarity Madogram Vertical Shano’s 

Index 

2nd moment ASM Cross 
Variogram Ringing 

Angular 
second 
moment 

3rd  moment Entropy 
Pseudo 
Cross 

Variogram 
Sectorial Entropy 

4th moment Homogeneity    
First central 

moment Mean i    

Variance (2nd 
central moment) Mean j    

Skewness (3rd 
central moment) Variance i    

Kurtosis (4th  
central moment ) Variance j    

First absolute 
moment Correlation    

Second absolute 
moment     

Entropy     
Median     
Mode     

Figure 3. Selected Subset  

Table 1. Classes and their image samples 



Results of this research have shown that use of the first PC as 
the input for feature generation lead to results comparable with 
those of the four spectral bands. So, use of the first PC for 
generation of new features is preferable. Because its production 
is not so time consuming and the number of features and 
classification time are significantly reduced. 
When the spectral bands are used, combination of all features of 
each group doesn’t lead to better results than using each feature 
separately with the spectral band. This observation may be 
attributed to the high correlation between features and the half 
phenomena. When all features are used for example in the first 
order statistical method there are 14*4 features plus four 
spectral bands. But when all features of PC1 in each group are 
used, because of the reduced number of features (e.g. 14 for the 
first order statistical method), better results are obtained.  
In the case of the first order features, best results are obtained 
by using 'Median', 'Weighted Mean' and 'Moments' respectively. 
But 'Central moments' and 'Absolute moments' are not as useful 
as others. Use of the  'Median' have lead to best results in terms 
of the mean accuracy so it may be regarded as the best feature 
in this group for enhancement of the accuracy of all classes 
rather than a certain class.  As it is expected use of all features 
from the original bands together has led to poor results. As 
compared to others when first PC is used, ‘Entropy’ and using 
all generated features have shown the best performance. 
About GLCM based features the results have shown that 
'Contrast' and 'ASM'  are the best ones and 'Homogeneity', 
'Correlation', 'Entropy', 'Mean i' and 'Mean j', 'Variance i', 
'Variance j' and 'Dissimilarity' are in next positions. But use of 
all features together has lead to deterioration of the results 
because of the high dimensionality of the feature space. To 
solve this problem we used the average of generated feature in 
four directions so the number of features decreased to ¼ and all 
directions significantly contributed in the generated feature 
space. This modification led to better results. In the case of PC1, 
these results are a little different and all features together also 
work well. 
In the case of geostatistical features, experimental results 
demonstrated that 'Pseudo Cross Variogram', 'Madogram', 
'Cross Variogram' and 'Direct Variogram' were the bests 
respectively. 
In Fourier based features there is no explicit difference between 
different features and using all features together have led to 
good results. 
In wavelet method, performance of features could be ranked as 
'Angular Second Moment', 'Shanon’s Index', 'Log Energy’ and 
'Entropy'. Second level of wavelet generally has led to better 
results. 
When all features are compared, it could be concluded that the 
geostatistical and GLCM feature led to better overall accuracies. 
Wavelet, first order and Fourier based features are in next 
positions.  
If results of features are compared in terms of their mean 
accuracy, GLCM based and geostatistical features are in higher 
levels and first order and Fourier methods are in next positions 
and wavelet occupies the last position. 
As long as the mean accuracy/accuracies variance is considered, 
GLCM, geostatistics and first order statistics methods, have led 
to better results, which is an indicator of the generality of their 
usefulness for improvement of the classification. 
Results of spectral classification and classifications of 
combination of textural features and spectral band which led to 
best men accuracy and best normalized mean accuracy have 
shown in Table 3. 
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Table 3. Obtained results of spectral classification and best 
mean and mean/variance of accuracies obtained from 

combining new features with spectral bands 
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