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ABSTRACT:

With the amount of traffic increasing steadily, traffic monitoring has evolved to an important topic of research. Most of the conventional
systems for traffic monitoring lack of spatial extent. Hence traffic monitoring from space provides an attractive alternative to supplement
existing systems. The upcoming TerraSAR-X Mission with its experimental dual-receive mode will contribute to this research topic.
To have an estimate on the performance of traffic monitoring achievable, simulations with respect to the TerraSAR-X instrument
specifications were conducted. Simulation methods and results are presented. To complement simulations with results from SAR-Data
a prototype traffic-processor is introduced and first results are shown.

1. INTRODUCTION

1.1 Motivation

As increased traffic emerges as one of the major problems in ur-
ban and sub-urban areas, traffic-monitoring has become an in-
creasingly important research topic. Most of the conventional
systems for traffic-monitoring, however, lack of spatial extent.
Hence traffic monitoring from space provides an attractive alter-
native to supplement existing systems. One remote sensing sys-
tem to think about in this context is the upcoming TerraSAR-X
Mission. Its high resolution synthetic aperture radar (SAR) sen-
sor provides the potential for new task in remote sensing. Even
more importantly the sensor can also be operated in an experi-
mental dual-receive (DRA) mode, which acquires two high reso-
lution SAR-Images of the same scene within a small time frame.
Especially this dual-receive mode is going to provide data suited
for traffic monitoring.

1.2 Related Work

The task of detecting moving vehicles with SAR sensors has been
addressed in several scientific publications. In military research
this problem is well known as ground moving target indication
(GMTI). The method of choice in GMTI is to use a SAR sensor
with at least 3 channels and use space-time adaptive processing
(STAP) for target detection. Further reference to that topic can
be found in (Klemm, 1998). Unfortunately space borne SAR
systems with 3 or more channels are currently not available. The
upcoming TerraSAR-X mission is equipped with a single channel
SAR that can be switched to an experimental mode with 2 chan-
nels to enable traffic monitoring. Although the use of a 2-channel
system is suboptimal for detecting vehicles, some methods ex-
ist that allow detection under certain conditions. The classical
method to do so is to use the displaced phase center array (DPCA)
method. Along track interferometry (ATI) is another method that
can be used. The issue of detecting moving targets using ATI is
discussed in (Gierull, 2001). In (Gierull, 2002) special empha-
sis is put on the probability density functions associated with this
detection. Traffic monitoring from space is quite rare so far. But
as shown in (Breit et al. , 2003) first endeavors have already been
carried out.

2. EFFECTS OF MOVING OBJECTS IN SAR IMAGES

2.1 SAR Focusing of Stationary Point Scatterers

The position of a Radar transmitter on board a satellite is given
by P sat ( t) = [ x sat ( t) , y sat ( t) , z sat ( t)] with x being the along-
track direction, y the across-track ground range direction and z
being the vertical. A point scatterer is assumed to be at posi-
tion Pmover = [ xmover ( t) , ymover ( t) , zmover ( t)] . The range
to an arbitrarily moving and accelerating point target from the
radar platform is defined by R ( t) = P sat ( t) − Pmover ( t) and
the measured echo signal of this point scatterer can consequently
be written as

us ( t) = aθ (θ)aβ (β)g(τ − 2R ( t) /c )exp{− j
4π
λ

R ( t) } (1)

with g(τ − 2R ( t) /c ) being the delayed complex pulse enve-
lope, and aθ (θ) , aβ (β) being the amplitude of the two-way an-
tenna patterns in elevation and azimuth, respectively (Bamler
and Schättler, 1993; Cumming and Wong, 2005). For further
investigations the amplitude A = aθ (θ)aβ (β)g(τ − 2R ( t) /c )
is discarded to simplify the equations. Additionally, the term
exp{− j 4π

λ R ( t) } is approximated quadratically by
exp{ jπFMt 2 } with:

FM = −
2
λ

d2

dt2
R ( t) = −

2
λR

vsat vB (2)

being the frequency modulation rate of the azimuth chirp, i.e.

u( t) = exp{ jπFMt 2 } (3)

Azimuth focussing of the SAR image is performed using the
matched filter concept (Bamler and Schättler, 1993; Cumming
and Wong, 2005). According to this concept the filter must cor-
respond to

s( t) = exp{− jπFMt 2 } (4)

An optimally focused image is obtained by complex-valued cor-
relation of u( t) and s( t) . For efficiency reasons, this operation is
commonly done in frequency domain by multiplying the respec-
tive spectra U ( f ) and S ( f )

T ( f ) = U ( f ) · S ( f ) (5)



using highly specialized algorithms like theω-κ algorithm or the
chirp scaling algorithm (see (Cumming and Wong, 2005) for de-
tails). An important aspect refers to the definition of the matched
filter. To construct it correctly, the actual range history of each
target in the image must be known. For this, a priori informa-
tion about sensor and scatterer position and motion is necessary.
Usually, the time dependence of the scatterer position is ignored
yielding Pmover(t) = Pmover. This concept is commonly re-
ferred to asstationary-world matched filter(SWMF). Because of
this definition, a SWMF does not correctly represent the phase
history of a significantly moving object, which eventually results
in image deteriorations.

2.2 Theory of Object Motion Effects in Satellite Radar-Data

2.21 Across-track Motion The target should now move with
velocity vy0 in across-track direction. This movement causes a
change of range history proportional to the projection of the mo-
tion vector into the line-of-sight direction of the sensorvlos =
vy0 · sin(θ), with θ being the local elevation angle. In case of
constant motion during illumination the change of range history
is linear and causes an additional linear phase trend in the echo
signal. The resulting signal of an object moving in line-of-sight
direction with velocityvlos is consequently

ulos(t) = exp{jπFMt2} · exp{−j
4π

λ
vlost} (6)

The spectrumTlos(f) = Ulos(f) · S(f) of the moving target
after focusing with a SWMF results in

Tlos(f)=exp



−j2π
2fvlos

λFM

ff

exp



−j2π
2v2

los

λ2FM

ff

(7)

As one can see,Tlos(f) is composed of a linear phase (first part)
and a constant phase term (second part). Following the laws of
fourier transform the linear phase component corresponds to a
time shifttshift in time domain. Fourier-transforming the linear
term of Eqn.(7) yields

tshift =
2vlos

λFM
[s]. (8)

Some simple transformations of Eqn.(8) give theazimuth dis-
placement of a moving object in space domain

∆azimuth = −R
vlos

vsat

[m] (9)

with tshift = ∆azimuth

vB
here vB is the beam velocity on

ground. Across-track motion consequently results in an along-
track displacement of the moving object. It is displaced in flight
direction when the object moves towards the sensor (i.e. the range
decreases) and reverse to flying direction when the movement is
directed away from the sensor (i.e. the range increases).

Another effect caused by across-track motion is the introduction
of a phase-shift in the SAR-Data. Since the phase of a conven-
tional SAR-data is randomly distributed, this effect is of no use
with a single SAR-Image. However if you can use two or more
recordings like in along-track interferometry, that phase-shift can
be useful. The phase-shift can be expressed as range difference
∆R in line-of-sight direction, which in turn is related to object
motion

ψ =
4π

λ
∆R =

4π

λ
vlost (10)

When the time framet is limited by the satellite motion and the
distance∆l of the phase centers of the two antennas, Eqn.(10)

can be reformulated as

ψ =
4π

λ
vlos

∆l

vsat

(11)

Since both, interferometric phaseψ and azimuth displacement
∆azimuth, are only caused by across-track motion, an analytic
relation between both measurements can be established

∆azimuth = −R
vlos

vsat

= −Rψ
λ

4π∆l
(12)

2.22 Along-track Motion The target is now assumed to move
with velocityvx0 in azimuth direction (along-track). The relative
velocity of sensor and scatterer is different for the moving object
and the surrounding stationary world. Thus, along track motion
changes the frequency modulation (FM) rate of the received scat-
terer response. Focusing the signal of a moving vehicleumt(t)
with the SWMFs(t) in frequency domain yields

Tmt(f) = Umt(f) · S(f) = exp



−jπ
f2

δFM

ff

(13)

where
1

δFM
≈ −λ

r

vsat

vB

vx0

(vsatvB)
3

2

R (14)

The phase of the focused signalTmt(f) is quardatic and causes a
spreading of the signal energy in time or space domain depending
on δFM . Unfortunately, the fourier transform ofTmt(f) has no
analytic solution. Nevertheless, considering the stationary phase
approximation of the Fourier-Transform the width of the focused
peak can be approximated by

∆t ≈
PRF

δFM
= 2TA

vx0

vB

[s] (15)

with TA being the aperture time. Interpretation of Eqn.(15) shows
that a moving vehicle is smeared by twice the distance it moved
along-track during the illumination timeTA. It has to be kept in
mind that the approximation in Eqn.(15) only holds ifvx0 ≫ 0.

3. DETECTION METHODS

For detecting vehicles one can make use of the effects mentioned
in Sect.2. In this paper will focus on detection methods making
use of the effects causes by across-track motion. Along-track mo-
tion effects are dealt with in (Weihinget al. , 2006). There are
two major methods to approach detection with across-track mo-
tion: along-track SAR interferometry (ATI), and SAR displaced
phase center antenna (DPCA). Both make use of the phase-shift
in order to detect vehicles. In a second step the displacement can
be used to estimate the velocity of the vehicle.

3.1 ATI

In the case of along-track interferometry (ATI) an interferogram
IATI is formed from the original complex data setsI1 andI2 by
calculating

IATI = I1 · I
∗

2 = |I1| |I2| exp (j (ϕ1 − ϕ2)) =

= η exp (jψ) (16)

with ϕ1 = arg (I1) andϕ2 = arg (I2)

and with ψ = ϕ1 − ϕ2 (17)

For all stationary targets the interferometric phase valuesψ =
(ϕ1 − ϕ2) will be statistically distributed around the expectation



Figure 1. Theoretical joint probability density functionfc (η, ψ)
of the single-look interferometric phase and a magnitude normal-
ized toE [η] = 1. Coherency is set to|ρ| = 0.95. The dashed
line is an example for a curve of separation.

valueE [ψ] = 0. The joint probability density function (pdf)
fc (η, ψ) of amplitude and phase of an interferogram has been
derived in (Leeet al. , 1994) and (Joughinet al. , 1994) using the
underlying assumption of jointly Gaussian-distributed data in the
two images. It is given by:

fc (η, ψ) =
2nn+1ηn

πΓ (n)
`

1 − |ρ|2
´ exp

„

2nη |ρ| cos (ψ)
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wheren is the number of looks,Γ (•) is the gamma function
andKn (•) is the modified Bessel function of thenth kind. As
a precondition for the validity of the pdf it was assumed that
E

ˆ

η2
˜

= 1. Multilooking is done by averaging overn pixels
assuming stationarity. For medium resolution SAR the jointly
Gaussian assumption has been validated in most agricultural and
heavily vegetated areas. Fig.1 shows a typical example of the pdf
assuming a coherency of|ρ| = 0.95, n = 1 and a expected signal
amplitude ofE [η] = 1.
Fig.1 illustrates the typical behavior of the clutter that large phase
fluctuations are associated with small amplitudes (destructive in-
terference in the speckle patterns of the images). The phase vari-
ations are drastically reduced for large amplitudes (constructive
interference in the speckle patterns of the images). The pdf is
centered on a phase value ofψ = 0 as expected.
Based on this pdf a constant false alarm rate (CFAR) detector can
be designed that groups all image pixels into two classes. Class 1,
called ’clutter only’, contains all pixels that only carry image in-
formation. Class 2, called ’no clutter’, contains all pixels that are
not part of the image pdf. This class 2 includes pixels that con-
tain moving vehicles but also all sort of outliers. Classification
is done by comparing that pdf with thresholdsα. This provides
us with a curves of separation between the two classes, which are
actually isolines onfc (η, ψ). An example of a possible curves of
separation is indicated in Fig.1 by black dashed lines. The cho-
sen curve of separation determines the probability of false alarm
(Pfa); sometimes also referred to as ”‘false alarm rate”’ (FAR).
It is simply the integral of the Clutter pdf over the area where
fc (η, ψ) < α. Thus, the FAR describes the rate of ’clutter only’
pixels that are wrongly assigned to the class ’no clutter’.
To implement a CFAR-Detector, several steps have to be accom-
plished: First the ATI-ImageIATI has to be computed. As men-
tioned earlier expected signal amplitude of the pdf in Eqn.(18) is

E [η] = 1. The SAR data used might not have that property. So
it is necessary apply some normalization. Additionally the co-
herence as a parameter of Eqn.(18) has to be determined. Then,
for each pixel the value of the pdf can be computed. Inputs are
the phase and magnitude ofIATI and the coherence. Finally a
threshold is applied to decide whether a pixel is Class 1 (’clut-
ter only’) or Class 2 (’no clutter’).

3.2 DPCA

In a similar way, detection using DPCA is accomplished. First a
coherent differenceID of the original complex data setsI1 and
I2 is computed:

ID = I1 − I2

Ideally this would results in a complete removal of the clutter.
What remains is only noise introduced by the receiver and signal
from the vehicle (if present). Hence a pixel of class 1 (’clutter’)
would only contain receiver noise and its distribution would be
complex circular gaussian:

fD (ID) =
1

2πσ2
D

exp

0
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with ID = I
(re)
D + jI

(im)
D

In reality the two antennas have different characteristics which
can result e.g. in a remaining phase ramp or in imbalances in
magnitudes of the two channels. Hence some sort of preprocess-
ing is often necessary to balance the channels. For possible meth-
ods see (Gierull, 2003) or (Ender, 1996) for further reference.
As detection using ATI benefits from this kind of preprocessing as
well it is advisable to apply it to all data as an independent step in
the processing chain before the actual detection. (The steps of the
processing chain will be dealt with in Sect.5.1) The procedure for
detection with DPCA is similar to that with ATI: As in the case
of ATI a normalization has to be conducted. For that the variance
σ2

D is computed. Since the characteristics of the SAR data can
change over azimuth and range, this cannot be done globally, but
has to be done locally using a using a sliding window method.
Together with the pixel values ofID, σ2

D is input to Eqn.(19) as a
parameter. Then, for each pixel the value of the pdf is computed.
Again the final step is to apply a threshold to decide whether a
certain pixel images clutter or a vehicle.

4. SIMULATION

4.1 Parameters of interest

In order to obtain an estimate on the detection performance, with
no satellite data available so far, monte-carlo simulations were
conducted. In these simulations the most important properties
of the satellite, the moving vehicle and the background of the
vehicle were incorporated. The satellite is characterized by vari-
ous parameters such as bandwidth, antenna-pattern, ATI baseline.
Clutter also differs depending on whether forest, grassland or an
urban area is imaged. And finally the moving vehicle has to be
characterized adequately as well. Here it is modeled as a point-
target, but even then the RCS and the velocity in line-of-sight
have to be considered in the simulation. Sensor parameters were
set to match TerraSAR-X specifications. See table (Meyeret al. ,
2005) for a list of the most important parameters.



All these facts can be merged in the following parameters:

• resolution of the radar image:δx, δr

• radar-crossection (RCS)of the vehicle:σV

• relative radar-crossection of the clutter:σ0
C

• noise-equivalent sigma zero (NESZ):σ0
NESZ

• across-track velocityvr of the vehicle considered, corre-
sponding to the phase shiftφ introduced in the SAR-data

Resolution and NESZ only depend on the satellite and were fixed
in all simulations. On the contrary the RCS of the vehicle, vehicle
velocity and RCS of the clutter had to be varied to accommodate
different simulation scenarios.

4.2 Simulating Data

For the simulation two sets of random samples are created. Each
sample consists of two complex numbers, resembling the two
channels of the SAR-System. One setIC was simulated to con-
tain clutter only, the other setIV to contain the radar return of a
vehicle embedded in clutter. To compute these two sets first six
sets of complex gaussian distributed random samples are gener-
ated. (see Eqn.(20)).

Rx
y = N (0, 1) + jN (0, 1) (20)

Then, with the use of Eqn.(22) to Eqn.(24) the two setsIC and
IV are computed.

IC
1 = σ0

CR
C
1 + σ0

NESZR
N
1 (21)

IC
2 = σ0

CR
C
1 + σ0

NESZR
N
2 (22)

IV
1 =

σV

δxδr
+ σ0

CR
C
2 + σ0

NESZR
N
3 (23)

IV
2 =

σV

δxδr
ejφ + σ0

CR
C
2 + σ0

NESZR
N
4 (24)

In order to obtain good statistics the number of elements in each
set has to be very high. In our case 10000000 elements per set
were used. These two sets are then put into the detector. With the
result fromIC the false alarm-ratePFA is computed, by dividing
the number of samples falsely detected as vehicles over the total
number of samples. Similarly, with the setIV , the probability of
a missed vehiclePM and the probability of detecting a vehicle
PD are computed.

4.3 Results of the Simulation

SAR-Data has statistical properties, hence the need for a monte-
carlo simulation. Statistical fluctuations have an influence on the
SAR-Image in different ways: The radar-crossection (RCS)of the
vehicle varies depending on the aspect-angle of the vehicle. The
Clutter itself has statistical fluctuations. And additionally the re-
ceiver of the radar-system adds a noise-floor to the obtained im-
age. So an accidentally bright clutter-pixel could be brighter than
an pixel imaging a vehicle in an unfavorable aspect angle. In such
an unfavorable situation the receiver-noise could also introduce a
phase-shift to the data which could be higher than the one of a
slow vehicle. As one can see there is always a trade-off between
the number of vehicles missed (missed hits) and the number of
false alarms i.e. clutter which is falsely detected as a target.
To show this trade-off one can plot thPFA against thePM , or
equivalently thePFA againstPD, sincePD + PM = 1. Such
a plot is called a ROC-Curve, an example is is depicted in Fig.2.
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Figure 2. Performance of an DPCA-detector for signal to clut-
ter ratios of -3dB, 0dB, 3dB, 6dB and 10dB (innermost to outer-
most).

For an ideal detector, the ROC-curve would jump up to a proba-
bility of detection of1 right away, holdingPD = 1 for anyPFA.
The worst case - a detector just guessing - is indicated by the thin
dashed line.
This kind of view is useful in showing the quality of an detector,

however it is hard to show the dependence of the detector on other
parameters. In Fig.2 this is done by plotting several ROC-Curves
in the same plot. But it gets very complex and counter intuitive.

For further plots therefore only the values ofPD for a fixedPFA

are plotted against various parameters, which have an influence
on the performance of the detector. Fig.3 and Fig.6 show exam-
ples of such plots. Here thePD of the target is plotted against the
RCS of the vehicle for the across-track velocities of 50 km/h, 80
km/h and 150 km/h. The False-Alarm RatePFA in that example
and in all of the following examples is fixed atPFA = 10−4. In
Fig.3 detection with DPCA was simulated; Fig.6 shows detection
with ATI. As one can see with DPCA there is an interval of about
8 dBm2 where the probability of detection increases from 0 to 1.
With ATI that interval is a bit larger, about 10 dBm2. Clearly,
the position of the interval varies depending on the method of de-
tection and the mainly the velocity of the vehicle. To point out
the dependence of thePD on both the velocity and the RCS of
the vehicle Fig.4 and 7 show a similar plots, herePD is ploted
against both parameters.
For the previous simulations a constant RCS was assumed. How-
ever in reality the RCS of a vehicle is randomly distributed rather
than fixed at a deterministic value. Another simulation was con-
ducted to accommodate that fact. In Fig.4.4 and Fig.4.4 thePD

for vehicles are shown where the RCS is gaussian distributed with
a standard deviation of 8 dbm2 and a mean values ranging from
0 dbm2 to 11 dbm2.

4.4 Conclusions from Simulation

On the whole DPCA performs better for high and medium valued
velocities while ATI has an advantage for small valued velocities.
That advantage is mainly due to the fact, that with ATI one can in-
corporate the vehicle’s amplitude while with DPCA the vehicle’s
amplitude is lost, if there is no or only a small phase-shift due to
the vehicle’s small velocity. This is true for both a deterministic
and a randomly distributed RCS. Hence it is advisable to use both
ATI and DPCA for detection and fuse the results to combine the
advantages of both methods.



Figure 3. Plot ofPD for a DPCA-Detector against the RCS of a
simulated vehicle

D
P

rv
vs

Figure 4. Plot ofPD for a DPCA-Detector against the RCS and
velocity of a simulated vehicle
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Figure 5. Plot ofPD for an DPCA-Detector against the a dis-
tributed RCS and velocity of of a simulated vehicle

Figure 6. Plot ofPD for an ATI-Detector against the RCS of a
simulated vehicle
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Figure 7. Plot ofPD for an ATI-Detector against the RCS and
velocity of of a simulated vehicle
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Figure 8. Plot ofPD for an ATI-Detector against the a distributed
RCS and velocity of of a simulated vehicle



5. PROCESSING SAR DATA FOR TRAFFIC
MONITORING

5.1 The traffic-processor

For a traffic-processor the methods described in Sect.3. have to
be implemented. Furthermore additional steps before and after
the actual detection are necessary. These steps are:

• SAR processing of the raw data:
The conventional SAR processing steps such as focusing of
the raw data or squint processing for air-borne data have to
be conducted

• Channel Ballancing:
The magnitudes and phases of the two SAR-images have to
be adapted to each other. Magnitudes should have the same
level and potential phase-ramps have to be removed. See
e.g. (Gierull, 2003) for further reference.

• Detection with ATI or DPCA:
Detection Algorithms specified in Sect.3. are applied here.

• Estimation of vehicle velocity from displacement:
Knowledge about the road-network of the scene imaged is
imported through a GIS-database. With that knowledge, the
displacement and heading direction of the vehicles can be
determined. Thereby the velocity of the vehicles is deter-
mined.

The traffic-processor was developed at DLR and is currently used
to process SAR-Data from DLR’s airborne ESAR-System. The
experience gained with this experimental system will later be
used to construct a traffic-processor for TerraSAR-X data.

Figure 9. Result of the traffic-processor showing detected vehicle
and their back projection onto the road

5.2 Results with the traffic-processor

In Fig.9 a result of the traffic-processor is shown. The scene im-
aged is the ”‘Autobahn”’ A8 at lake Chiemsee. Vehicles detected
are marked with red squares. Additionally the track of the ”‘Au-
tobahn”’ is superimposed onto the image. The vehicle’s true posi-
tion is marked by triangles. Those were color-coded according to
the estimated velocity. Higher order parameters like the density
of the vehicles and the estimated time to pass a certain section of
the road are expected to be computable from those results. An-
other flight campaign is going to be conducted where not only
SAR-data will be recorded but also optical images will be taken,
so that the results from radar-data can be compared with another
source of information to learn more about the reliability of SAR-
data.
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