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ABSTRACT: 
 
The mathematical modelling of the polarized radiation transfer (RT) at the satellite remote sensing (SRS) of the strongly anisotropic 
cloudy atmosphere needs an efficient well-conditioned algorithm with accelerated solution convergence to be developed. The 
accelerated convergence can be achieved by the small angle approximation (SAA) subtracting from the general solution of the 
vectorial (polarization) RT equation (VRTE). The reminder, being a smooth function, is computed rapidly. In the current paper the 
SAA is determined in the frame of reference (FoR) containing the arbitrary directed sunlight rays. In contrast to the FoR containing 
the vertical direction of the slab the system for the coefficients of the radiation field with the coupled mutual azimuthally Fourier-
expansion amplitudes is obtained. On the assumption of the continuous dependence of the angular generalized spherical function 
(GSF) expansion of the radiation field we use the Taylor series for the above mentioned coefficients with only two first terms left 
with respect to the strong anisotropy - the vectorial modified SAA of the spherical harmonics method (MSH). Some computational 
results are given in comparison with the single scattering approximation for thin slabs, the Monte-Carlo simulation for general case 
scattering and the total intensity of the polarized light beam is compared with the scalar spherical harmonics method (SHM). The 
algorithm for back scattered radiation computation for the SRS is given as well. 
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1. INTRODUCTION 

It is well known that the polarization is one of the main 
characteristics of the radiation. Some important information 
such as pollution factors can be obtained for example in 
ecological remote sensing of the atmosphere, natural waters and 
the Earth as a whole using the polarization. Some satellite 
polarization programs such as Polder and Parasol can be 
mentioned to prove both the actuality of polarization SRS and 
inverse radiation problems solution. 
The solution of the VRTE being the basis of the remote sensing 
is quite hard to be obtained. That is why some approximations 
such as single scattering underlie the satellite data processing 
but it is obvious that this solution is quite poor in general 
scattering case. We believe that more useful information can be 
extracted from the SRS data while using more complicated 
approximation. 
We’ll consider the Earth’s atmosphere as a slab and the Sun as 
a plain unidirectional (PU) source of radiation as it is usual 
done. Besides, we’ll admit an arbitrary irradiance angle and an 
arbitrary polarization state of the incident beam (it is the natural 
light for the Sun of course).  
Some problems for the scalar RT (neglecting polarization) has 
already been mentioned in different papers (Karp, 1980): the 
computational time for the strong anisotropic scattering, the ill 
conditionality of some matrices of the VRTE solution and some 
others. Our aim is to create an effective method of the VRTE 
solution in as general case as possible and to avoid the above 
mentioned problems. 
We’ll try to base our method upon the SHM (Kuščer, 1959) 
improved by SAA. The PU source is described mathematically 
as Dirac delta function 0 0

ˆ ˆ( )δ −L l l  where [ ]ˆ = µ ϕ l  is a 

viewing direction, 1cos−µ = θ , θ, ϕ - are the zenith and the 

azimuth angles respectively. [ ]TI Q U V=L  is the Stokes 
vector for the beam defined as usual. The direction and optical 
depth dependence of  the Stokes components are omitted 
somewhere for the sake of shortness, i.e. ˆ( , ) .τ =L l L  Here and 
further on the upper index «→» stands for a four-elements 
column vector, «↔» denotes a sixteen-elements matrix, «∧» 
stands for a unity vector and the lower index «0» denotes a 
parameter of the incident beam. According to Chandrasekhar 
the direct light singularity can be subtracted from the general 
solution and then the reminder can be expanded to the spherical 
harmonics (SH) series as it is done for example in (Kuščer, 
1959; Siewert, 2000). But for the strongly anisotropic scattering 
medium this reminder being a peak-function still needs a 
numerous expansion terms. This increases the computation 
time, the matrix dimensions and the instability. 
We offer to present the required Stokes parameter for the 
diffusion polarized light field combined of two parts 
 
 
 MSH ~

ˆ ˆ ˆ( , ) ( , ) ( , ),τ = τ + τL l L l L l  (1) 
 
 
where the former MSH

ˆ( , )τL l  is the vectorial small angle 
modification of the SHM (MSH) computed in this paper and the 
letter ~

ˆ( , )τL l  is a smooth remainder (SR) which needs less 
expansion terms. The total time needed to compute both the 
MSH and the SR and matrix dimensions are less than in 
Chandrasekhar case. The algorithm for the SR computation is 
presented as well. 



 

2. THE VECTORIAL SPHERICAL HARMONICS 
METHOD 

2.1 The polarization state representation 

It has been already mentioned that the Stokes vector is 
commonly used for the RT problems. It gives the general 
description of any light beam which is called the SP-
representation (Stokes polarization). A simple Mueller matrix 
multiplication 0=L ML  describes a transformation of the 
vector during its interaction with a medium. The transformation 
matrix for the vector parameter at the rotation of the reference 
plane (rotator) is known (Kuščer, 1959) as 

0
ˆ ˆ ˆ ˆ( ) ( )′ ′→ = χR l × l l × l R , where χ is the rotation angle 

between two planes given by cross-product 0
ˆ ˆ ˆ ˆ′ ′→l × l l × l  and 

′̂l is the direction of the light incidence on an elementary 
volume of a scattering medium. The Stokes vector 
transformation during the interaction with the elementary 
volume of a scattering medium is given by the equation 
 
 
 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ),′ ′ ′ ′× → × →S = R l l l l )x l, l R l × l l × l  (2) 
 
 

where ˆ ˆ( )′x l, l  is a scattering matrix of the medium. 
Using the matrix transformation 
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makes it possible to lead the rotation matrix to a diagonal one in 
the following way (Kuščer, 1959) 
 
 

 { }

1( )
Diag exp( 2 ); exp( 0 ); exp( 0 ); exp( 2 ) .

−χ =

+ χ  + χ  − χ   −

=

= χ

R T RTCP SС SС

i i i i
(4) 

 
 
The physical meaning of (3) is that the circular basis is selected 
for the polarization properties description. One can transform 
any matrix from SP-presentation to CP-presentation (Circular 
polarization) using (4) and any SP-vector to CP one using  

CP SС SP=L T L  and backward using SP СS CP=L T L . The lower 
index «SC» means «from Stokes basis to Circular one», «CS» 
stands for inverse transformation and 1

СS SС
−=T T . Note that (3) 

is a complex-number transformation. Hence CPL is a complex-

number vector in spite of the fact that SPL is the real-number 
energetic one. 
 
2.2 The boundary problem for the vectorial SHM 

Now let’s write down the well known boundary problem for the 
VRTE, the PU source and a homogeneous slab 

 
 

 0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )
4

ˆ ˆ ˆ(0, ) ( )

ˆ( , ) .

d

+

−

Ω

Ω

∂ Λ⎧ ′ ′ ′µ τ + τ = τ⎪ ∂τ π⎪⎪ = δ −⎨
⎪
⎪ τ =
⎪⎩

∫L l L l S l l L l l

L l L l l

L l 0

 (5) 

 
 
Here Λ is single scattering albedo, 0τ  is the total optical 
thickness of the slab and Ω+ and Ω− denotes the upper and the 
lower half-spaces for the corresponding boundaries. All other 
symbols are defined above. The lower boundary condition is 
considered being nonreflecting, but this fact does not restrict the 
problem to the theoretical one only. But the medium is 
considered being homogeneous later on. The solution of (5) 
similar to the scalar case can be expanded on a series of 
spherical functions – generalized Legendre polynomials 

,P ( )k
m n  µ  (Gelfand, 1963) (GLP). The index k stands for zenith 

expansion, m – for azimuth one and n – is the polarization index 
as it will be seen a little later from (8). For the sake of 
simplicity and in order to keep the formal analogy with the 
scalar case the matrix form for the GLP can be given 
immediately in CP-form as 
 
 

 { }, 2 , 0 , 0 , 2( ) Diag P ( ); P ( ); P ( ); P ( )k k k k k
m m m m m +  +  −  − µ = µ  µ  µ  µP  (6) 

 
 
It can be seen from (6) that polarization index n takes on the 
values  +2, +0, −0, −2 with respect to exponential powers in (4) 
for CP and shifted values  +0, +2, −2, −0 for SP-case. The 
definition, properties, recurrent formulas and the addition 
theorem 
 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )

,

, ,

ˆˆexp P exp

1 P P exp
=−
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′ ′= − µ µ ϕ − ϕ∑

llk
r s

k
m k k

r m m s
m k

ir is

im
 (7) 

 
 
(where r and s runs through the values +2, +0, −0, −2 
independently) for the GLP can be found in (Gelfand, 1963). 
One can see that rotation angles are included in the left-hand 
side of  (7). The GLP expansions for the required Stokes vector 
and the scattering matrix are 
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0

2 1ˆ( , ) ( ) ( )exp
4

ˆˆ ˆˆ( , ) (2 1) ( )P ( ),

∞ ∞
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∞

 
=
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τ = µ τ ϕ
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∑ ∑
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L l P f

x ll ll

k k
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m k
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rs rsrs k

k im

k x
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both for the CP-presentation. Using the expansions (8), the 
addition theorem (7), some recurrence formulas from (Gelfand, 
1963) and the CP-diagonalized rotator (4) allows to evaluate the 
scattering integral in (5) (Kuščer, 1959) and to obtain the 



 

system of differential equations for the expansion coefficients 
in (8): 
 
 

1 1 11 ( ) ( ) ( )
2 1

+ + −∂ ⎡ ⎤τ + τ + τ +⎣ ⎦+ ∂τ
A f B f A fk k k k k k

m m m m m mk
 

 ( ) ,⎡ ⎤+ − Λ τ =⎣ ⎦1 x f 0k k
m  (9) 

 
 

where 

( )( )

( ) ( )

2 2 2 21
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and δrs is the Kronecker symbol. The matrix form for the 
bottom boundary condition in the case of nonzero Lambertian 
reflection is given in (Siewert, 2000). The above mentioned 
system (9) is written for CP-presentation and for the traditional 
FoR: µ is counted off from the normal to the slab which is 
directed downwards (to the Earth’s surface). The complex 
values in (9) prevent using some effective methods worked out 
for the scalar case. Therefore it is an expedient action to apply 
back matrix transformation of (9) to the real SP-representation 
after the scattering integral had been evaluated in CP. 
 
 

3. THE VECTORIAL SPHERICAL HARMONICS 
MODIFICATION 

3.1 The small angle approximation for polarization case 

The phase function (a [1,1]-positioned element of ˆ ˆ( )′x l, l ) of 
different real medium of RT such as clouds and natural waters 
are strongly anisitropical functions along the direction of light 
incidence. This allows to assume that the angles of scattering 
are small and to simplify the RTE. The obtained small angle 
approximation (SAA) contains the δ-singularity of the direct 
light for the PU-source. This approximation can be used both to 
compute forward scattered radiation and for the acceleration of 
convergence of the RTE solution (Budak, 2004a) by using the 
algorithm based on the idea (1). Now we’ll describe the SAA 
for the polarization case. 
We’ll change the FoR and will further on count off the sight 
angle ν (instead of µ) from the direction of the light incidence 

0l̂  (Budak, 2004b) and the azimuth angle ψ (instead of ϕ) in 

the plane perpendicular to 0l̂ . This leads to the transformation 
of the differential term in (5) (first item in the left-hand side of 
the VRTE). One can use (Gelfand, 1963) to derive some 
recurrence formula for the GLP for the specified case and 
obtain the system similar to (9) but a little more complicated. 
We’ll give the common form of this system: 
 
 

{

}

1 1 1
0

2 1 1
0 1 1 2 1 3 1

1 1
4 1 5 1 6 1

1 ( ) ( ) ( )
2 1

1 ( ) ( ) ( )
2

( ) ( ) ( )

k k k k k k
m m m m m m

n k n k n k
m m m

n k n k n k
m m m

k
i

+ + −

− +
− − −

− +
+ + +

∂ ⎡ ⎤µ τ + τ + τ +⎣ ⎦+ ∂τ

⎡+ − µ τ + τ + τ +⎣

⎤+ τ + τ + τ +⎦

A f B f A f

h f h f h f

h f h f h f

 

 ( ) ( ) .+ − Λ τ =1 x f 0k k
m  (10) 

 
 
The expansion coefficients of some scattering matrices xk  are 
known. Following (Astakhov, 1994) we’ll admit a continuous 
dependence of Stokes expansion coefficients ( ) ( , )τ → τf fk m

m k  
representing the spatial or angle-dependent spectrum. In 

consequence of strong anisotropy of  ˆ( , )τL l  its spectrum will 

be a smooth function and using a Taylor expansion of ( , )τf m k   
we’ll cut it down to two terms: 
 
 

 ( ) ( ) ( ) ( )
1

,
, 1 , .±

∂ τ
τ = τ ± ≈ τ ±

∂
f

f f f
m

m m m
k

k
k k

k
 (11) 

 
 
Besides the anisotropy of the medium allows to write k >> m > 
n and to reconstruct matrices hn

j  in (10). Having applied the 
above mentioned approximation to (10) we’ll be able to follow 
two ways described below. 
 
3.2 General MSH 

According to the scalar solution described in (Budak, 2004b) 
we can imply a special vector-function ( , , )τ ψ κω  where 

( 1)κ = +k k  in the following way: 
 
 

 
( )

( )
2

0

( , , ) ( , )exp

1( , ) ( , , )exp
2

∞

=−∞

π

τ ψ κ = τ κ ψ

τ κ = τ ψ κ − ψ ψ
π

∑

∫

ω f

f ω

m

m

m

im

im d
  (12) 

 
 
After simplification of (10) and using (12) we can obtain the 
equation (i is a complex unit) 
 
 

 ( )0 0
ˆ( , ) ( , , ) ( , , ).ki ⊥

∂ ⎡ ⎤µ − ∇ τ ψ κ = − − Λ τ ψ κ⎣ ⎦∂τ
l ω 1 x ωκ  (13) 

 
 
Let’s reassign 0

ˆ( , , ) ( , , )⊥τ ψ κ → τ κω ω l  where 0
ˆ

⊥l  is the 

projection of 0l̂  upon the plane of ψ and 0
ˆ( , )⊥ ∇l κ  is the 

directional derivative through 0
ˆ

⊥l   for simplicity. We’ll seek 
the solution in the following kind 
 
 

 ( )( )0 0 0
0

ˆ ˆ( , , ) exp , ,⊥ ⊥

⎛ ⎞τ
τ κ = − − Λ κ⎜ ⎟

µ⎝ ⎠
ω l 1 W l ω  (14) 

 
 
where 0 0

ˆ(0, , )⊥= κω ω l  is defined by the top boundary 

condition, and we’ll derive the differential equation for  W  as 
following 



 

 

 ( ) ( )0 0 0
0

ˆ ˆ ˆ, ( , ) , ( )⊥ ⊥ ⊥κ − ∇ κ = τ
µ

W l l W l xki
κ  (15) 

 
 
This equation can be solved by the integration along 0

ˆ
⊥l  with 

0
ˆ

⊥→ + ζlκ κ  where ζ  is scale parameter and 

0 0
ˆ( , ) sin⊥ ∇ = θ

ζ
l d

dκ . Having omitted the intermediate 

evaluations and simplifications we’ll give the final equation for 

( )0
ˆ ,⊥ κW l  similar to the scalar case (Budak, 2004b) 

 
 

 
0

0
0 0

02 2
0 0

ˆ( )exp ,
1 1

⊥
ζ

⎛ ⎞µ µ ζ⎜ ⎟= + ζ ζ
⎜ ⎟− µ − µ⎝ ⎠

∫W x l 1i i dκ  (16) 

 
 
which can be combined with (14) and (12) to obtain the 
expansion coefficients f k

m  and the required solution (8). The 
integration in (16) must be fulfilled numerically where for the 
Henyey-Greenstein phase function one can write 
 
 

2 2 2 2
0 0 0

ˆ( ) exp 2 1 cos (1 ) ln ,⊥
⎛ ⎞+ ζ = κ + ζκ − µ ψ + ζ − µ⎜ ⎟
⎝ ⎠

lx gκ  

 
 

where g is the Henyey-Greenstein phase function parameter. So 
the general form of the MSH is made up. 
 
3.3 The vectorial small angle modification 

Another way is to admit 0 1µ →  in (10). We’ll let 2
01 0− µ →  

but we’ll live the term containing 0µ  unchanged and obtain 
 
 

{ }1 1 1
0

1 ( ) ( ) ( )
2 1

+ + −∂ ⎡ ⎤µ τ + τ + τ =⎣ ⎦+ ∂τ
A f B f A fk k k k k k

m m m m m mk
 

 ( ) ( ) .+ − Λ τ =1 x f 0k k
m  (17) 

 
 
from (10). Having applied all approximations mentioned in 
section 3.1 including (11) we obtain for the homogeneous 
medium 
 
 

 ( )
0

( , ) exp (0, ),
⎧ ⎫τ⎪ ⎪τ = − − Λ⎨ ⎬

µ⎪ ⎪⎩ ⎭
f 1 x fm k mk k  (18) 

 
 

where (0, )f m k  is defined by the top boundary condition, 
which can be written as (Budak, 2005) 
 
 

 00
0

0

1
cos2( )ˆ ˆ ˆ( 0, ) ( )
sin 2( )

⎡ ⎤
⎢ ⎥ϕ − ϕ⎢ ⎥τ = = δ −
⎢ ⎥− ϕ − ϕ
⎢ ⎥
⎣ ⎦

L l l lSP

p
L

p
q

 (19) 

 
 
Here p is the linear polarization degree and q is the ellipticity of 
the incident light. Combining (19), (18) and first equation from 
(8) we obtain after some simplifications (using Waterloo® 
Maple) and transformation to SP-presentation 
 
 

0,0

2,0

0 2,0

0,0

( ) P ( )
( ) P ( )2 1( , , )
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∞
−ω τ
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∑L k
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k
k
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k
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k k

k k
k k

k
k

U
W w

p
W w
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 (20) 

 
 

where 0′ϕ = ϕ − ϕ , ( )2 2,2 2, 2
1R ( ) P ( ) P ( )
2

k k k
−ν = ν + ν , 

( )2 2,2 2, 2
1T ( ) P ( ) P ( )
2

k k k
−ν = ν − ν  and Wk, Uk, wk, uk, ωk are some 

functions of eigenvectors of xk (Budak, 2005). One can use 
various numerical algorithms to evaluate the exponential matrix 
in (18) (for example by means of The Mathworks® Matlab 
function expm). It won’t take much time in comparison with 
computing using (20) and it will make the computational 
program a little simpler but one will not be able to obtain the 
analytical solution such as (20) and to see how different 
parameters influence to the desirable solution without making 
numerous computations. The obtained system (20) is the 
vectorial small angle modification (VSAM) of the SHM. 
  
 

4. THE BACKSCATTERED RADIATION 

Let’s substitute (1) into the VRTE (5). We’ll obtain 
 
 

 ~ ~ ~
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ),

4
∂ Λ ′ ′ ′µ τ + τ = τ + ∆ τ
∂τ π ∫L l L l S l l L l l ld  (21) 

 
 
where the source function is 
 
 

 MSH MSH
ˆ ˆ ˆ( , ) ( , ) ( , ) S

∂
∆ τ = −µ τ − τ +

∂τ
l L l L l I  (22) 

 MSH
ˆ ˆ ˆ ˆ( , ) ( , ) .

4S dΛ ′ ′ ′= τ
π ∫I S l l L l l  (23) 

 
Applying (3) to (23) we convert it to CP-presentation, expand 
the scattering matrix and the Stokes parameter in series on the 
GLP, use  (Siewert, 2000) to determine the following matrices 
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2
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2
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k
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k
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φ (ϕ = ϕ  ϕ  ϕ  ϕ

φ ϕ =  − ϕ  − ϕ  ϕ  ϕ

=  = − −

⎡ ⎤µ
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µ⎢ ⎥⎣ ⎦

D D

Π

 (24) 

   
 
and after simplifications (Budak, 2005) we can obtain the 
scattering integral ( L is used to designate both MSH

ˆ( , )τL l  and 

~
ˆ( , )τL l ). 
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k
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Here ( , ) ( ) ( ), .m m m

k k k k k SC k CS′ ′µ µ = µ µ   =A Π χ Π χ T x T  In order to 
obtain the source function (22) we convert (20) back to CP, and 
change the FoR for the sight angle counted off from boundary 
surface normal instead of the irradiance direction 0l̂ , i.e. we 
begin to use µ instead of ν again (see section 3.1). We combine 
this result (Budak, 2005) with (22), (23), (25) and give it the 
following form 
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0
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Π p Π D L  (26) 

 
 
where ( )k τp  is the transfer matrix GLP expansion coefficients 
in SP representation. 
If we assume the sufficiency of smoothness we’ll be able to 
compute ~L  as the diffusion component (Siewert, 2000) in the 
following form 
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m
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∞

 1  2
=

⎡ ⎤= φ ( ϕ τ µ + φ ( ϕ τ µ⎣ ⎦∑L L L  (27) 

 
 
and from two integral equations (j = 1,2) which have already 
been integrated over ϕ 
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where  
0

2 1( , ) ( ) ( ) ( ) ,
2

m m
j k k k j

k

k∞

0
=

+
τ µ = µ τ µ∑∆ Π p Π D  satisfying 

two boundary conditions ~ 0
(0, ) 0m

j µ≥
µ =L  and 

~ 0 MSH 00
( , ) ( , ) .m m

j jµ≤
⎡ ⎤τ µ = − τ µ⎣ ⎦L L  The obtained integral 

equations admit the solution using discrete ordinate method. 
Thus the problem is reduced to the system of ordinary 
differential equations and can be solved numerically after the 
truncation from infinity to a finite number of equations. 
 
 

5. DISCUSSION 

Numerous approximations made in order to evaluate (20) 
produces a lot of difficulties in verifying the result. The only 
way is to compare the result with some others obtained by 
independent methods. We’ll give some calculations compared 
with different methods on the figures 1-4. 

 
Figure 1. The zenith dependence of I component of L . θo= 40o, 

τ = 5, g=0.95, Λ=0.99. Solid line – VSAM, dot line – MSH 
(300 terms for both zenith and azimuth expansions), errorbar – 
MC (for 1000 rays - average of distribution and the standard 

deviation). The incident light is natural. The medium is 
nonpolarized Pm = Qm = 0. 

 
The following abbreviations are used: VSAM – the vectorial 
small angle modification using the obtained system (20); MC – 
the Monte-Carlo simulation modified by the local estimation 
calculation; SS – single scattering approximation; SHM – scalar 
spherical harmonics method (Karp, 1980). 
The polarization degree is defined as Q( ) I( )= θ θp  and the 
aerosol Henyey-Greenstein scattering matrix is admitted: 
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degree and the ellipticity for the single scattering act 
respectively; they submit to some conditions (Hovenier, 1996). 
Other parameters are given in the inscriptions for the 
corresponding figures. We must note that Rayleigh scattering 
matrix and the exact solution given by Chandrasekhar can be 
used to verify the method under consideration. 

 
Figure 2. The zenith dependence of I component of L . Pm = 

0.5, Qm = 0.2. θo= 30o, τ = 0.5, g=0.9, Λ=0.2. Solid line – 
VSAM, dot line – SS, errorbar - MC (for 5000 rays - average of 

distribution and the standard deviation). The incident light is 
polarized - [1 1 0 0] 

 
 

 
Figure 3. The zenith polarization degree p dependence. Pm = Qm 
= 0.5. θo= 0o, τ = 1, g=0.9, Λ=0.8. Solid line – VSAM, errorbar 
- MC (for 1000 rays - average of distribution and the standard 
deviation which can be decreased by increasing the number of 

rays). The incident light is natural. 
 

 
6. CONCLUSION 

As it has been shown our method gives reliable results in 
comparison with some others. The VSAM neglects the back 
scattered radiation; the latter must be computed separately using 
section 4 and a smooth function which can easily be computed 
appears. But the calculation speed of the VSAM for the case of 
fig.1 for instance is 30 times better than scalar SHM or 
polarized Monte-Carlo simulation for the forward hemisphere 
(directed to the Earth). The VSAM can be modified using 

section 3.2 in order to include some known polarization effects. 
The VSHM (20) enlarged to the general solution represents the 
accelerated method of the VRTE solution in analytical form.  

 
Figure 4. The zenith polarization degree p dependence. Pm = 

0.5, Qm = 0.2. θo= 15o, τ = 1, g=0.9, Λ=0.8. Solid line – VSAM, 
errorbar - MC (for 5000 rays - average of distribution and the 
standard deviation). The incident light is elliptically polarized 

[1 0 0 1]. 
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