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ABSTRACT: 
 
Almost all remote sensing studies model invasion of species dominating ecosystems canopies, typically in predicting their presence 
or absence. However, a vast majority of invasive species do not dominate ecosystems canopies. Remote sensing experts have 
traditionally overlooked such cryptic invaders spatial distribution and productivity pattern within map units for a variety of reasons 
including spectral response limitations and inadequate quantitative data. Almost none attempted to model and upscale such 
populations distributed across forest understorey environment. These inclusions reduce the capability of remote sensing and GIS 
techniques or importance of maps. This is crucial in invasive species management. In this study, we synthesized data from different 
remote sensing and GIS sources to (1) model the actual and potential area and forest types in Nepal vulnerable to invasion of the 
Chromolaena odorata, one of the world’s worst cryptic invasive species and (2) segregate the reproductive and non-reproductive 
populations at national scale using local scale information. Results reveals that invasive species models developed at local scale 
could successfully be up scaled at national scale. The map of current potential distribution of C. odorata shows that out of 75 forest 
communities of Nepal, 9 are currently infested by the C. odorata. They are:  Acacia – Dalbergia, Alder, Hill Shorea, Pine, Pine - 
broad leaved forest, Riverine broad leaved, Schima – Castanopsis, Terai Shorea and Upper tropical riverine forest. Such information 
is crucial for land managers to focus their precious funds and efforts to control the spread of this species and so that the control 
methods are practical.  
 

1. INTRODUCTION 

The spread of introduced plant species around the world has 
been recognized and considered to be a key area of biological 
investigation (Hooker 1864; Elton 1958). Despite growing 
awareness and the extensive amount of research carried out on 
introduced plant species worldwide (Groves & Burdon 1986; 
Mooney 1986; Usher 1986; Drake et al. 1989; Lodge 1993; 
Williamson 1996), little attention has been given in mapping 
their distribution. 
 
Mapping actual and potential distribution of invaders is 
considered crucial for their management (Reichard & Hamilton 
1997; Rejmánek 2000). Maps predicting the severity of the 
impact and damage could thus be used to localize areas 
requiring interventions most urgently. To this end, the 
development of advanced remote sensing and GIS technologies 
offers remarkable possibilities to map the actual and potential 
distribution of invasive plant and animal species (McCormick 
1999; Haltuch et al. 2000; Stow et al. 2000). Remote sensing 
applications however, appear to be restricted to detection of 
invasive species dominating the upper layer of the invaded 
community. Joshi et al. (2004) observed that 67% of the 
world’s 100 worst invasive species (ISSG 2004) do not 
dominate the ecosystem canopy. Most of these cryptic invaders 
are small and go unnoticed or are hidden from remote sensing 
devices for instance when growing in the understorey of forest 
(Pysek & Prach 1995; Gerlach 1996; Chittibabu & 
Parthasarathy 2000). The data captured by remote sensing 
devices will be most directly related to the properties of that 
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canopy. Applying remote sensing to mapping cryptic invasive 
species which do not appear as canopy dominant species is not 
straightforward since the captured spectral information will not 
be directly attributable to these species. Species spectra models 
can thus not be inverted to predict their distribution.  
 
Although the spectral response of cryptic invaders is not 
directly sensed by remote sensing device, knowledge of their 
ecology could significantly enhance our remote sensing 
understanding. The need for stronger links between ecology and 
remote sensing technology is evident for all taxa, but it is 
especially critical for invasive species groups since they pose a 
serious risk to the invaded ecosystems.  Hence, a combination 
of remote sensing techniques, GIS and ecological knowledge 
could potentially be used in mapping non-canopy dominant 
invasive species as well as predicting the probability of actual 
and potential sites and areas where environmental conditions are 
susceptible to infestation. Such cases might occur in degraded 
forests invaded by exotic species which are adapted to increased 
light intensities associated with the opening of the forest 
canopy. Consequently, mapping forest canopy openings could 
be a potential factor to predict the distribution of forest 
understorey heliophytic invaders. Joshi et al. (2005) 
demonstrated that 89% of variance of observed canopy density 
was explained by the predictions using artificial neural network. 
High accuracy in forest canopy classification may hold 
particular promise since growth of forest understorey heliophitc 
invasive species depends on light intensity reaching to the forest 
floor which is regulated by the canopy itself. 
 
Recently, Joshi et al. (2006) indicated that Chromolaena 
odorata (L.) R. M. King & Robinson thrives in areas with high 
light intensities, which correspond to reduced canopy density. 



 
 
 
 

Light intensity under closed canopy in natural forest remains 
below the threshold for seed production. They further 
demonstrated that the seed production per plant differed 
between highly and poorly reproductive populations by more 
than five orders of magnitude and C. odorata did not produce 
seed below a light intensity of 6.5 mJ m-2 day-1 that 
corresponds to forest canopy density above 60%. Up to one 
million seeds per plant were produced in areas with open forest 
canopy, while no seeds were produced in forest with a canopy 
density over 60%. Their analysis reported so far was undertaken 
at local level. For the national level planning and management 
purpose this information is not sufficient.  
 
At micro-scale, light intensity (forest canopy density) strongly 
limits C. odorata’s productive and non-productive population 
and plays a key role in determining its invasion success in 
Nepalese forest ecosystems. At national scale, the presence of 
C. odorata could be strongly related to environmental variables 
namely altitude (temperature) and precipitation. Following 
common practice in invasive species distribution modeling 
(Pysek et al. 1998; Higgins et al. 1999; Baker et al. 2000) we 
searched for the climatic envelope within which C. odorata is 
present. The climatic envelope models assume that extreme 
climatic conditions restrict the distribution of species. Recently, 
climate databases have been developed with a resolution of 1 
km2. This WORLDCLIM dataset offers the opportunity to 
model species climate relationship at finer resolution (Hijmans 
et al. 2005). This would be attractive, particularly in countries 
with complicated topography for instance Nepal where climatic 
conditions change over short distances.  
 
The aim of this study is to upscale and spatially segregate 
productive and non-productive populations of invasive species 
C. odorata at national scale using local scale information. We 
followed Joshi et al., (2006) and combined this local scale 
information with bioclimatic envelop at national scale. We 
upscaled the reproductive pattern of C. odorata to the national 
scale by integrating remotely sensed data, GIS, and statistics. 
We investigated the correlation between high resolution climate 
surfaces for Nepal and developed and compared climate based 
distribution models for C. odorata in Nepal. This information 
could help land managers in understanding where to focus their 
precious funds and efforts on to control the spread of this 
species, and so that the control methods are practical. 
 

2. MATERIAL AND METHODS 

2.1. Elevation, Forest Types and Cover Maps 

An elevation model of the study area was created from 26 
scenes of SRTM (Shuttle Radar Topography Mission) images 
downloaded from Global Land Cover Facility site (GLCF 
2004). The 26 scenes were mosaiced and an elevation model of 
Nepal was derived using ArcGIS 9.0 (ESRI 2004).  
 
Similarly, 16 scenes of ETM+ images between September–
December of the year 2000 (table 1) were downloaded from 
Global Land Cover Facility site. The mosaic image was 
classified into 4 forest canopy density classes according to Joshi 
et al.,  (2005).  
 
Dobremez et al., (1975), Dobremez (1976), Dobremez and 
Shakya (1977), Dobremez and Shrestha (1980), Dobremez 
(1984) and Dobremez et al., (1984) produced maps of the actual 
and potential distribution of forests communities in Nepal. A 
digital version of these maps updated by IUCN (Nepal), 
ICIMOD and HMG, Nepal (unpublished) is used and referred to 
in this article as the Dobremez forest community map. 

 

 
 

Figure 1. Mosaic of 26 scenes of Shuttle Radar Topography 
Mission images showing elevation map of Nepal 

 

SN Path/row Acquisition 
date Producer 

1 139/041 12/26/2000 EarthSat 
2 139/042 11/6/1999 USGS / GLCF 
3 140/041 10/30/2000 EarthSat 
4 140/042 10/28/1999 EarthSat 
5 141/040 11/22/2000 EarthSat 
6 141/042 10/24/2001 EarthSat 
7 142/040 12/13/1999 EarthSat 
8 142/041 12/13/1999 EarthSat 
9 143/039 10/3/2000 EarthSat 
10 143/040 12/25/2001 EarthSat 
11 143/041 10/17/1999 EarthSat 
12 144/039 10/13/2001 EarthSat 
13 144/040 11/091999 USGS 
14 144/041 11/11/2000 EarthSat 
15 145/039 10/15/1999 EarthSat 
16 145/040 10/15/1999 USGS 

 
Table 1. Landsat ETM+ Images used in this study, including 

path and row number, acquisition date and source. 
 

S
N Data type Date Source* 

1 SRTM images 
(Elevation) 2000 USGS / GLCF 

2 Monthly Precipitation 50 years 
average 

(Hijmans et al. 
2005) 

3 Monthly 
Temperatures 

50 years 
average 

(Hijmans et al. 
2005) 

4 Monthly 
Evapotranspiration 

50 years 
average 

New LocCLIM 
(FAO) 

5 ETM+ images mosaic 
of Nepal 

Sept-Dec 
2000 USGS/GLCF 

6 Forest communities 2000 Dobermez/IUCN
/HMG 

6 Topographic  maps 1996 DoS 

7 Chromolaena odorata Field 
observation 2002-2005 

8 Herbarium records 1954-2005 KATH, BM 
 

Table 2. Description of the data used in this study 
 
*DoS = Department of Survey, Nepal; KATH = National 
Herbarium, Kathmandu, Nepal; BM = British Museum, 
London, England; USGF/GLCF = the Earth Science Data 
Interface (ESDI) at the Global Land Cover Facility website 
(http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp) 
 



 
 
 
 

2.2. Climate Data 

We compiled a dataset with ~1 km2 resolution of fifty years 
average of monthly precipitation, potential evapotranspiration, 
minimum, mean and maximum daily temperature. Temperature 
and precipitation surfaces with 1 km2 resolution were 
downloaded from the WORLDCLIM database 
(www.worldclim.org/), described by (Hijmans et al. 2005). The 
New LOCCLIM software from FAO site 
(www.fao.org/sd/2002/en1203a_en.htm) was used to generate 
local climate data of mean monthly potential evapotranspiration 
and length of growing season for 4550 geographical locations 
systematically distributed across the country.  These point data 
were converted into point maps. Co-Kriging point interpolation 
method was applied in a GIS environment using elevation as a 
co-variable. All raster maps were then resampled to a 1 km2 
grid. The details of the data type, date of acquisition and the 
source is presented in table 2. 

 
2.3. Principal Component Analysis 

We calculated 10 principal components (PC) using all 
environmental variables (monthly mean temperatures (mean, 
maximum and minimum), monthly mean evapotranspiration, 
mean monthly precipitation) to reduce data dimensionality. 
Principal components analysis (PCA) is a multivariate 
technique that produces a set of components (variables) called 
principal components which are weighted linear combinations 
of the original variables (Chatfield & Collins 1980; James & 
McCulloch 1990). We selected all these variables as inputs in 
an expert PCA model to predict the distribution of C. odorata in 
Nepal. The model was a logistic regression model using the first 
ten components of the PCA as inputs. 
 
2.4. Field Data  

We compiled a dataset of 773 sites located throughout Nepal for 
which we recorded the presence and absence of C. odorata. Part 
of these site descriptions were obtained during botanical surveys 
undertaken by the first author prior to 2001. Also included were 
the sites of herbarium records from the National Herbarium in 
Kathmandu (KATH) and the British Museum (BM). A further 
sample of 594 site observations was captured during various 
surveys in 2002, 2003 and 2004. Geographical locations were 
recorded using Garmen GPS. This sample was used to develop 
and validate the distribution models for C. odorata. A sub-
sample of 387 records (50%) was used to develop the models 
described above. The remaining 50% (386 observations) of the 
sample was used to validate the models.  
 

3. RESULTS 

3.1. Correlation between Climatic Factors  

Figure 2 shows a matrix revealing the pairwise correlation 
between the fifty-year averages of monthly potential 
evapotranspiration, precipitation and the monthly mean of 
minimum, maximum and average daily temperatures. Also 
included are altitude, length of the growing season and 
latitude/longitude in Nepal. The matrix shows all monthly 
temperature values were extremely highly correlated. 
Correlation between temperature and precipitation and potential 
evapotranspiration was lower. The length of the growing season 
showed low to intermediate correlation to the above-mentioned 
climatic variables. Elevation, latitude and longitude generally 
showed lower correlations to climate variables. This figure 
shows that multi-collinearity would be a real problem when 
entering these climate variables as independent variables in a 
statistical analysis.  

 
The figure also reveals the correlation of the first ten principal 
components derived from the climate data. PC 8 and PC 10 
were highly correlated to thermoclimate. The other components 
were showing medium correlations to precipitation in various 
months. The figure reveals that the principal components were 
not or poorly correlated among each other.  
 

 
 
Figure 2. Matrix revealing the Pearson correlation between pairs 
of climate variables. Abbreviations: PC = Principal components 
(1-10); PET = mean monthly potential evapotranspiration; P = 

mean monthly precipitation; T-  = mean monthly minimum 
Temperature; T+  = mean monthly maximum temperature; T = 
average monthly temperature; Alt = Altitude; LGS = Length of 

growing season; LatLon  = Latitude and longitude. 
 
Figure 3 shows the distribution of C. odorata in Nepal. The 
figure suggests a relation with longitude and elevation, which is 
confirmed in figure 4. 
 

 
 
Figure 3 . Distribution of C. odorata in Nepal according to 773 
records throughout the country showing relation of the observed 

distribution (+ Absence, • Presence) with longitude and 
elevation. 

 
Six components were selected (table 3) when running a logistic 
regression model with the first ten principal components as 
dependent variables (-2*(LL6-LL0) = 357.98, df = 6, p<0.000). 
 
Variable Coefficient SE t P 
Intercept -13.52 7.630 -1.77 0.071 
PCA 1  0.023 0.003  6.69 0.000 
PCA 5  0.045 0.010  4.48 0.000 
PCA 6 -0.113 0.032 -3.45 0.000 
PCA 7 -0.117 0.019 -5.90 0.000 
PCA 8 -0.264 0.058 -4.53 0.000 
PCA 10  0.054 0.025  2.15 0.031 

 
Table 3. Results of logistic regression between C. odorata 

presence absence and principal components 
 



 
 
 
 

The distribution resulting from this model is displayed in Figure 
4. The figure reveals a close match between observed and 
predicted distribution.  
 

 
Figure 4. Observed (test sample) and principal components 

based predicted distribution of C. odorata (+ Absence, • 
Presence) in Nepal at pixel resolution of 100 m. 

 
Assessment of the accuracy of the predictions made by the 
model revealed that the model had overall accuracy of 94% with 
Kappa 0.86 and standard error 0.0289.  
 
Figure 5 presents the spatial distribution of forest canopy 
density in 4 classes in Nepal.  
 

 
Figure 5. Forests canopy density map of Nepal 

 
Derived from figure 4 and 5 we produced a map (figure 6) 
showing Forests canopy density map of Nepal within the 
suitability range of C. odorata. 
 

 
 

Figure 6. Forests canopy density map of Nepal within the 
suitability range of C. odorata 

Error matrix (table 4) revealed that the <20% and 21-40% 
canopy density class were classified with producer’s accuracy 
of over 77%  and 67% respectively with much of the error 
attributed to confusion with the other and 40-60% canopy 
density class. The high canopy density class (>60%) had the 
larger producer’s accuracy of 98%. 

Forest 
canopy 
density 

Oth
er 

<20
% 

21-
40% 

41-
60% 

>60
% 

Tot
al 

Ommi
ssion 
error 

Produ
cer’s 
accur
acy 

Other 26 4 2 0 0 32 18.75 81.25 

<20% 2 14 2 0 0 18 22.22 77.78 

21-40% 1 2 21 7 0 31 32.26 67.74 

41-60% 0 1 1 23 6 31 25.81 74.19 

>60% 0 0 0 1 51 52 1.92 98.08 

Total 29 21 26 31 57 164   
Commis

sion 
error 

10.3 33.3 19.2 25.8 10.5  135  

User’s 
accurac

y 
89.6 66.6 80.7 74.2 89.4 Overall 

Accuracy 
82.3
% 

 
Table 4. Error matrix for observed versus predicted canopy 

density class by an artificial neural network. 
 

Information derived from local scale (see Joshi et al., 2006) 
figure 6 shows the potential distribution and probability of 
presence of seed producing populations of Chromolaena 
odorata in Nepal in forest environment.  
 

 
 

Figure 7. Potential distribution of Chromolaena odorata in 
Nepal and probability of presence of seed producing 

populations in forest environment. Points represent all of 
observed presence (•) and absence (⋅) of the species 

 
We finally combined figure 7 with the Dobremez forest 
community map. The combined map of forest communities and 
current potential distribution of Chromolaena odorata in Nepal 
shows that out of 75 forest communities only 9 are currently 
under C. odorata invasion. They are:  Acacia – Dalbergia, 
Alder, Hill Shorea, Pine, Pine - broad leaved, Riverine broad 
leaved, Schima – Castanopsis, Terai Shorea and Upper tropical 
riverine forest (figure 8). 
 

 
 

Figure 8. Forest communities of Nepal under Chromolaena 
odorata infestation 



 
 
 
 

4. DISCUSSION 

Our results demonstrated that identifying spatial extent of 
potential C. odorata invasion over large areas can be 
successfully accomplished and upscaled using local empirical 
knowledge and climatic variables. In this study, we also 
demonstrated that very high resolution interpolated climate 
surfaces derived from the SRTM and weather stations allowed 
us to predict the distribution of C. odorata with 86% accuracy.  
Furthermore, higher resolution interpolated climate surfaces 
have potential to map climate boundaries with higher precision 
in terrain with complicated topography such as Nepal.  
 
Species, for instance C. odorata having worldwide distribution 
may not allows us to draw a climatic envelop. Based on the 
expert knowledge on the ecology of C. odorata we could not 
draw a fine line of climatic envelop. Certainly, image 
resolution, and predictor variables are two components that 
must be carefully chosen when constructing any distributional 
model. The problem in mapping of the presence and absence of 
a species at national or regional scale could be solved by using 
finer resolution interpolated climate surfaces or remote sensing 
images which usually provides better predictive ability in 
models (Guisan & Thuiller 2005). Thus, an increase in spatial 
resolution of climate data is one of the primary factors 
necessary to increase model prediction accuracy, particularly for 
areas with microtopographic variation (Guisan & Zimmermann 
2000). The climate data layers used for modeling are available 
at various resolutions, but even the highest resolution, multi-
collinearity among the predictive variables could easily mislead 
our judgment.   
 
High bioclimatic variation and altitudinal gradient in the 
Nepalese mountains would suggest that ecological effects on 
organisms should be strong. This means the potential for 
effective modeling should be high. However, spatial scale 
certainly plays a significant role since climate could change 
within a distance of few hundred meters. The high-altitude 
distribution limits of a species can be constrained by the low 
winter temperatures or the amount of frost below which level a 
plant species could stops its photosynthetic activity or simply 
could not survive. C. odorata could not survive above frost line. 
Our model assumes that lower lethal temperature could be the 
strongest influential climatic variable, which limits C. odorata’s 
vertical distribution i.e. northern boundary. This is reasonable 
because many literatures mentioned that C. odorata couldn’t 
survive at this temperature (Kriticos et al. 2005). Our empirical 
observation also showed that C. odorata was not observed 
beyond 1100 m altitude. Our analysis showed that altitude and 
temperature variables were highly correlated among each other. 
Hence, using any one of these variable could equally predict the 
presence and absence of C. odorata, which would reinforce our 
conclusions regarding the reduction of effect of multi-
collinearity among climatic variables.   
 
Temperatures or altitude limits did not predicted the horizontal 
distribution of C. odorata because altitude does not change 
horizontally in Nepal. However, length of growing season for C. 
odorata significantly differs. C. odorata needs length of main 
growing season of at least 7 months time to complete its life 
cycle. The summer monsoon (summer rainy season), a strong 
flow of moist air from the southwest, follows the pre-monsoon 
season. The arrival of the summer monsoon can vary by as 
much as a month, in Nepal, it generally arrives in early June 
starting from Eastern Nepal and lasts through September, when 
it begins to recede. The plains and lower Himalayas receive 
more than 70% percent of their annual precipitation during the 
summer monsoon. The amount of summer monsoon rain 

generally declines from southeast to northwest as the maritime 
wedge of air gradually becomes thinner and dryer. Although 
west Nepal receives sufficient pre and post monsoon rain, the 
main growing season for most of the areas are below 150 days, 
which is not long enough where C. odorata could complete its 
life cycle. A long dry season between winter and summer 
monsoon season could potentially prevent C. odorata invasion 
in west Nepal.  
 
C. odorata is a problem worldwide. It invades natural 
ecosystems and poses a serious threat to the maintenance and 
enhancement of biodiversity values of native vegetation. Land 
managers currently control the spread of invasive non-native 
plant species after they have already become established instead 
of trying to prevent the establishment of the species, but its 
management requires preventative approaches, both at the local 
and national level. The early detection of new species invasions 
and the development of rapid response plans are vital for 
successful eradication programmes. Upscaling is highly crucial 
for invasive species management, since limitation of resources 
forces invasive species managers to carefully plan and prioritize 
interventions in areas more severely affected by invaders or 
localize areas requiring interventions most urgently. And they 
could focus their precious funds and efforts to control the spread 
of this species and so that the control methods are cost effective 
and practical. The approach we presented can be well applied 
for mapping of other species if there biometry and 
environmental requirement is known.  
 
The findings of our study illustrate how remote sensing and GIS 
technologies can provide ecologists and land managers with an 
innovative perspective with which to study the factors 
influencing the patterns of invader population dynamics at local 
to national landscape scales. Incorporation of remote sensing 
techniques with species biometry yields instantaneous, useful, 
cost effective, multi-scale and temporal information on 
distribution pattern of an invasive species. In this respect, the 
immediate benefit of this research has been to contribute to the 
knowledge base of land managers by providing improved 
information on the rate of spatial and temporal distribution 
populations of Chromolaena odorata, which will support 
efficient habitat ranking to restore invaded areas and protect 
non-invaded ecosystems.  
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