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ABSTRACT: 
 
Data fusion exists in different forms in different scientific communities. The term is used by the image community to address the 
problem of sensor fusion, where images from different sensors are combined. The term is also used by the database community for 
parts of the interoperability problem. The logic community uses the term for knowledge fusion. Usually, they can be classified into 
three levels: pixel level (ikonic), feature level (symbolic) and knowledge or decision level (Pohl and van Genderen, 1998). In this 
paper, we focus on the development of a decision based fusion.  
For automated detection of settlement areas, we developed a hierarchical decision tree which is based on homogeneous image seg-
ments rather than on image pixels. Within an integrated GIS/remote sensing environment registered multisensor image and GIS data-
sets were used to facilitate an automated settlement detection. The datasets included remote sensing images from SPOT 5 (5 m 
GSD), LANDSAT 7 ETM (30 m GSD), KOMPSAT 1 (6,6 m GSD), and ASTER (15 m GSD) satellite programs as well as GIS data 
from the ATKIS landscape and digital elevation models. Our method for multisensor decision-based data fusion was initially deve-
loped and tested in selected urban and suburban areas first with the fusion of SPOT and LANDSAT data and later on extended to 
KOMPSAT and ASTER images. 
The methodology is based mainly on an adapted texture and segment oriented hierarchical classification approach: based on panch-
romatic high resolution image data as primary input. Segments at three different scales (levels) are the basis for a hierarchical decisi-
on-based classification procedure. Beginning with large segments, texture and shape parameters were calculated for each single seg-
ment. In addition, we used the normalized vegetation index (NDVI) calculated from the multispectral lower resolution satellite 
image data to distinguish between vegetation and non-vegetation areas. Using adapted threshold parameters, candidate regions for 
settlement areas were identified. In the second level with medium-sized segments, texture and shape parameters were calculated 
again using different restriction thresholds. This procedure was only performed within the selected settlement candidates of the pre-
vious step. This procedure was repeated for fine segments and high threshold values to isolate the actual settlement areas. Finally, 
the settlement segments were merged and cleaned by automated filter procedures to eliminate small remaining agriculture segments 
and to include urban parks and lakes in the settlement areas. 
By checking the results with actual GIS base data and photo interpretation results, the automated procedure achieved a total accuracy 
of more than 90% for the settlement class. Furthermore, we applied the same technique to fuse KOMPSAT and ASTER image data. 
Because of the lower spatial resolution of KOMPSAT compared to SPOT 5, only the threshold values for the texture parameters had 
to be readjusted. Again, the achieved accuracy exceeded 90%. 
Future research will include the extension of this method to differentiate between residential and commercial areas and the detection 
of abandoned mining areas as well as the analysis of their actual state. 
 

1. INTRODUCTION 

Despite rigid laws for environmental protection, the transforma-
tion of Germany’s agricultural and natural areas into residential 
and commercial developments has increased to about 130 hec-
tares per day over the last years. To reduce this trend, adequate 
planning and policy implementations are needed, which in turn 
depend on the availability of reliable and current spatial informa-
tion. For this reason, the Institute for Geoinformatics and Remote-
Sensing (IGF) at the University of Osnabrueck developed a deci-
sion based data fusion technique for settlement area detection 
from multisensor remote sensing data. A number of high and me-
dium spatial resolution satellites were selected as a basis for a 
semi-automated detection of settlement areas. The high resolution 
satellite datasets were comprised of panchromatic images from 
SPOT-5 with 5 m ground sampling distance (GSD) and 
KOMPSAT-1 with 6.6 m GSD. Medium resolution multispectral 
data were obtained from Landsat ETM and Aster datasets with 30 
and 15 m resolution, respectively (see table 1). The aim was to 
produce a binary mask with the classes "settlement" and "non-

settlement". Settlement is understood as a sum of real estates, traf-
fic surfaces, commercial areas, sport and recreation facilities as 
well as parks and cemeteries (Apel and Henckel, 1995). 

 
Table 1. Selected satellite datasets 

 
System Landsat 7 SPOT 

5 
Terra KOMPSAT 

1 
Sensor HRG ETM+ Aster EOC 

Recording 
date 

6/26/2001 3/16/ 
2003 

8/3/2003 5/20/2004 

Geo-
metric re-
solution 

30 m 5 m 15 m 6.6 m 

Spectral  
resolution 

mul-
tispectral  
(6 bands) 

pan-
chro-
matic 

mul-
tispectral  
(4 bands) 

panchroma-
tic 

Scene size 
in km2 

180 x 180 60 x 
60 

60 x 60 17 x 17 



 

2. METHODOLOGY 

2.1 Decision Based Fusion 

The advantages of iconic image fusion (i.e. pixel based fusion) are 
that a rich theoretical background exists to discuss appropriate 
techniques and their associated characteristics (see, for example, 
Pohl and van Genderen, 1998; and Ehlers, 2005). Also, pansharp-
ened images produce a better visual appearance by combining the 
high resolution panchromatic image with the multispectral infor-
mation from the lower resolution image. Unfortunately, for many 
fusion techniques we experience more or less significant color 
shifts which, in most cases, impede a subsequent automated 
analysis (Zhang, 2002; Ehlers and Klonus, 2004). Even with a fu-
sion technique that preserves the original spectral characteristics, 
automated techniques do not produce the desired results because 
of the high resolution of the fused datasets. For this purpose, fea-
ture based or decision based fusion techniques are employed that 
are usually based on empirical or heuristic rules. Because a gen-
eral theory is lacking, fusion algorithms are usually developed for 
certain applications and datasets. 

 
Contrary to the iconic image fusion techniques, the images we 
used were rectified to ground coordinates but otherwise left in 
their original format. Parameters such as texture and shape are ex-
tracted from the high resolution panchromatic data, vegetation in-
formation from the multispectral images (see figure 1). Using an 
adaptive threshold procedure, the information from the image 
datasets is fused and forms a binary mask for the areas “settle-
ments candidates” and “definitely no settlements”. This process is 
repeated at a hierarchy of differently sized segments ranging from 
coarse to fine with a set of different threshold parameters at each 
level (see figure 2). At each step, the next level analysis is only 
performed in areas that were identified as settlement candidates. 
More details can be found in Tomowski et al. (2006). 

 

 
 

Figure 1. Decision based fusion process. Texture and shape pa-
rameters are calculated from the high resolution 
panchromatic data, whereas the multispectral data 
are used to calculate vegetation indices 

 
2.2 Hierarchical Segmentation 

Our method was applied to two randomly selected test areas (25 
km2 each), using panchromatic and multispectral satellite data. 
For the first area, data from SPOT and Landsat were used, and for 
the second, KOMPSAT and Aster data. The procedure is based on 
a hierarchical network of segments (Baatz and Schaepe, 2000), 
which consists of three levels. The size of the segments decreases 
from level 3 (coarse) to level 1 (fine) (table 2). The aim of this 
subdivision is the gradual isolation of settlement areas with the 
help of the hierarchical network (see figure 2). The segmentation 
was applied solely to the panchromatic data. 

Table 2. Segmentation parameters for the hierarchical network  
 

 Scale Color Shape Compactness Smoothness 
Level 3 48 0,7 0,3 1,0 0,0 

Level 2 24 0,7 0,3 1,0 0,0 

Level 1 12 0,7 0,3 1,0 0,0 
 

 
 
Figure 2. Hierarchical network of segments for the decision 

based fusion 
 
The classification algorithm starts at the third (coarsest) level. 
For each segment of the newly generated class „settlement“, 
texture and form parameters as well as an average NDVI were 
calculated. The "gray level co-occurence" (GLC) matrices 
(Haralick et al., 1973) that examine the spectral as well as the 
spatial distribution of gray values in the image form the basis 
for the texture calculation. A GLC matrix describes the likeli-
hood of the transition of the gray value i to the gray value j of 
two neighboring pixels. For the differentiation of "settlement" 
and "not-settlement" we used the inverse distance moment 
(IDM) derivative from the GLC-Matrix: 
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With the application of the IDM, it is possible to distinguish be-
tween heterogeneous and partially homogeneous non-settlement 
areas. However, since agricultural surfaces can show texture 
values similar to settlement surfaces, the use of the IDM alone 
during the classification may not be sufficient. A solution for 
the elimination of agricultural surfaces using texture is pre-
sented by Steinnocher (1997). He distinguishes three texture 
qualities to describe surfaces in images: 

1. direction dependent inhomogeneous surfaces    
2. direction independent inhomogeneous surfaces   
3. homogeneous surfaces   

If the IDM is calculated for four possible directions in each case 
(horizontal, vertical, right-diagonal and left-diagonal), it ap-
pears that directional-dependent components of the IDM are 
approximately identical between settlement and forest areas. At 
agricultural surfaces, however, the IDM values for the vertical 
direction are higher than in the other directions (Steinnocher, 
1997).  



 

This fact can be used for further differentiation. The difference 
between the values of two texture directions produces results 
that are significantly larger than zero. The magnitude of the dif-
ference between texture values is calculated between horizontal 
and vertical alignment, and between left-diagonal and right-
diagonal alignment of the IDM. As a result, previously uniden-
tified non-settlement areas can be excluded from the settlement 
candidates area. 
At the third level of the segment hierarchy, the form parameter 
"length/width" (Definiens, 2003) is introduced. After a series of 
iterative tests it was possible to eliminate rivers and/or high-
ways (i.e. long segments) using this criterion. Finally, further 
non-settlement areas, such as forests and vegetated areas, are 
excluded using the average NDVI (normalized difference vege-
tation index) values, which were calculated for the multispectral 
satellite data. 
The next step of the method starts at the second segmentation 
level, in which the threshold values for the classification char-
acteristics (texture, form and NDVI) are increased. Addition-
ally, the classification characteristics are only calculated for the 
settlement areas (so-called filial segments (Ehlers et al., 2005)) 
that are part of a non-excluding area at the third level. Beside 
the classification characteristics already known, a new parame-
ter, the compactness degree (C), is introduced: 

 
 
C = segment length * segment width                     (2) 
                         pixel 
 
 

The idea with the implementation of C is that, theoretically, 
man-made structures (e.g., houses) usually show more compact 
forms than natural structures (e.g., rivers). This seems to be a 
reasonable assumption which could be substantiated by a num-
ber of tests. 
The increase of the threshold values for the second level leads 
to a successful identification of the settlement areas but also to 
an elimination of some settlement surfaces within settlement ar-
eas (areas with high NDVI or low texture values). The reason 
for this result is the hierarchical classification based approach, 
which can lead to undesirable sliver polygons (yellow circles in 
figure 2) or even missing segments (Schiewe et al., 2001). 
In order to integrate these wrongly excluded segments a new 
class "enclosed segments in level 2" is added to the mother 
class "settlement". The classification rules for the new class are: 

1. Segments must have a slightly stronger texture than 
that of the class “settlement” to ensure that agricul-
tural surfaces are not assigned to settlement areas in 
border regions. 

2. Segments must be surrounded by at least 50 % of 
segments of the class "settlement". 

 

 
 

Figure 3. Examples of sliver polygons (yellow circles) within 
settlement areas (red color) 

 
After the classification of the second segmentation level, the 
settlement segments are merged and classified with changed 
segment borders. The idea of this additional step is to assign 
possible sliver polygons through the fusion of the settlement 
segments to the class "settlement". 
At the segmentation level 1 (finest granularity), the classifica-
tion rules are again applied but with higher restriction parame-
ters. Through the increase of the threshold values, final non-
settlement areas are eliminated. However, also new sliver poly-
gons can be generated. Therefore, the principle to assign these 
surfaces via a “daughter class” to the class "settlement" is ap-
plied again, and a new daughter class "enclosed segments in 
level 1" is created. In order to retain the assigned sliver poly-
gons of the second level (enclosed segments in level 2) we use 
the advantages of the hierarchical classification network. Using 
the definition of a relationship to the super objects (sliver poly-
gons from the second level), we assign these areas to the mother 
class "settlement" of the level 1. After the classification of this 
segmentation level, the settlement segments are also merged 
and classified based on the changed segment borders. 

 
2.3 Fine Tuning 

Further processing steps to improve the quality of the classifica-
tion are introduced at the fine tuning step. A classification crite-
rion to identify incorrectly assigned agricultural surfaces (such 
as surfaces without vegetation and high texture values), has to 
be found. Usually, agricultural surfaces show a low gray value 
variance, while settlement surfaces show a high gray value vari-
ance (Jürgens, 1997). To take advantage of this fact, the seg-
mentation levels 2 and 3 are deleted. In the next step, the set-
tlement segments of the level 1 are merged to larger segments 
and the gray value variance is calculated for each segment. The 
merging of the segments has the particular advantage that the 
settlement areas are no longer modifiable (no sliver segments 
appear) and merged settlement areas always have a high gray 
value variance (while small agricultural surfaces have a low 
gray value variance). As a result, further non-settlement areas 
are excluded. 
Since the goal of this study is the identification of settlement 
area, and not the identification of impervious areas, inner-urban 
regions such as parks, water bodies or cemeteries with low tex-
ture values have to be integrated as a last step. For this purpose, 
the settlement segments are recoded and saved as a 1-bit image.  



 

After a new gray value weighted segmentation of the image, it 
is possible to differentiate between settlement segments and 
sliver polygons; because settlement surfaces and sliver poly-
gons have gray values of 1 and 0, respectively. The inner-urban 
surfaces without texture represent individual segments that are 
completely surrounded by settlement areas with a gray value of 
1. The classification produces the desired binary settlement 
mask. 
The procedure described above was applied to both datasets. 
Since KOMPSAT data have a lower spatial resolution (6.6 m) 
than the SPOT data, the threshold values for the texture parame-
ters received a lower weighting factor. 
 

3. RESULTS 

For the first test area (figure 4a), the borders between “settlement” 
(red) and “non settlement” (no color) are represented with a low 
level of generalization (borders are not smooth). A few vegetated 
areas such as playgrounds or parks (green circles) are missing and 
small houses or farms outside the kernel settlements (yellow cir-
cles) are not completely included. In general, however, the deci-
sion based fusion method produces excellent results for both data-
sets and test areas. 
Despite the differences between the datasets, the results were very 
similar (see figure 4b). Contiguous settlement areas (high density 
areas) were certainly detected. For an analysis of the final accu-
racy, settlement areas were manually digitized and compared to 
the ones selected by the automated hierarchical processing at each 
level (table 3). 

 
Table 3. Users’ accuracy for the detection of settlement areas 
 

Hierarchical 
Level 

SPOT-5/Landsat 
ETM Fusion 

KOMPSAT/Aster 
Fusion 

3 19.79% 45.28% 
2 76.31% 84.18% 
1 92.06% 95.03% 
Final 93.51% 97.26% 

 

     
 
Figure 4a. Final result of the decision based fusion: Results of 

the SPOT/Landsat fusion 
 

  
 

Figure 4b. Final result of the decision based fusion: Results of 
the KOMPSAT/Aster fusion 

 
For both combinations, results are almost identical and exceed 
93% users’ accuracy (see Congalton and Green, 1993) at the final 
level. Kappa values (see Cohen, 1960) are 0.8427 and 0.8968 for 
the first and the second test area, respectively. Based on an 
evaluation scale proposed by Ortiz et al. (1997), which ranges 
from "very bad" to “excellent", both test area classifications are 
rated as "excellent". 

 
4. CONCLUSIONS 

We have developed an efficient and accurate semiautomatic deci-
sion based data fusion for the detection of settlement areas. This 
procedure works equally well with different multisensor satellite 
data and classification results can be successively improved at 
each classification step (see table 3). 
Some limitations were observed when trying to identify smaller 
settlement areas (farms or individual houses) or areas with high 
vegetation within settlements (sports grounds and parks). The rea-
son for this is the generalization that takes place during the seg-
mentation steps (see also Koch et al., 2003). A possibility to re-
duce this problem is to combine the generated binary mask with 
the result of a pixel-based classification method. The time re-
quired to find optimal segmentation parameters and thresholds for 
the classification characteristics was higher than desired (see also 
Schiewe et al., 2001). Another disadvantage was the impossibility 
to use the segmentation software (eCognition) to completely 
automate the procedure, or to plan additional alterations to the 
segmentation process with a programming interface (Tomowski, 
2006). Also, for the accuracy analyses one should consider that 
different interpreters may produce different ground truth masks 
for comparison. This means that we would always have a certain 
amount of background noise for our analysis and an accuracy of 
100% cannot be achieved at all. 
In the comparison to the pixel based classification procedures, it 
is, however, evident that the introduced object and decision based 
procedure leads to better results because no salt-and-pepper ef-
fects appear (Koch et al., 2003). Settlement areas are identified as 
uniform regions that do not include incorrectly classified single 
pixels or small pixel groups. In addition, claims by Meinel et al. 
(2001) that the segment based classification method leads to a de-
crease of unclassified areas could be proven through the consis-
tent use of exclusion areas in the binary mask. Furthermore, we 



 

showed that the procedure is transferable to different data sources 
(SPOT/Landsat or KOMPSAT/Aster) without altering the proce-
dure or the employed parameters. Contiguous settlement areas 
were correctly detected in both test areas. Based on the definition 
of settlement proposed by Apel and Heckel (1995), it is possible 
to use the generated binary settlement mask as a basis for a lan-
duse/landcover classification.  
Improvements of our approach to allow the identification of 
smaller settlement areas warrant further research. We will also in-
vestigate if other options exist to fully automate our procedure. 
The method will be further tested with very high spatial resolution 
satellite images such as Ikonos and Quickbird satellite data. 
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