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ABSTRACT: 
 
Support Vector Machines (SVMs) are a statistical learning theory based techniques and have been applied to different fields. For the 
pattern recognition case, SVMs have been used for isolated handwritten digit recognition, object recognition, charmed quark 
detection, face detection in images and text categorization. SVM have been shown to perform well for density estimation also where 
the probability distribution function of the feature vector can be inferred from a random sample. In this work SVM has been used for 
density estimation, and it uses Mean Field (MF) theory for developing an easy and efficient learning procedure for the SVM. In 
SVM a kernel function determines the characteristic of an SVM. The kernel functions used in SVM are defined as local kernels, 
global kernels and spectral kernels. In the case of local kernel only the data that are close or in the proximity of each others have an 
influence on the kernel values. In global kernel samples that are far away from each other still have an influence on the kernel value. 
A spectral kernel uses the spectral knowledge into SVM classification, which reduces false alarms for thematic classification. In this 
paper the effect of different mixed kernels generated while taking spectral kernel with local or global kernels have been studied on 
overall sub-pixel classification accuracy of remote sensing data using Fuzzy Error Matrix (FERM). 
 
 

1. INTRODUCTION 

SVMs are a type of machine learning algorithm that were 
invented by Vapnik. It has been successfully applied to a wide 
range of pattern recognition and classification problems 
including handwriting recognition, and face detection. Support 
Vector Machines (SVM) is a powerful methodology for 
solving problems in nonlinear classification, function 
estimation and density estimation which has also led to many 
other recent developments in kernel based learning methods in 
general. SVMs have been introduced within the context of 
statistical learning theory and structural risk minimization. In 
SVMs an optimal separating hyperplane between data points of 
different classes in a (possibly) high dimensional space is 
calculated. The actual Support Vectors are the points that form 
the decision boundary between the classes.  
 
Recently SVM have been applied to different fields. For the 
pattern recognition case, SVMs have been used for isolated 
handwritten digit recognition (Cortes and Vapnik, 1995; 
SchÖlkopf, Burges and Vapnik, 1995; SchÖlkopf, Burges and 
Vapnik, 1996; Burges and SchÖlkopf, 1997), object 
recognition (Blanz et al., 1996), speaker identification 
(Schmidt, 1996), charmed quark detection1, face detection in 
images (Osuna, Freund and Girosi, 1997), and text 
categorization (Joachims, 1997). For the regression estimation 
case, SVMs have been compared on benchmark time series 
prediction tests (Müller et al., 1997; Mukherjee, Osuna and 
Girosi, 1997), the Boston housing problem (Drucker et al., 
1997), and (on artificial data) on the PET operator inversion 
problem (Vapnik, Golowich and Smola, 1996). In most of 
these cases, SVM generalization performance (i.e. error rates 
on test sets) either matches or is significantly better than that of 
competing methods. Regarding extensions, the basic SVMs 
contain no prior knowledge of the problem (for example, a 
large class of SVMs for the image recognition problem would 

give the same results if the pixels were first permuted randomly 
(with each image suffering the same permutation), an act of 
vandalism that would leave the best performing neural 
networks severely handicapped) and much work has been done 
on incorporating prior knowledge into SVMs (SchÖlkopf, 
Burges and Vapnik, 1996; SchÖlkopf et al., 1998a; Burges, 
1998). Although SVMs have good generalization performance, 
they can be abysmally slow in test phase, a problem addressed 
in (Burges, 1996; Osuna and Girosi, 1998). Recent work has 
generalized the basic ideas (Smola, SchÖlkopf and Müller, 
1998a; Smola and SchÖlkopf, 1998), shown connections to 
regularization theory (Smola, SchÖlkopf and Müller, 1998b; 
Girosi, 1998; Wahba, 1998), and shown how SVM ideas can be 
incorporated in a wide range of other algorithms (SchÖlkopf, 
Smola and Müller, 1998b; SchÖlkopf et al, 1998c) 
(Christopher et al., 1998). 
 
In this work SVMs had been used for density estimation. In 
this case Mean Field (MF) theory had been used for developing 
an easy and efficient learning procedure for the SVM. But the 
traditional formulation of the SVM density estimation 
decomposes the parameters of the problem into a quadratic 
optimization, which is solved using standard optimization 
techniques. In this paper the effect of different kernels while 
generating density estimation using SVM have been studied 
with respect to overall sub-pixel classification accuracy of 
multi-spectral data. This work was done using SMIC (Sub-
Pixel Multi-Spectral Image Classifier) System (Kumar et al., 
2005).      
 

2.  KERNELS IN SVM 

SVMs are designed to solve two-class problems. Two 
approaches can be used for a M-class problem. One approach is 
called one against all; in this M classifiers are iteratively 
applied on each class against all the others. Other is called one 



 
 

2 
  

against one;
2

)1( −MM
 classifiers are applied on each pair 

of classes, the most often computed label is kept for each 
vector. The kernel function is constructed by SVM algorithm to 
map the training data into a higher dimensional space when the 
linear separation is impossible in the original one. SVM can be 
generalized to compute nonlinear decision surfaces. The 
method consists in projecting the data in a higher space where 
they are considered to become linearly separable. SVM applied 
in this space lead to the determination of nonlinear surfaces in 
the original space. Actually, the projection can be simulated 
using a kernel method (Grégoire et al, 2003). 
Every function ),( ⋅⋅K that satisfies mercer’s conditions may 
be considered as an eligible kernel. The Mercer’s conditions 
state as: 

ε)(⋅∀g L2 (ℜn) so that ∫ dxxg 2)(   

is finite. 

then ∫ ≥ .0)()(),( dxdyygxgyxK  

 
A great number of kernels exist and it is difficult to explain 
their individual characteristics. The kernels used in work are 
known as local kernels, global kernels and spectral kernels, 
which are mentioned as follows; 

 
Local kernels: Only the data that are close or in the proximity 
of each other’s have an influence on the kernel values. 
Basically, all kernels that are based on a distance function are 
local kernels. Examples of typical local kernels are; 
 
Gaussian: 

T
ixxAixxixx )(1)(5.0exp(),( −−−−=Κ   

(Refaat et al, 2004) 
   Were A have three following norms; 

 A = I                     Euclidean Norm 
1−= jDA                Diagonal Norm 

1−= jCA                     Mahalonobis Norm 

 

Radial basis: )2||||exp(),( ixxixx −−=Κ  
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Global kernels: Samples that are far away from each others 
still have an influence on the kernel value. All kernels based on 
the dot product are global. Examples of typical global kernels 
are;    
 
Linear: ixxixx .),( =Κ  

Polynomial: p
ixxixx )1.(),( +=Κ  

Sigmoid: )1.tanh(),( +=Κ ixxixx  
 

Spectral kernels: The local kernels are based on a quadratic 
distance evaluation between two samples. In order to fit 
hyperspectral point of view, it is of interest to consider new 
criteria that take into consideration spectral signature concept. 
Spectral angle (SA) ),( ixxα is defined in order to measure 
the spectral difference between x and xi while being robust to 
differences of the overall energy (e.g. illumination, shadows 
etc.) (Grégoire et al, 2003). 
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As in remote sensing data multi-spectral images are sharpen 
while fussing multi-spectral image with panchromatic image. 
Same in the case of kernel function, mixture of kernels can be 
used (Grégoire et al, 2003). Linear mixture of kernels can fit 
the dual characteristics; characteristics of dot product or 
Euclidian distance and also characteristic of spectral angle. 
Mixture of kernels may be defined as: 
 

),( ixxΚ  = μ ),()1(),( ixxbixxa Κ−+Κ μ  

where ),( ixxaΚ and ),( ixxbΚ are two kernels (e.g. 

local, global and spectral angle). Since ),( ixxaΚ and 

),( ixxbΚ  satisfy Mercer’s conditions, all linear 
combinations are eligible for kernels. In this work 

),( ixxaΚ kernel has been taken any local or global kernel 

and ),( ixxbΚ  kernel has been taken as Spectral kernel. 
 
 

3. MULTI-SPECTRAL IMAGE 

A UTM rectified LISS-III image from Resourcesat –1, (IRS-
P6) satellite acquired in four bands have been used. The image 
was acquired in 2003 and covers the rural area of Dehradun 
District, of Uttaranchal State, India. Approximately, 30% of the 
area in the image selected is covered by reserved forest, 30% 
by agriculture land, 15% by barren land, 15% sand, and 10% 
by river water. The size of the image is 250 × 296 pixels, with 
spatial resolution of 23.5 m. The five classes of interest, 
namely forest, water, agriculture, barren, and sand have been 
used for this study work (Figure 1).  
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Figure 1. False Colour Composite from the Resource Sat-1 
LISS-III multi-spectral image. 

4. KERNEL FUNCTION VERSES OVERALL 
ACCURACY 

The effect of different kernel functions on sub-pixel 
classification of LISS-III image from Resourcesat –1, (IRS-P6) 
satellite were studied while using density estimation algorithm 
based on Support Vector Machine approach for sub-pixel 
classification. The learning parameters for Support Vector 
Machine approach were kept constant for all the kernel 
functions. The training as well as testing data used for 
supervised approach was >10n, were n is dimension of data 
used. Separate data were used at training as well as at testing 
stage. At testing stage 500 samples were taken for overall 
accuracy assessment of sub-pixel output. The effect of different 
kernel functions were observed on sub-pixel classification 
output using Fuzzy Error Matrix (Binaghi et al., 1999). The 
overall accuracy of sub-pixel classification, obtained while 
using different combinations of kernel functions in Support 
Vector Machine approach are mentioned in table 1; 
 

Mixed Kernel 
Function 

Overall Accuracy (%) Sl. 
No. 

Ka  Kb μ = 
0.1 

μ 
=0.2 

μ = 
0.3 

μ = 
0.5 

1 Gaussian 
with 

Euclidean 
Norm 

Spectral 
Kernel 

94.56 91.22 93.41 91.58 

2 Gaussian 
with 

Mahalonobis 
Norm 

Spectral 
Kernel 

90.85 93.70 91.25 93.79 

3 Gaussian 
with 

Diagonal 
Norm 

Spectral 
Kernel 

88.23 93.36 93.19 90.85 

4 Radial basis 
(σ = 0.25) 

Spectral 
Kernel 

92.05 93.96 94.57 91.98 

5 KMOD Spectral 
Kernel 

91.23 91.8 93.75 92.86 

6 Inverse 
Multiquadric 

Spectral 
Kernel 

92.26 93.52 94.12 92.82 

7 Linear Spectral 
Kernel 

91.89 93.30 93.61 93.06 

8 Polynomial 
(1st order) 

Spectral 
Kernel 

92.56 91.06 94.44 91.54 

9 Sigmoid Spectral 
Kernel 

90.74 90.19 91.95 94.27 

Table 1. Overall Accuracy while using different Mixed Kernel 
functions. 
 

5. CONCLUSION 

Basically, all kernels that are based on a distance function are 
local kernels and in local kernels the data that are close or in 
the proximity of each other’s have an influence on the kernel 
values. But in global kernels samples that are far away from 
each other still have an influence on the kernel value. All 
kernels based on the dot product are global. In spectral kernel, 
Spectral angle (SA) ),( ixxα  is defined in order to measure 
the spectral difference between x and xi while being robust to 
differences of the overall energy (e.g. illumination, shadows 
etc.). To fit the dual point of view: similarity according to the 

dot product or Euclidian distance and also, similarity according 
to the spectral shape (SA), Mixture of kernels have been used 
in this study. 

 
Table: 1, shown in section 4, shows that overall sub-pixel 
classification accuracy of multi-spectral remote sassing data 
varies while using different mixture of kernel functions in 
SVM. The maximum mixtures of kernels are giving maximum 
sub-pixel classification accuracy when μ in mixture of kernel 
used is of range 0.3. Some mixture of kernels gives good 
accuracy when μ =0.5 value used in mixture of kernel. 
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