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ABSTRACT: 

 

This paper describes an on-going work on the development and implementation of cellular automata based urban growth modeling 

using multitemporal satellite imagery. The algorithm is designed to simulate the historical growth as a function of local 

neighbourhood structure of the input data. Transition rules in the algorithm drive the urban growth over time. Calibration is 

introduced in the cellular automata model. Spatial and temporal calibration schemes are used to improve the prediction accuracy. 

Spatially, the model is calibrated on a township basis to take into account the effect of site specific features, while the temporal 

calibration is set up to adapt the model to the changes in the growth pattern over time. Calibration provides the optimal values for the 

transition rules to achieve accurate urban growth modeling. The paper discusses at the end a proposed automatic rule calibration 

method using genetic algorithm. The aim is to optimize the transition rule values. Prediction accuracy is selected as the fitness 

function. A set of strings are used as initial population over which the genetic algorithm runs till convergence. The cellular automata 

model is tested over city Indianapolis, IN, USA to model its urban growth over a period of 30 years. Besides the land use data 

derived from the satellite imagery, population density is used. Results indicate good accuracy on a township basis for short term (5 

years) and long term (11 years) prediction. The model succeeds in adapting to the dynamic growth pattern. Genetic algorithm shows 

promising potential in the calibration process. 

 

 

1. INTRODUCTION 

Urban growth modeling is getting more attention as an 

emerging research area in many disciplines. This comes as a 

result of the recent dramatic increase in urban population that 

increases the pressure on the infrastructure services. Among all 

developed urban growth models, cellular automata (CA) urban 

growth models have better performance in simulating urban 

development than conventional mathematical models (Batty 

and Xie, 1994a). CA simplifies the simulation of complex 

systems (Waldrop, 1992). Its appropriateness in urban 

modeling is due to the fact that the process of urban spread is 

entirely local in nature (Clarke and Gaydos, 1998). Models 

based on cellular automata are impressive in terms of their 

technological evolution in connection to urban applications 

(Yang and Lo, 2003). Development of a CA model involves 

rule definition and calibration to produce results consistent with 

historical data, and future prediction with the same rules 

(Clarke et al, 1997).  

 

Many CA-based urban growth models are reported in the 

literatures. White and Engelen (1992a; 1992b) CA model 

involves reduction of space into square grids. They implement 

the defined transition rules in recursive form to match the 

spatial pattern. One of the earliest and most well-known models 

in the literature is Clarke’s et al (1997) CA-based model 

“SLEUTH” that has four major types of data: land cover, slope, 

transportation, and protected lands. This is rooted in the work 

of von Neumann (1966), Hagerstrand (1967), Tobler (1979) 

and Wolfram (1994). A set of initial conditions in “SLEUTH” 

is defined by `seed' cells which were determined by locating 

and dating the extent of various settlements identified from 

historical maps, atlases, and other sources. These seed cells 

represent the initial distribution of urban areas. A set of 

complex behaviour rules is developed that involves selecting a 

location randomly, investigating the spatial properties of the 

neighboring cells, and urbanizing the cell based on a set of 

probabilities. 

 

Despite all the achievements in CA urban growth modeling, the 

selection of the CA transition rules remains a research topic 

(Batty, 1998). CA models are usually designed based on 

individual preference and application requirements with 

transition rules being defined in an ad hoc manner (Li and Yeh, 

2003). Furthermore, calibration of CA models is still a 

challenge. Most of the developed CA models need intensive 

computation to select the best parameter values for accurate 

modeling.  

 

The motivation behind this work is to develop an effective CA-

based urban growth model. Also, developing a calibration 

algorithm that takes into consideration spatial and temporal 

dynamics of urban growth is another objective of this study. 

Genetic algorithm (GA) is introduced as a heuristic 

optimization technique for selecting optimal model parameters. 

 

2. STUDY AREA  

Indianapolis, Indiana, USA is selected as a case study over 

which the CA model is designed and tested. Indianapolis is 

located in Marion County at latitude 39° 44' N and longitude of 

86° 17' W as shown in Figure 1. Representing the main city in 

the state of Indiana, Indianapolis encounters recognizable 

accelerated growth in population and urban infrastructure over 

the last few decades. The necessity arises to model the urban 

growth over time for better planning of infrastructure services. 



 
 

Figure 1. City of Indianapolis, Indiana, USA (US Census Bureau) 

 

3. DATA PREPARATION  

This section describes the input data processing scheme. Five 

historical TM images (1973, 1982, 1987, 1992 and 2003) are 

collected over the study area (Figure 2). These images are 

rectified and registered to the same projection of UTM 

NAD1983 to fit each other spatially. Seven classes of interest 

are identified in the images: water, road, commercial, forest 

area, residential areas, pasture and row crops. Residential and 

commercial classes represent urban class. The overall 

classification accuracy for all classified images is above 93%.       

 

 
 

Figure 2. Historical TM images over Indianapolis  

 

Population density is used as another input for the CA model 

algorithm. Population census tract maps for year 1990 and 2000 

over Indianapolis are collected. The population densities are 

computed for all census tracts by dividing their populations by 

the tract areas. Figure 3 shows the census tract map (left) and 

the calculated population density for each census tract (right). 

To model the population, the centroid (Xc,Yc) for each census 

tract is calculated. 

 
 

Figure 3. Year 2000 census tract map and population density 

 

The Euclidean distance from each census tract centroid to the 

city center is computed. This process is repeated for all tracts so 

that a table of population densities versus distance is prepared. 

Population densities for census tracts within specified distance 

from city center are averaged to reduce the variability in data. 

For example, an average population density for all census tracts 

within 2 km is calculated then another average density is 

calculated for tracts within 2-4 km and so forth. An exponential 

function is fitted representing population density as a function 

of distance from the city centre: 
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Model parameters A and B are calculated for year 2000 as 

shown in Figure 4. This exponential model is used to calculate 

the population density for each pixel in the imagery based on its 

distance form city center for year 2000.  
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Figure 4. Year 2000 population density  
 

The same procedure is repeated for year 1990 to find its 

exponential population model with A and B parameters. The 

change in model parameters over the 10 years (from 1990 to 

2000) is used to calculate the yearly rate of change in A and B 

parameters. The updated parameters (A and B values that 

changed year by year) are used to calculate population density 

grids for each year from 1973 to 2003 matching the same size 

of the input imagery. These grids are used as CA data inputs for 

the purpose of running the model over historical growth period. 

 

4. CELLULAR AUTMATA URBAN MODELING  

This section discusses in detail the design of the CA urban 

growth modeling. The design phases include: transition rule 

definition, calibration method and evaluation strategy for the 

model. Calibration modules for accurate modeling over the 

historical satellite imagery to adapt the urban pattern are 

discussed in details.  



4.1 CA Algorithm Design  

The design of the CA algorithm consists of defining the 

transition rules that control the urban growth, calibrating these 

rules, and evaluating the results for prediction purpose. Figure 5 

presents a flowchart that describes the CA algorithm structure. 

 

 
   

Figure 5. Flowchart of CA algorithm design 
 

 
 

Transition rules definition is the most important phase in CA 

model design since they translate the effect of input data on the 

urban process simulation. So an accurate and realistic definition 

of the rules is needed. The CA algorithm design starts with 

defining the transition rules that drive the urban growth over 

time. They are designed as a function of land use effect on 

urban process, growth constraints and population density. The 

transition rules are defined over the 3x3 neighbourhood of a 

pixel to minimize the number of input variables to the model. 

The rules identify the neighbourhood needed for the tested cell 

to urbanize. The growth constraints should reflect the 

conservation strategy adopted in the study area for certain land 

uses. For example, conservation of certain species of natural 

resources can be taken into consideration through rules 

definition stage. Water resources protection through 

discouraging urban growth nearby these sites to reserve them 

over time is another example of constrained rules design.  The 

future state of a pixel (Equation 2) at time (t+1) from starting 

time (t) depends on three factors: 

- Current state of the test pixel. 

- Current states of its neighbourhood pixels 

- Transition rules that drive the urban growth over time. 

 

               t+1S ( ) = ( ( ), ( ), _ )t tf S S transition rulesα α τ         (2) 

 

where  t+1( )S α = test pixel future state at time epoch t+1. 

 t ( )S α = test pixel current state at time epoch t. 

 ( )tS τ  = neighbourhood pixels states’ set. 

CA transition rules driving the urban growth are programmed 

in ArcGIS through Visual Basic for Applications (VBA). The 

oldest historical classified TM image (1973) is used as input to 

the CA model over which the transition rules are applied to 

model the urban growth starting from this time epoch. A 

polygon shapefile representing the townships in the study area 

is overlaid over the input image (Figure 6). A total of 24 

townships in the area are identified.  
 

 
 

Figure 6. Township map of Indianapolis 
 

Dividing the study area on a township basis will take into 

consideration the effect of site specific features in each 

township on the urban growth. The same CA transition rules 

are defined for each township, however, with different rule 

values. Calibration in the next section will discuss finding the 

optimal rule values for each township. 

 

4.2 CA Model Calibration 

Once the CA transition rules are identified and initialized for 

each township, the model runs from 1973 till 1982. The year 

1982 image represents the first ground truth being used for 

calibration. For each township, the modeling accuracy is 

calculated as a ratio between the simulated and real urban 

growth data (Equation 3) for simulated 1982 image. 

Over/underestimation concept is introduced to represent how 

comparable is the simulated result to the real one. This 

indicates how transition rules defined on a township basis 

succeed in modeling the real amount of urban growth given the 

predefined conditions.  

Calibration in this work is meant to find the best set of rule 

values specific to each township for realistic urban growth 

modeling. 
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Calibration aims to define the best set of CA rules based on 

which the model run to match as close as possible the simulated 

results with the ground truth images. To achieve this purpose, 

two calibration schemes are introduced in this algorithm: spatial 

and temporal calibrations. In spatial calibration module, the CA 

transition rules at a given time t (t=1982 in our case) are 



modified spatially over the 2D grid space.  This is done through 

tuning the values of each rule set on a township basis to match 

the urban dynamics for each township with its site specific 

features. This allows the model to take the variability in the 

spatial urban growth pattern into accounts for realistic 

modeling. If the township’ rules result in higher growth levels 

(overestimated), they are modified to reduce the urban growth 

at this township. For the underestimation case, the rule values 

of the township under consideration are tuned to increase the 

amount of urban growth to match the real one. So, the spatial 

calibration aims to find the best set of rule values that fit a 

given township k according to its geographical location: X(k), 

input data parameters: C(k) and its over/underestimation case: 

OAE (k) as shown in Equation 4. Townships close to each other 

in term of geographical location and having similar urban 

growth characteristics (e.g. same development level over time) 

are associated with the same rule values. The overall calibration 

over the entire test image at time epoch t is obtained through 

performing the same spatial calibration by taking the average of 

all townships as shown in Equation 5. Once the rule values are 

modified spatially, the model runs again from 1973 to 1982, the 

modeling accuracy is evaluated for each township and rules are 

calibrated once again as illustrated above. This loop continues 

till the defined convergence criterion is met (Equation 6). In our 

work convergence criterion of 100%±10% accuracy is used. 

The rule values after convergence will be used for the next time 

period modeling. The model will be calibrated at the next 

ground truth image to take into consideration the temporal 

effect. 
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where  
,epoch t

SC = spatial calibration at time epoch t. 

 
,epoch tOC = over all calibration at time epoch t. 

 
,epoch tFC = final calibration at time epoch t. 

 

The final calibrated rules at 1982 are used to run the model till 

the next ground truth image 1987 to perform temporal 

calibration. The goal behind the temporal calibration is to 

recalibrate the model so that the model can adapt the urban 

growth pattern over time (Equation 7). This way any growth 

variation over time related to new policy or new infrastructure 

plans can be learned by the model and the modeling results 

become more realistic. The temporal calibration module is a 

function of changes in spatial calibration results between two 

epochs t and t+t1, growth change, and accuracy.  

 

     ( ,  ,  )
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where  
( , 1)

TC
t t t+

= temporal calibration between epochs t 

and t+t1. 

( , 1)
FC

t t t
∆ +

= changes in spatial calibration results 

between epochs t and t+t1. 

UG∆ = urban growth change between t and t+t1.  

 

The same spatial calibration process at 1982 is repeated at 1987 

ground truth till convergence. The final calibrated rule values at 

1987 are used to predict the urban growth at 1992 for short term 

prediction of 5 years (Figure 7a). The first test image at 1992 is 

used to validate the model through evaluating the prediction 

results at 1992 on a township basis. Table 1 summarizes the 

prediction results accuracies for year 1992. The rules are 

calibrated spatially again at 1992 to perform long term 

prediction of 11 years from 1992 till 2003 (Figure 7b) that are 

validated using the test image at 2003. Table 1 shows the 

prediction accuracy for predicted image at 2003.  

 

4.3 Results and Discussion 

The prediction results of 1992 and 2003 show good accuracy on 

the township basis and on the average scale. Accuracy for short 

term prediction (1992) is higher as comparing with long term 

prediction interval (2003). The improvement in the accuracy 

over space for each township is noticeable as a result of the 

spatial calibration module. Temporal calibration also helps 

improve the prediction accuracy results over time. The spatial 

calibration at specific time epoch succeeds in reducing the 

variability in modeling accuracy between townships through 

matching each township transition rules with its site specific 

features. Spatial and temporal calibrations succeed in capturing 

the urban growth pattern over space and time based on real 

growth factors. Historical satellite imagery fits the spatial and 

temporal nature of the developed CA urban growth model. It 

provides important information input to the model.  

 

4.4 Evaluation and Analysis 

Prediction accuracy for each township is used as a basis for rule 

calibration. Over/under estimation principle is implemented. If 

a set of rules for a particular township produces underestimated 

results, this mean the growth rate is small and hence the rules 

are modified to increase the urban growth. For overestimation, 

the rules are modified to reduce the urban growth amount. The 

transition rules for a township are repeatedly calibrated till the 

convergence criterion is met. The ground truth imagery 

provides the reference for calibration process. Table 1 results 

indicate good spatial prediction accuracy ranging for year 1992 

between 78.32% (underestimate) for township 17 up to 

128.98% (overestimate) for township 1. The range for year 

2003 is between 67.78% and 149.29%. The average accuracies 

for 1992 and 2003 are 98.35% and 94.57%, respectively. 

Higher accuracies achieved for short term prediction (1992) as 

compared to long term (2003). The spatial variability between 

townships’ prediction results after calibration is small for both 

(1992 and 2003) predictions. This indicates the effect of spatial 

calibration in matching each township with its realistic urban 

growth pattern through calibrating its rules to fit such pattern. 

Visually, calibration on a township basis succeeds in preserving 

the urban pattern over space where temporal calibration 

preserves its dynamical changes over time. Rule values’ results 

at the end of the calibration process indicate some similarity 

between townships. These townships are close to each other 

geographically and with similar urban growth characteristics.  

 

5. TRANSITION RULE CALIBRATION 

This section introduces briefly an ongoing study on using 

genetics algorithm (GA) to automate the spatial and temporal 

rule calibrations. GA as a heuristic optimization technique can 

work over the search space to find the most suitable solution. 

GA improves the efficiency of rule calibration to select the best 

set of rule values for accurate modeling. GA is first introduced 

by Holland (1975) as computer programs to mimic the 

evolutionary processes in nature. GA manipulates a set of 

feasible solutions to find an optimal solution.  
 

 
 
 



 
 

 
 

 

a. Result of year 1992 prediction (5 years)  
 

 
 

 

b. Result of year 2003 prediction (11 years)  

 

Figure 7. Cellular automata prediction results 

 

GA’s is able to find the global optimum solution. The following 

steps describe the design of the proposed GA-based transition 

rule calibration. 

 

Step 1: Initial GA population generation 

In this step, 30 sets of rule values are randomly generated as an 

initial population for each township over which GA module 

will work. Each rule value set is coded as a binary string. A 

string is designed as a combination of the rule values. Three 

rules are identified to be optimized using GA: 

 

Rule1: The number of neighbourhood residential pixels, in the 

possible range of [0-8] integer values or in corresponding 

binary coding [0000 to 1000].  

Rule2: The number of neighbourhood commercial pixels, in 

the possible range of [0-8] integer values or in corresponding 

binary coding [0000 to 1000].  

Rule3: The population density threshold, continuous values 

representing the cut-off of population density at a pixel. This 

rule is scaled by multiplying its value by 10 in the range of [0-

20] possible values or in binary coding [00000 to 10100].  

All the rules are combined to form one binary string.  

 

Step 2: Fitness function identification 

Fitness function evaluates the performance of each string. The 

prediction accuracy is used as the fitness function. 

 

Table 1.  Year 1992 and 2003 prediction results 

Township# Accuracy(%), 

1992 

Accuracy(%), 

2003 

1 128.98 149.29 

2 118.64 100.05 

3 78.75 125.94 

4 95.80 120.53 

5 93.10 83.51 

6 111.16 89.74 

7 119.51 109.33 

8 92.81 91.08 

9 115.17 100.96 

10 108.17 99.53 

11 97.62 94.74 

12 104.82 109.83 

13 99.11 98.46 

14 88.59 90.00 

15 95.59 93.23 

16 91.83 67.78 

17 78.32 98.41 

18 90.06 90.01 

19 102.78 95.97 

20 100.70 69.29 

21 88.27 93.81 

22 106.79 96.23 

23 85.79 95.91 

24 119.85 82.91 

Average 

Std. Dev. 

98.35 

13.44 

94.57 

17.05 

 
Step 3: GA selection operation 

Rank selection procedure is used in this work. All the strings 

are ordered based on their fitness values in descending order 

and the string with highest fitness value is given rank 30 then 

the second one 29 till lowest fitness value with rank 1. Rank is 

divided by the summation of all the ranks and the probability of 

selection for each string in next generation is identified. 

 

Step 4: GA crossover and mutation parameters design 
The crossover probability is selected to be 80%, 24 strings are 

selected for crossover, while the other 6 (the best 6 in terms of 

fitness values) are copied directly to the new generation (this 

process is known in GA as Elitism). Elitism can rapidly 

increase the performance of GA, because it prevents a loss of 

the best solution. A mutation rate of 1% is used.  Once the 

crossover and mutation is done, the new generation of 30 

strings is already produced. The next step is to run the CA 

model using the new strings to evaluate their new fitness 

values.    
 

Step 5: Running the GA-CA model  
All the steps from 1 to 4 are repeated till convergence. GA 

model works again over the newly created 30 strings and a new 

generation of 30 strings is produced and the loop continues. 

This continues until the convergence criterion is met. The final 

output is the optimized CA rule values for each township that 

model the temporal urban growth. The model is run over the 

images from 1973 till 1982 to calibrate its transition rules. The 

final results (Figure 8 and Table 2) indicate satisfactory results 

as compared to the crisp CA method. 

 

6. CONCLUDING REMARKS  

This work explores the potential of implementing the cellular 

automata to model the historical urban growth over 

Indianapolis. The main goal is to design the model as a function 



of local neighbourhood structure to minimize the input data to 

the model. Satellite imagery represents the medium over which 

the model works. One important issue our model takes into 

account is the calibration process. Two modules are introduced 

namely, spatial and temporal calibrations. Spatial calibration 

fits the model on a township basis to its site specific feature 

while the temporal calibration adapts it to the urban growth 

dynamic change over time. This shows a noticeable effect on 

producing a good spatial match between the real and simulated 

image data. On the other hand, genetic algorithm is introduced 

to enhance the CA calibration process. GA makes the 

calibration process more efficient through manipulating a set of 

feasible solutions in the search space to find an optimal 

solution. This will reduce the search space for the optimal 

rules’ values on a township basis.      
 

 
 

 

Figure 8. GA-CA calibrated image for year 1982 
 

 

Table 2.  GA-CA calibrated results for year 1982 

Township# Urban Pixel # Accuracy(%) 

1 2221 82.23% 

2 3522 96.86% 

3 3551 75.07% 

4 4380 99.03% 

5 5206 122.64% 

6 4243 67.77% 

7 8116 97.29% 

8 4810 78.76% 

9 4486 95.26% 

10 12128 97.81% 

11 10967 88.25% 

12 4035 72.99% 

13 5787 83.06% 

14 13256 80.27% 

15 19409 99.88% 

16 12193 109.67% 

17 8235 93.06% 

18 19297 99.79% 

19 17060 93.26% 

20 6305 71.37% 

21 1973 78.61% 

22 4594 66.17% 

23 6620 83.28% 

24 4858 82.65% 

Average  87.63% 

Std. Dev  13.73% 
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