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ABSTRACT: 
 
The usage of airborne camera systems for near real time applications will increase in the near future. This paper purposes a new 
hardware/software architecture to establish real time computation of images obtained from the DLR wide area airborne 3K-camera 
system. The main applications of our system are e.g. to monitor automotive traffic, to determine the workload of public road 
networks during mass events, or to obtain a survey of damages in disaster areas in real time. Therefore, many different image 
processing tasks have to be executed in real time. Orthorectification of images is necessary prior to all other processing tasks, e.g. 
before mapping data from street data bases into images or before tracking of vehicles. Nowadays, the calculation becomes possible 
due to fast graphic processing units (GPU) and with the support of a distributed real time system. In order to achieve real time image 
processing, we suggest a GPU-based algorithm for image orthorectification. The GPS/IMU-system provides the position and 
orientation of the aircraft with 128Hz quite accurately. Assuming synchronized measurements with the camera system and given 
camera calibration, direct orthorectification is implemented using OpenGL. Therewith, we are able to process high resolution images 
consisting of 16 MPixels with a frame rate of 3 Hz. This paper describes the implementation of the real time algorithm and gives first 
results.  
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Real time processing of imagery airborne data will be very 
important in the near future.  For automatic traffic monitoring, 
for supporting rescue and security forces, and also for obtaining 
surveys in disaster scenarios or mass events, an airborne real 
time image processing system is required. Recently, the 3K-
Camera system was developed at DLR  (Kurz et al. 2007a). The 
system consists of three off-the-shelf 16 MPixel cameras which 
are mounted on an airborne platform. Two cameras are directed 
in side view and one camera is directed in nadir.  In the near 
future, an on-board system consisting of a computer network 
shall perform image processing in near real time. Important data 
like traffic payload, mosaiked survey images or changes 
detected due to disasters should be sent to a ground station in 
near real time, see figure 1. Various tasks need to be performed 
on-board, because original high resolution images can not be 
sent to the ground. This is caused by the data rate which is too 
high for direct downloading via S-Band microwave. Thus, 
many processes need to be executed at the on-board hardware. 
Therefore, we currently develop a distributed image processing 
system. To obtain high flexibility and good transparency, we 
suggest the usage of a middleware to handle process-to-process 
communication across a PC network. Nowadays several 
middleware platforms are available, e.g. CORBA, TAO. But all 
of them leak for the possibility to handle large image data in 
real time. To achieve image processing in real time, strong 
demands are made to reduce communication as much as 
possible. In the first part of the paper this novel architecture is 
described, where many processes need to be performed on the 
on-board system. Because most of the processes will take 

orthorectified images as input, strong demands are made on the 
performance of the orthorectification algorithm. For this 
purpose, we suggest to exploit common graphics hardware. 
Hence, the fourth section of this paper explains a GPU-based 
orthorectification algorithm. With this algorithm, the 
orthorectification of 3K-camera images becomes possible in 
real time. The algorithm is completely implemented in OpenGL 
(Woo et.al. 1999). First results and computation time 
measurements emphasize our suggestion to exploit GPUs 
 

 
Figure 1: One application scenario for a wide area high 

resolution airborne camera system. 
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2. RELATED WORK 

Many distributed real time systems have been developed in the 
last decade. Most of the systems aim hard real time execution 
where the amount of data to be forwarded between different 
processes is not very high, (Diethers et al. 2003, Schantz et al. 
2003). They are mostly known in the robotics or automation 
community. In our application, high resolution images have to 
be processed with a lower frame rate of 3Hz. The demanding 
real time image processing system has to cope with data rate of 
3 times 16x3 MByte per second (144 MByte/s – without 
compression). Therefore, we introduce a novel 
software/hardware concept, which is supposed to be able to 
handle such amount of data.  One important image processing 
task is orthorectification of images. Up to date, analytical 
implementations have been applied (Mueller et al. 2007). These 
algorithms burden from the ray casting algorithm, which has to 
be executed at least for each pixel. Ray intersection is 
performed by modern graphics hardware many times faster. 
Furthermore, the analytical computation of surface normal 
vectors is a time consuming task. One advantage of the 
analytical solution is the high accuracy, which is useful if 
distances between sensor and earth surface are high. Here, the 
GPU-based computation leaks from the logarithmic resolution 
of depth buffer. Another analytical algorithm for geo-
referencing using pattern matching is shown in (Liu 2007). In 
(Wright et. al 2005) a real time image processing system is 
developed and also an analytical geo-referencing system is 
implemented for thermal images. Recently GPU-based 
computation became very popular for stereo reconstruction. 
 
 

3. SYSTEM ARCHITECTURE 

A brief introduction in our real time image processing system is 
given, which is currently under development. The DLR 3K-
camera system is depicted in figure 2. It is connected via 
firewire to PC hardware.   
 
 

 
 
Figure 2:  DLR 3K-camera system consisting of three Canon 
EOS 1Ds Mark II, integrated in a ZEISS aerial camera mount. 
 
The distributed real time system architecture is shown in figure 
2. On each computer a middleware is running handling inter-
process communication over the network. The middleware also 
supports the integration of different processes, e.g. if they 
access the same image date. For this synchronisation the usage 
of semaphores is comfortable. Thus, the middleware provides 
the following functionality: 

• A name service which takes care of all processes and 
provides transparency within the network. 

• Asynchronous data transmission via message passing 
(for small data size). 

• Synchronised data transmission via shared memory 
and semaphores (for large data size, e.g. for images). 

• Consumer-Producer concept. 
• Transparency throughout different computers. 

 
With this concept a layered architecture can be built. Each 
process consumes data from an upper higher prioritised process 
and produces data for lower level tasks. For example the ortho-
rectification process produces images for the street detection 
algorithm and itself consumes image data obtained from the 
sensor directly. This enables a more sophisticated 
implementation of systems running various processes in real 
time. One process needs only to know what kind of data it is 
interested in. Thus, it initialises its messages to be sent to other 
processes. Also for shared memory usage (e.g. for image data), 
the process registers its data at the middleware. The middleware 
establishes correct and monitored data access. Thus, each 
implemented process establishes communication only with the 
middleware. The exchange of data through various processes is 
organised by the middleware.  As seen in figure 3, in our 
system five on-board computers are involved. The first three 
machines acquire images and process elementary tasks: 
 

• Orthorectification of images. 
• Mapping data from a street data base into the 

orthorectified image. 
• Segmentation of streets. 

 
Another computer is available for traffic monitoring, e.g. car 
detection and car tracking (Kurz et al. 2007b). On this machine 
various tasks are running. The upper layered task consumes 
segmented streets and produces traffic data e.g. payload of road 
network, traffic jam, velocity of vehicles. The machine, which 
is linked to the microwave system, obtains the data and sends it 
down via S-Band microwave, which is able to bridge distances 
over 200 km. The communication to ground computer networks 
is done via UDP send. Therewith, real time and near real time 
applications of an airborne wide-area high resolution camera 
system becomes possible. 
 

 
Figure 3: Architecture of our distributed real time on-board 

system. 
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4. ORTHORECTIFICATION 

Orthorectification of images has to be computed on the on-
board hardware. There, GPS/IMU data are available in real time 
with 128 Hz. The flight route is planed prior to the flight. In 
order to rectify images DSMs are necessary. They have to be 
loaded from a data base prior to flight. Figure 4 illustrates the 
image acquisition geometry of the DLR 3K-camera system. The 
tilt angle of the sideward looking camera is approx 35°. Based 
on the usage of 50 mm Canon lenses, the dependency between 
airplane flight height, ground coverage, and pixel size is shown, 
e.g. the pixel size at a flight height of 1000 m above ground is 
15 cm and the camera array covers up 2.8 km in width.  
 
 

 
 

Figure 4:  Illustration of the image acquisition geometry. The 
tilt angle of the sideward looking cameras is approx. 35°. 

 
From this geometry the amount of triangles necessary to cover 
the ground surface is derived. Table 1 lists the number of 
triangles necessary for one triple image of the 3K-camera 
system. For this estimation the RPY-angles of the airplane are 
assumed to be zero. Of course, the number of triangles may 
increase according to roll, pitch, and jaw angles as well as the 
angle between the air plane and the earth surface. Thus, DSMs 
are loaded on demand into PC storage. For holding the 
appropriate DSM available, a Kalman-Filter is applied 
estimating the high probable area and triggering the DSM 
loading process.  Then, the DSM covering this area is triangled 
as fast as possible and loaded into the GPU.  For up-to-date 
graphics hardware handling such amount of triangles in real 
time is possible. Some computation times for triangulation are 
shown in section 5. The triangulation of surfaces will be 
necessary prior to flight, if DSMs of higher resolution e.g. 2 m. 
are applied. For halving the amount of data a Delaunay 
algorithm can be used, but this algorithm is too slow for real 
time computation. In this case, the mesh should be generated 
prior to flight and stored in a binary file. 
 
 

Flight height Number of triangles 
DSM Resolution 

[25m] 
DSM Resolution 

[2m] 
 

side look nadir Side look nadir 
1000 m 1710 1064 274 560 172 800 
2000 m 6916 3420 1 099 200 691 200 
3000 m 7809 9804 2 473 920 1 555 200

 
Table 1.  Number of triangles necessary according to one triple 

image of the DLR 3K-camera system (side look and nadir). 
Assuming a boresight angle of 35°.  

 

Fig. 5 illustrates the complete virtual scene necessary for GPU-
based orthorectification. All transformations and coordinate 
systems are shown with following interpretation and given in 
4x4 homogenous coordinates: 

• is the transformation from the UTM-system 
into the virtual  reference system. 

UTM
RefT

• is the transformation from UTM in GPS/IMU 
system measuring the current flight position and 
orientation in RPY coordinates. 

UTM
IMUT

• , ,  are the transformations into 

the camera system respectively. These 
transformations cover the boresight angles and 
transforms into the principle point of the camera 
system. 

IMU
nadirT IMU

rightdirT IMU
leftdirT

8.5 km 

2.8 km 

0.43 m 

0.14 m 

coverage      pixel size 

Coverage 

Flight 
@ 3000 m 

@ 1000 m 

(1:60.000)

(1:20.000)

•   defines the transformation from the reference 
system into the virtual camera system looking in 
negative z-axis. Applying orthogonal projection 
results the desired orthorectified image. 

Ref
OrthoT
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Figure 5:  Arrangement in 3d. All transformations are depicted. 

The RPY angles are obtained by the GPS/IMU. 
 
Some other parameters are also necessary. These are the pixel 
size s = 7.21 10-6 m of camera and the number of cols and rows. 
Also, the focal length is given with n = 0.0511 m. Up to now, 
we remove the radial distortion of images from the original 
image analytically, but we will accelerate the computation by 
adding an appropriate 3d-mesh to the triangled DSM. Also the 
distance from principle point to projection centre is necessary. 
These parameters as well as boresight angles are obtained from 
calibration. This is done on-the-fly without ground control 
points based on automatically matched 3-ray tie points in 
combination with GPS/IMU data (Kurz et al. 2007a). 
 
4.1 Real Time Loop 

As shown before, meshing DSMs is possible in real time for 
DSMs with resolution of up to 2 m. In the next step, the image 
is tiled due to graphics texture buffer size. This varies from 
2048 pixels to 4096 pixels according to the available GPU. 
Each tile is loaded and scaled with respect to the virtual image 
size (wx,wy) by applying the scaling matrix S. Then, it is 
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transformed into the virtual sensor plane. Following 
transformations are used for each tile:  
 

nadir
esensorplan

IMU
nadir

UTM
IMU

f
UTM TTTTS ⋅⋅⋅⋅ Re , (1) 

 
With (x,y,z) obtained from GPS and (rpy) obtained from the IMU this 
yields: 
 

)()()(
)()2/(),,(

yRotpRotrRot
RotRotzyxTransT

zyx

xz
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−⋅−⋅−⋅
−⋅⋅= ππ    (2) 

 
The last transformation is only a translation into the projection 
center according to the length (n = 0.0511 m). A perspective 
projection matrix P is applied. It maps a 2d-point to a ray, 
which is intersected with the meshed surface by graphics 
hardware.  
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with  n = focal length equals to the near clipping plane 
 f = far clipping plane 
 r, l = right/left border of the tile to be projected 
 t, b  = upper and lower border of the tile 
 
The parameters are calculated according to selected tiles of the 
image. Figure 6 illustrates the relation. Thus, selecting the tile 
shown of the image to be projected results in appropriate values 
of l, r, b, t. For example, the upper left tile is projected, then l is 
set to the pixel size multiplied by half number of columns and r 
is set to zero. The other values are obtained similarly. The 
computation of the far clipping plane is much difficult. It 
depends on the current RPY angles, the boresight angle and the 
DSMs normals. Thus, the rotated bounding box of the 
underlying DSM is projected onto the z-axis of the sensor 
coordinate system. Its maximal length is applied as distance to 
the far clipping plane. Thus, the z-buffer size is estimated very 
fast. Now, the tile can be projected by OpenGL. Computation 
of texture coordinates is done automatically by fast graphics 
hardware. At next they are mapped onto the DSM.   
 

l

near
clipping

plane

r

far 
clipping
plane

projection
center

image

tile

 
Figure 6:  Projection of tiles and the corresponding OpenGL 
parameters, which are computed during the real time loop. 

 
The orthorectified image can be obtained by viewing the scene 

from the orthocamera, which is placed according to . The 
entire scene is scanned by driving the camera in the (x,y) plane 

and reading the colour buffer of the result back to the CPU. To 
determine the number of rendering calls required during the real 
time loop for one image, three parameters are required: The 
desired resolution in pixels, the size of the resulting image, and 
the maximal window size available by graphics hardware 
available.  In order to estimate the size of the resulting image 
prior to execution, an image with only one and the same colour 
value in each pixel is generated and projected with lower 
resolution onto the DSM. Then the colour buffer is read back 
and the resulting bounding box is obtained (it is an oriented 
bounding box, according to the orthocamera system). For 
calculation of necessary rendering steps, the maximised 
possible window size is applied. The scanning window is an 
axis aligned window. From that the minimal number of required 
image shots according to window size pixel ground resolution is 
computed. Figure 7 shows the coherence. For each window, 
corresponding tiles of the original image are selected and 
projected into the ortho-image. 

Ref
OrthoT

 
window
size x

window
size y

axis aligned
bounding
box

bounding box
of orthoimage

 
 

Figure 7: Scanning the high resolution image, here six 
rendering steps are required in the inner real time loop.  

 
. 

 

triangulations of surfaces

estimation of bounding box

generation of texture
coordinates for
appropriate tiles

reading colour
buffer back to CPU 

GPS/IMU
signal

camera
image

projection of tiles onto DSM

outer loop
with 3 fps

inner loop
(rendering)

  
 
Figure 8:  Processing steps to be computed within the real time 

loop. Each projected image is assembled to the final ortho-
image. 

 
Assembling the orthoimages is done by collecting projected 
tiles of parts of the image in each rendering step as illustrated in 
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figure 7. Images for the white tiles are obtained in each 
rendering step. They result in the desired orthoimage. Figure 8 
depicts the two real time loops; in each computation step the 
inner loop corresponds to the rendering loop and the outer loop 
is the real time loop itself for obtaining an orthorectified image 
for the DLR 3K-camera system. Except from meshing the 
complete implementation is done in OpenGL. 
 
4.2 Optimizations 

Some optimizations concern the usage of OpenGL. Here, 
Display-Lists could be used, because the DSMs are not 
modified during flight. Another optimization would be the 
usage of some OpenGL extensions allowing textures of varying 
sizes. A third optimization of the orthorectification improves 
the distortion algorithm. Currently, we use an analytical 
solution. Instead of that the calibration program could generate 
a 3d-mesh, which is only added to the meshed DSM. Hence, no 
more computation time is required for radial distortion of 
images. 
 

5. RESULTS 

In the usual case, we will compute the triangle meshes of DSMs 
during the flight. For execution in real time computation times 
should not be too long. Thus, we have measured our algorithm 
for 3d-mesh triangulation. Figure 9 depicts execution times 
according to flight height and DSM resolution. We needed 8 ms 
for loading DSM with a resolution of 25 m and triangulating it 
into 6664 triangles. The triangulation was performed very fast 
within 0.0014 ms. Thus, most of the execution time is caused by 
loading. The amount of triangles in this example corresponds to 
a flight height of 2000 m in nadir. Thus, computation times for 
images of side looking cameras will be about 30 % higher. 
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Figure 9: Computation times for loading and triangle DSMs on- 

the-fly in according to flight height for our DLR 3K-camera 
system. 

 
Due to the high image resolution we decided to apply the 25 m 
DSM in order to have enough computation time available for 
image loading and copying data between GPU and CPU buffer.  
 
Another important execution time is the rendering step for a 
single tile, because this has to be repeated often during the real 
time loop. Table 2 depicts the relation between number of tiles, 
available texture buffer size and necessary rendering steps. 
 
The computation times for one rendering step according to 
texture buffer size 512x512, 1024x124 and 2048x2048 are 17 
ms, 51 ms and 95 ms. The computation time was determined on 

a no-named Mobile on Board GPU. For reducing our execution 
time we will apply fast GPUs in the near future. Despite this, it 
is obvious that the performance of the graphics hardware 
suffices for orthorectification of one single image of the 3K-
camera system. Thus, a frame rate of 3fps for the orthoimage 
process can be achieved. 
 

Flight height Number of rendering steps 
buffer size of  
(512 x 512) 

buffer size of 
 (2048x 2048) 

 

off-dir nadir off-nadir nadir 
1000 m app. 68 app.60     app.9 app.6 
2000 m app. 80 app.70     app.12 app.8 
3000 m app. 110 app.80     app.14 app.10

 
Table 2: Relation between texture buffer size and number of 

iterations in the inner-loop. Assuming window buffer size and 
texture buffer size has the same value, also assuming a side 

looking angle of 35°. 
 
For obtaining first results of our new algorithm we used images 
and GPS/IMUS data from a flight in southern Germany in 2007. 
In figure 10 the image can be seen where the radial distortion is 
removed. The orthorectified image tile obtained by our real 
time algorithm can be seen in figure 11. In comparison the 
orthoimage computed by (Mueller et. al. 2004) is shown in 
figure 11. The tile of the image is obtained within 97 ms on a 
mobile no-named on board GPU. 
 
 

 
 
Figure 10: Original image where distortion is already removed.  
 
 

 
 

Figure 11: Result of the orthorectification of one tile. 
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Figure 12: Orthoimage computed with the same original image 

and with the equal DSM. The entire image is projected 
according to (Mueller et. al. 2004). 

 
 

6. CONCLUSION AND OUTLOOK 

In the paper, we have suggested a new architecture for real time 
image processing in remote sensing. The architecture consists 
of the DLR 3K-camera system and five on board PCs. For real 
time applications in remote sensing e.g. traffic monitoring 
orthorectification of images with a rate of 3fps is required. Up-
to-date analytical algorithm suffer from the high amount of data 
(16Mpixel) to be projected, hence a real time algorithm has 
been implemented which exploits graphics hardware. With this 
implementation orthorectifcation of images in real time has 
become possible.  The computation times for the algorithm may 
change according to data set. We have evaluated our algorithm 
on one data set so far. In the future, we will evaluate the quality 
of projected images using ground control points. The accuracy 
of orthoprojected images has to be investigated as well. The 
radial distortion of images is up-to-now computed analytically. 
It will bee accelerated by using an appropriate 3d mesh. 
Altogether, we can orthorectify images in real time, which is an 
important first step towards real time monitoring of e.g. traffic, 
disaster, and mass events.   
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