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ABSTRACT: 
 
The rational function model (RFM) utilized for high resolution satellite imagery (HRSI) provides a transformation from image to 
object space coordinates in a geographic reference system. Compared with the rigorous model based on the collinearity condition 
equation or the affine model, the RFM with 80 coefficients would be over parameterized. That would result in an ill-conditioned 
normal equation. Tikhonov regularization is often used to resolve this problem, and many applications have verified its serviceability. 
This paper will detail the method for regularization parameter selection. However, Tikhonov regularization makes the two sides of 
equation unequal, resulting in a biased solution. An unbiased method - The Iteration by Correcting Characteristic Value (ICCV) was 
introduced, and a strategy to resolve the ill-conditioned problem for solving rational polynomial coefficients (RPCs) was discussed in 
this paper. The tests with SPOT-5 and QuickBird imagery were accomplished. The empirical results have shown that our 
methodology can effectively improve the condition of the normal equations. 
 
 

1. INTRODUCTION 

Since the launch of the IKONOS II satellite, the rational 
function model (RFM) has gained considerable interests in 
photogrammetric community. SpaceImaging Company provides 
the RFM to users instead of the physical sensor model, 
subsequently, DigitalGlobe Corporation provides the RFM 
together with the strict geometric model in order to satisfy 
different users. The RFM has been universally accepted, and 
validated, as an alternative sensor orientation model for high 
resolution satellite imagery (HRSI). The RFM is an 
approximation of the rigorous sensor model, via a number of 
control points. Then it could be utilized in the photogrammetric 
process instead of the complex rigorous sensor model. It would 
be a part of the standard image transfer format, and it is 
becoming a standard way for economical and fast mapping from 
remotely sensed imagery. 
 
The key of the RFM is to gain accurate rational polynomial 
coefficients (RPCs). Compared with the rigorous model based 
on the collinearity model or the affine model, the RFM with 80 
coefficients would be over parameterized (Fraser et al., 2005). 
That may cause the design matrix to become almost rank 
deficient because of the complex correlation among RPCs. It 
may result in numerical instability in the least squares 
adjustment, or even producing wrong solutions. The 
regularization technique was often suggested to tackle the 
possible ill-conditioned problem during the adjustment (Tao and 
Hu, 2001a). It has been proved to effectively improve the 
condition of the normal equations. But the determination of the 
regulation parameter has still been considered to be a challenge.
 
Regularization parameter selection is crucial to the 
regularization technique. There are several methods for the 
optimal parameter determination, including ridge trace method, 
L-curve criterion, generalized cross validation (GCV) method, 
ordinary cross validation (OCV) method, and so on. The effects 
may be totally different when we use different methods. The 

L-curve, GCV and OCV were compared by Choi et al. (2007). 
In practice, ridge trace method is widely used for its simpleness, 
where solutions are computed for a large number of different 
regulation parameters, selecting the best one by suitable 
heuristics (Tao and Hu, 2001a). However, ridge trace method 
can not obtain the optimal parameter, and it is inconvenient for 
automatic computation. The authors try different regulations for 
the RPCs computation. The L-curve criterion has been proved 
to be efficacious.  
 
Despite regularization technique gives a good result, it makes 
the two sides of equation unequal by imposing constraints to the 
diagonal elements of the normal equation matrix, resulting in a 
biased solution. So, we will introduce an unbiased method, the 
Iteration by Correcting Characteristic Value (ICCV). This 
method is simple, and it was put forward more than ten years 
ago, but still not widely used. The initial values will be the main 
factor that affects the result. And this paper will suggest two 
ways to set initial values, just for RPCs computation.  
 
Accurate RPCs are crucial to the RFM model, which directly 
determines whether it could replace the physical sensor model 
to accomplish the photogrammetric process. And the 
ill-conditioned normal equation would be the main problem. 
This paper aimed at finding a proper method to resolve the 
possible ill-conditioned problem, getting an accurate solution. 
Initially, we will review the basic model and the methods 
including the RFM solution, the terrain-independent and 
terrain-dependent computational scenarios. The regulation 
technique and the method of regularization parameter selection 
are then addressed, focusing on the L-curve method. The 
unbiased ICCV is followed. The results of experimental tests 
with SPOT-5 and QuickBird imagery are then discussed. 
Finally, we will suggest a strategy for RFM computation 
according to the experiments and comprehensive analysis of the 
characteristics of the various methods. 
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2.2 2. THE RATIONAL FUNCTION MODEL  

The RFM Model 2.1 

The RFM relates object point coordinates to image pixel 
coordinates in the form of rational functions that are ratios of 
polynomials. For the ground-to-image transformation, the 
defined ratios have the forward form (OGC, 1999): 
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Here, and are the 80 RPCs; and are commonly 
set to 1.  are the normalized line and sample index of 
the pixels in image space, while are normalized object 
point coordinates. That is: 
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Here, are the image line and sample coordinates;  
represent latitude, longitude, height; the offsets and scales 
normalize the coordinates to [-1,1], minimizes the introduction 
of errors during computation. 
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The RFM has nine configurations with some variations, such as 
subset of polynomial coefficients, equal or unequal 
denominators. Also, it has forward and backward forms (Tao 
and Hu, 2001a). Generally speaking, the RFM refers to a 
specific case that is in forward form, has third-order 
polynomials with unequal denominators, and is usually solved 
by the terrain-independent scenario. 
 

RFM Solution 

Two methods have been developed to solve for the RFM, direct 
and iterative least-squares solutions (Tao and Hu, 2001a). Here, 
the direct least-squares solution of RFM is given as follows: 
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P is the weight matrix, and it is usually set as identity 

matrix. 
 
2.3 

3.1 

Approaches of Determining RPCs 

There are terrain-independent scenario using known physical 
sensor model and terrain-dependent scenarios using ground 
control points. The terrain-independent scenario is to use the 
onboard ephemeris and attitude data. With the physical model 
available, a virtual control grid covering the full extent of the 
image and the entire elevation is generated. The RPCs are 
estimated using a least-square solution with the image grid 
points and the corresponding object grid points (Tao and Hu, 
2001a, 2001b). 
 
For the terrain-dependent scenario, a number of ground control 
points are collected for the RPCs computation. At least 39 
ground control points are needed per image to solve 78 RPC 
coefficients, excluding the constant parameters and . And 
the solution is highly dependent on the actual terrain relief, the 
distribution and the number of GCPs (Tao and Hu, 2001a, 
2001b).  

1b 1d

 
 

3. REGULARIZATION TECHNIQUE 

The RPCs may display very high correlation between 
coefficients. That would be a potential problem for obtaining a 
stable solution. The design matrix is usually ill conditioned in 
the experiments (Tao and Hu, 2000). Even for the well 
conditioned observation equations, regularization can improve 
the accuracy of the RPCs, and help produce well-structured 
RPCs, especially for the third-order RFM (Hu and Tao, 2004). 
 

Ridge Regression 

Ridge regression (Ridge estimate), a part of regularization 
technique, is a biased estimation for nonorthogonal problems 
(Hoerl and Kennard, 1970). It carries out by adding a small 
positive quantity to the diagonal of BBT . Ridge regression 
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obtains biased estimates with smaller mean square error. Ridge 
regression is defined as follow: 
 

PLBIPBBX T1T )()(ˆ −+= kk             (7) 
 

Where 
k is ridge parameter or regularization parameter, usually a 

small positive quantity; 
I is identity matrix; 

)(ˆ kX  is ridge regression estimation. 
  
3.2 

3.3 

Ridge trace method for parameter determination 

Solutions are computed for a set of different k values. And the 
best k is selected by suitable heuristics, for the least error at 
check points (Tao and Hu, 1970). This method is very simple, 
and it is widely used.  
 

L-curve criterion for parameter determination 

The L-curve is a log-log plot of the norm of a regularized 
solution versus the norm of the corresponding residual (fitting 
error) as the regularization parameter is varied (Hansen, 1992; 
Rodriguez and Theis, 2005). L-curve is presented as: 
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The curve is L-shaped: approximately vertical for small k, and 
approximately horizontal for large k, with the corner providing 
the optimal regularization parameter. So the object is to find out 
the point with biggest curvature:  
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Where 
'ξ 、 = the first and second derivative of ''ξ ξ  on k; 
'η 、 = the first and second derivative of ''η η  on k. 

In practical computation, curve fitting is often used to obtain the 
L-curve. 
 
The L-curve criterion is able to recognize correlated errors, 
while the GCV method may fail to do so. That is essentially 
because the L-curve criterion combines information about the 
residual norm with information about the solution norm, 
whereas the GCV method only uses the information about the 
residual norm. The research done by Choi et al (2007) shows us 
that the L-curve method performed better than OCV or GCV, 
particularly for high noise levels. The L-curve method is found 
to be less susceptible to producing large reconstruction errors 
but it tends to over-regularize the solution in the presence of 
low noise, leading to under-estimates of the forces.  
 
 

4. THE ITERATION BY CORRECTING 
CHARACTERISTIC VALUE 

Regularization technique imposes constraints to the diagonal 
elements of the normal equation, resulting in a biased solution. 
So, we will introduce an unbiased method - the Iteration by 
Correcting Characteristic Value (Wang et al. 2001) for RPCs 
computation. 
 

Here is the norm function, 
 

PLBXPBB TT ˆ =  
 

Add to both sides， X̂
XPLBXI)PBB ˆˆ( TT +=+  

 
There are  on both sides, so it should be resolved in iterative 
mode: 

X̂
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If we set , 1T )−+= IPB(Bq
Then the (13) could be written as: 
 

)0(kT2)( ˆ)(ˆ XqPLBqqqX ++++= kk L   (14) 
Where  

)0(X̂ = initial values of the solutions. 
 
Eqs. (13) and (14) are the expressions of the iteration by 
correcting characteristic value. The convergent and unbiased 
properties are discussed by Wang Xinzhou et al. (2001). 
 
The ICCV carried by iteration, initial values should be offered 
for the iteration, and they have an important impact on the result 
or even determine the success of the method. The direct 
least-squares solutions are usually used as the initial values.  
Unfortunately, when the ill-condition happens, it is possible that 
the LS solution is so bad that the iteration is unconvergence. So, 
here we suggest another way special for the RPCs solution. 
Considering that the third-order RPCs are closed to zero, the 
initial values may set to zero. We will test it in the experiments.  
 
 

5. TEST RESULTS AND EVALUATION 

5.1 Design and Tests 

The tests have been designed for these purposes: 
   To evaluate the numerical stability of the direct least squares 
solution. The condition number is cursorily employed to 
measure the condition of the design matrix. The number is 
much bigger when the function is ill-conditioned.  

To compare the performances of the regularizations for the 
RPCs computation. We choose the widely-used ridge trace 
method and the L-curve criterion. 
   Mainly to evaluate the potential of the unbiased ICCV 
method for the RPCs computation, and to test the impact of the 
initial values. Initial values are set by zero and least square 
solution respectively. 
   To find out an effective strategy to tackle the possible 
ill-conditioned problem.  
 
Here we confine the experiments to the third-order RFM with 
80 coefficients, based on the terrain-independent scenario. With 
the rigorous sensor model established and the elevation range 
obtained from a cursory DEM, the 3-D grid of object points was 
generated, with 5 constant elevation planes each with 10 by 10 
grid points. While the check grid consists of 10 constant 
elevation planes each with 20 by 20 grid points. So there are 
500 control points and 4000 check points. 
 
The fitting accuracy is measured in image both at control points 
and check points. Firstly, the image position of the grid points is 
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calculated by the obtained RFM. Then the differences between 
the pixel coordinates of the original grid points and those from 
the RFM are calculated for evaluation. The accuracy 
determination is quite the same as mentioned by Grodecki and 
Dial (2001).  
 
 

 
 

Fig. 1 3D object grid generated for solving RPCs 
 
5.2 Test data sets 

Tao and Hu (2001a) tested with the aerial photograph data and 
SPOT data with sizes of 6000 by 6000. In order to evaluate the 
fitting accuracy of the different methods for HRSI, we choose 
SPOT-5 and QuickBird imagery. Respective ground pixel sizes 
for testfield imagery were 5 m for SPOT-5, and 70 cm for the 
QuickBird. Further details regarding the test-range are given in 
Table 1. 
 

Data set Ground pixel 
Size (m) 

Image size 
(pixel) 

Elevation range 
(m) 

SPOT-5 5 12 000×12 000 -2~327 

QuickBird 0.7 27 552×22 700 340~1194 

 
Table 1.  Information of the data sets 

 
5.3 Results and evaluation 

All the methods are tested on both the SPOT-5 and QuickBird 
imagery. The RMSE and the maximal errors in the imagery at 
the control points and the check points are listed in Table 2 for 
SPOT-5 data, Table 3 for QuickBird data. The condition 
numbers of the norm function, before and after regulation, are 
also listed in the tables. 
 
There is not an absolute criterion for exactly judging that the 
norm function is ill-conditioned or not, and how ill-conditioned 
it is. Generally speaking, the condition number is helpful, the 
bigger it is, the worse the condition is. Based on Table 2 and 
Table 3, the condition numbers are big for both images, 

 for SPOT-5 data, and  for QuickBird 
data. The direct least square solutions are not very good, out of 
sub-pixel, especially for the QuickBird data, the RMSE at check 
points arrives at 115.937 pixels, and the maximal error is as 
bigger as 7280.348 pixels. Therefore, the direct least square 
solutions here could not be the final RPCs which would 
substitute the physical sensor model. 

141091.7 × 111013.1 ×

 
Determining regularization parameter using ridge trace method 
is shown in Fig. 2, and L-curve method is shown in Fig. 3, 

where SPOT-5 imagery is employed as an example. In the 
experiment, RPCs are computed for a number of k with 
different orders of magnitude varying from to , to 
determine the order of magnitude. Then employ more k around 
the order of magnitude, and choose the one that has the smallest 
error at check points. This method can not select the best 
parameter, and it is not convenient for automatic computation.  

1010− 110−

 
For the L-curve method, the curve is shaped like “L”. And the 
corner point on the L-curve that has maximum curvature 
corresponds to the optimal parameter. This method can offer an 
exact parameter automatically, without the need to plot the 
L-curves. In the experiments, the parameter determined by 
L-curve criterion is  for SPOT-5 data, and 

for QuickBird data. 

71004.2 −×
61004.9 −×

 
 

 
 

Fig. 2 Determining ridge parameter using ridge trace method 
 
 

 
 

Fig. 3 Determining ridge parameter using L-curve method 
 
By comparison, the regulation by L-curve criterion, made very 
significant improvements in terms of accuracy. After the use of 
regulation, the condition numbers are smaller than the original 
one, for the SPOT-5 data, reducing from  to , and for 
the QuickBird data, reducing from  to . Except the 
high accuracy, L-curve method shows very strong stability 
based on more data sets.  

1410 910
1310 810

 
The ICCV carries out by iteration. In the experiments, the initial 
values are set by zero and least square solution respectively. 
The iterative threshold value set as . For the zero initial 
values condition, the results are pretty good based on the tables 
that the accuracy is so close to and even better than the results 
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of the L-curve method. It converged after a few times iteration, 
even the iterative threshold value set to , it converges 
quickly. For the least squares solution initial value condition, 
we can note that it is good for SPOT-5 data but invalid for the 
QuickBird data. It converged only after one time iteration even 
that the iterative threshold value is strict. Coercive iteration is 
also invalid for the improvement of the accuracy. More tests 

should be done with the ICCV. It is worth of pointing out that 
the computation of the ICCV is very simple and fast, that is 
because there is no need to determine the regulation parameter, 
and no need to inverse the matrix every time during the iteration. 
And the structure of the solution by ICCV is as good as that by 
regulation. Anyway ICCV is a potential way to overcome the 
ill-conditioned problem for the RFM solution. 

910−

 
 

Errors at CNPs (pixels) Errors at CKPs (pixels) 
Approaches Condition

number 
Iteration 

times RMSE Max RMSE Max 

Least squares (LS) 141091.7 × - 1.774 4.190 1.609 4.188 

Ridge 
Estimate L-curve criterion 91026.4 × - 0.000 0.001 0.000 0.001 

LS solutions as initial values - 7 0.000 0.001 0.000 0.001 ICCV 

Zero as initial values - 12 0.000 0.001 0.001 0.001 
 

Table 2. RMSE and Max errors in image with the SPOT-5 data 
 
 

Errors at CNPs (pixels) Errors at CKPs (pixels) 
Approaches Condition

number 
Iteration 

times RMSE Max RMSE Max 

Least squares (LS) 131011.1 × - 4.893    77.168 115.937 7280.348 

Ridge 
Estimate L-curve criterion 81007.1 × - 0.358 0.745 0.335 0.734 

LS solutions as initial values - 1 4.895 77.334 115.684 7264.072 ICCV 

Zero as initial values - 8 0.357 0.728 0.335 0.710 
 

Table 3. RMS and Max errors in image with the QuickBird data 
 
 
The DigitalGlobal Corporation provide the RPC file to the users. 
As a comparison, we choose 9 ground control points to 
checkout the RPCs, calculating the differencec between the 
image coordinates of the GCPs and that from the RPCs. And the 
errors at the GCPs are listed in Table 4. From the table we can 
see the RPCs by the L-curve and the ICCV are so close 
according to the accuracy, and they are slightly better than the 
RPC provided by the corporation. 
 
 

Errors at GCPs (pixels) RPC 
ml ms mls

RMSE 9.310 9.082 13.006By L-curve 
Max 11.556 13.334 16.856

RMSE 9.309 9.081 13.005By ICCV 
Max 11.550 13.335 16.855

RMSE 9.391 9.592 13.423Provided by 
DigitalGlobal Max 11.563 13.867 17.646

 
Table 4. RMS and Max errors in image at GCPs 

 
 

6. CONCLUSIONS 

Since the SpaceImaging Company provided the RPCs to the end 
users and the service providers, the RFM has been with us for 
eight years, and a lot of researches show us that it is a useful 
tool for exploiting high resolution satellite images. 
Subsequently, the DigitalGlobal Corporation provides the RPCs 
together with the physical sensor model, and more imagery 
vendors may adopt the RFM, providing a way for economical 
and fast mapping from HRSI. 
 
The aim of this paper is to suggest a proper way to resolve the 
ill-conditioned problem for the RFM solution. Regulations 
improve the stability of the inverse matrix evidently and 
produce a well structure RPCs. And the L-curve method 
performs well in the experiments, being accurate and stable. 
The ICCV is unbiased, simple, fast, and accurate, and the idea 
that set the initial values as zero acts well for the RFM solution. 
Both the methods show good effects, improving the accuracy of 
the solutions, and ameliorating the RPCs’ structure. Considering 
that the L-curve method has the risk of over-regularizing the 
solution when the ill-condition is slight, though not happened in 
the experiments, the ICCV should be the first choice. Finally, 
we suggest a strategy, that L-curve method work for high level 
ill-condition and ICCV for low. Even for the well conditioned 
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design matrix, the ICCV is really helpful to improve the 
accuracy.  
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