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ABSTRACT: 
 
Various methods exist for automatic registration of different kinds of image datasets. The datasets could be aerial or satellite images, 
maps, LiDAR data, etc. In this paper we propose a method for the registration of aerial images and LiDAR data. Our approach 
utilizes the so-called SIFT algorithm by which distinctive features are extracted from both aerial images and LiDAR intensity data. 
The extracted features are then automatically matched and the aerial image and LiDAR intensity data are registered in the 
subsequent stage. The invariance of the SIFT features to image scale and rotation and the robustness of the features with respect to 
changes in illumination, noise and to some extend changes in viewpoint may qualify those features particularly for our purpose. For 
SIFT feature extraction an open MATLAB implementation is used and integrated in the overall image registration process. This 
paper describes our approach and presents the results obtained from a LiDAR test site in Stuttgart, Germany.  
 
 

                                                                 
∗ Corresponding author 

1. INTRODUCTION 

Automatic registration of airborne or remote sensing images 
with other images or maps has a long tradition in 
Photogrammetry and Remote Sensing. Generally, matching 
works very well if the matched image data are of the same type 
but is often less successful in applications using different kind 
of data like range and intensity data. This is the context of the 
research carried out in this paper. Automated registration of 
aerial images and LiDAR data is investigated based on a 
conceptual approach known as Scale Invariant Feature 
Transform (Lowe, 1999). 
 
1.1 Related Work 

Schenk and Csathó (2007) discussed fusion of imagery and 3D 
point clouds for reconstruction of visible surfaces of urban 
scenes. They represent the reconstructed surface in a 3D 
Cartesian reference system and introduce a feature-level fusion 
framework with the idea to generate a rich 3D surface 
description, in which surface information explicitly includes 
shape and boundary of surface patches and spectral properties. 
The purpose of the surface reconstruction is to support 
applications such as bold-earth determination and the 
generation of true orthophotos. 
 
Habib et al. (2004) investigated registration of data captured by 
photogrammetric and LiDAR systems for close range 
applications. Their approach relies on straight lines as the 
features of choice upon which the LiDAR and photogrammetric 
dataset are co-registered. They extract LiDAR linear features 
and image points along the conjugate straights lines in the 
images interactively and estimate the parameters of a 3D 

similarity transform. With experiments, they demonstrated the 
capabilities of the proposed method of co-registration of laser 
scans and photogrammetric data.  
 
Hu et al. (2006) presented a hybrid modelling system that fuses 
data from three resources: a LiDAR point cloud, an aerial and 
ground view images. The purpose of the system is the rapid 
creation of accurate building models. There are three main steps 
to do the modelling: At first building outlines are interactively 
extracted from a high-resolution aerial image and mapped to the 
LiDAR data. Next surface information is extracted from LiDAR 
data and used for model reconstruction. Finally high-resolution 
ground view images are integrated into the model to generate 
fully textured urban building models.  
 
1.2 Research Concept 

The basic idea for registration of airborne images and LiDAR 
data is to use the LiDAR intensity data and the aerial images 
and employ the SIFT algorithm for matching these two data sets. 
Substantially, the LiDAR intensities represent radiation that is 
reflected from the scanned surface. LiDAR scanners like the 
one we use in our experiments mostly operate with frequencies 
in the NIR, therefore it is likely that a LiDAR intensity image 
and an aerial image do not match in all image regions similarly. 
On the other hand it is expected that the SIFT algorithm with its 
invariance to image scale and rotation and robustness to 
changes in illumination, noise, occlusion and to some extend 
changes in viewpoint should find an adequate number of 
suitable features for a successful matching of both data sets. By 
using the homologous feature points found by SIFT feature 
matching registration can be carried out. 
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Image registration consists of four steps: 
 

• Extraction of SIFT features 
• Matching of SIFT features 
• Removal of outliers in the matched 
• Selecting the transformation model between the two 

images and estimating its parameters 
 
The last two steps are often combined, in particular, if outlier 
detection is part of the parameter estimation procedure. 
 
In the following section we briefly outline the SIFT algorithm 
and describe the matching strategy. The third section presents 
results of some experiments carried with data from a LiDAR 
test site in Stuttgart, Germany. The paper closes with some 
conclusions and recommendations. 
 
 

2. IMAGE REGISTRATION BASED ON SIFT 
FEATURE MATCHING 

2.1 The SIFT Algorithm 

The Scale Invariant Feature Transform (SIFT) was introduced 
by David Lowe (Lowe, 1999). SIFT is an approach for 
detecting and extracting distinct features from images which 
can be used to perform matching between overlapping images. 
The features are invariant to image scale and rotation and robust 
with respect to changes in illumination, noise and to some 
extend changes in the 3D camera viewpoint. 
 
Detection stages for the SIFT features are the following: 
 

• Scale-space extrema detection  
• Keypoint localization  
• Orientation assignment  
• Generation of keypoint descriptors  

 
Key points for SIFT features correspond to scale-space extrema 
at different scales. Therefore, the first step towards the 
detection of extremas is filtering the images with Gaussian 
kernels at different scales, and the generation of the difference 
of Gaussian filtered images of adjacent scales.  
 
Mathematically this reads as follows 
 
 

),(*),,(),,( yxIyxGyxL σσ =                 (2-1) 
 

),(*)),,(),,((),,( yxIyxGkyxGyxD σσσ −=      (2-2) 
 
 
where  I  is the image, G the Gaussian kernel and L the scale-
space image generated by convolution(*). D represents the 
difference of Gaussian filtered images, also called DoG. 
 
The filtered image are organised in a kind of an image pyramid 
in which the blurred images are grouped by octave. An octave 
corresponds to doubling the σ -value of the Gaussian kernel. 
On each image scale (octave), a fixed number of blurred images 
(sub-levels) is created. In the experiments (Section 3) we use 5 
octaves with 5 differently blurred images on each octave.  
 
In order to detect the local maxima and minima of of the DoG 
images across scales, each pixel in the DoG images is compared 

to its eight neighbours in the current image and the nine 
neighbours in the neighbouring (higher and lower) scales. If the 
pixel is a local maximum or minimum, it is selected as a 
candidate keypoint. 
 
The SIFT descriptor is a weighted and interpolated histogram of 
the gradient orientations and locations in a patch surrounding 
the keypoint. To determine the keypoint orientation, a gradient 
orientation histogram is computed employing the 
neighbourhood of the keypoint. Each neighbouring pixel 
contributes by its gradient magnitude to determine the keypoint 
orientation. Keypoints with low contrast are removed and 
responses along edges are eliminated. All the properties of the 
keypoint are measured relative to the keypoint orientation. This 
provides invariance to rotation. Histograms contain 8 bins each 
and each description contains an array of 4 histograms around 
the keypoint which leads to a SIFT vector of 128 elements. For 
more details, please refer to Lowe (1999, 2004). 
 
2.2 Matching SIFT Features 

In the matching stage, the descriptor matrixes of a reference and 
a target image have to be compared. Matching is based on the 
idea to find the nearest neighbours in the descriptor matrixes. 
For robustness reasons the ratio of the nearest neighbour to the 
second nearest neighbour is used. The Euclidean distance is 
given by   
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where y and z are two descriptor vectors. The inner product of the 
vector (y - z) with itself 
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shows that with normalized vectors y and z (length 1) the angle  
 
 

)),(arccos( zy∠=α                                   (2-5) 
 
 
can be used as a good approximation within the minimum 
search, in particular for small angles. For each target descriptor, 
the first and second nearest descriptors must be found. Then a 
pair of nearest descriptors gives a pair of matched keypoints if 
the ratio between the distances to the first and second nearest 
descriptors are lower than a given threshold t.   
 
 

ratio (first, second) < t                       (2-6) 
 
In the experiments we studied the impact of t on the matching 
result by selecting t = 0.5, 0.6, 0.7, 0.8, 0.9, 1. 
 
2.3 Removal of Outliers 

Several methods exist for removing the outliers. RANSAC and 
Baarda’s data snooping method are the methods that we have 
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used in this paper. In the following sections, we briefly review 
both methods. 
 
2.3.1 RANSAC Method: 
 
The "RANdom SAmple Consensus" RANSAC was introduced 
by Fischler and Bolles in 1981. If this concept is used in the 
context of image registration the idea is to separate outliers and 
inliers in a set of point pairs which are introduced to a 
coordinate transformation. More generally speaking, the basic 
assumption is that the data consist of inliers, i. e., data points 
which can be explained by some set of model parameters, and 
outliers which are data points that do not fit the model. In 
addition, the data points are subject to noise. An advantage of 
RANSAC is its ability to robustly estimate the model 
parameters. It finds reasonable estimates of the parameters even 
if a high percentage of outliers are present in the data set. A 
small drawback of RANSAC is that a complete search would be 
computationally very expensive. Therefore the number of 
random samples which is selected to estimate the parameters is 
usually limited by an upper number which may lead to a 
suboptimal solution (Fischler and Bolles, 1981).  
 
2.3.2 Baarda’s Data Snooping Method: 
 
Baarda’s method is one of the most commonly used blunder 
detection methods. It separates the inliers from the outliers 
using the estimated normalised residuals. With observation 
vector L and design matrix A the least squares estimate of the 
unknowns x is found by 
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The residual vector v and its covariance matrix Cv  
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are used to determine normalized residuals by computing the 
ratio of a residual and the square root of corresponding diagonal 
element of the covariance matrix CV 
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Normalized residuals follow the standard normal distribution 
N(0,1) if no errors are present in the data. If a normalised 
residual is above a critical value, the corresponding observation 
might be erroneous. Data snooping is the process of eliminating 
the observation, which produces the largest normalised residual. 
This process has to be repeated until no further outlier is 
detected anymore.  
 
2.4 Procedural development 

The procedural development undertaken in this research can be 
summarized as follow:  
 

Dividing the images of both datasets into patches: Due to the 
large size of two datasets which causes difficulties in running 
the program large image data have been divided in smaller 
patches.  
 
Designing a GUI: A GUI is developed which handles loading 
datasets and specifying SIFT parameters, in particular: Number 
of octaves, number of images in each octaves (levels), standard 
deviation of Gaussian Function (σ), threshold of SIFT matching, 
and some others of minor importance. The error search with 
RANSAC and data snooping is visualised to simply control the 
impact of SIFT parameter settings onto the registration result of  
 

Figure 1: Flowchart of the registration program 
 
the four types of the LiDAR data used in the experiments (i.e. 
LIDAR range, LIDAR intensity, both with first and second 
pulse). 
 
Overall registration procedure： Flowchart of the overall 
registration process is shown in the following figure (Figure 1). 
 
The histogram matching between LiDAR intensity and aerial 
images serves for convenience of visual evaluation. SIFT 
keypoints are extracted from the original image data. The 
transformation parameters are used to rectify the target image to 
the reference image frame. 
 

 
3. EXPERIMENTAL INVESTIGATIONS 

3.1 Test data set of Stuttgart city 

The TopScan Company has acquired LiDAR data and aerial 
images in April 2006 with a sampling density of 4.8 points per 
square meter for the LiDAR data. Simultaneously aerial colour 
images with 20 cm ground resolution have been recorded using 
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a Rollei AIC-modular –L-S digital metric camera with 4080 × 
5440 pixels per image.  
 
The RGB images are transformed to a gray scale images and 
used as input to the SIFT algorithm. The LiDAR data have been 
interpolated to a regular raster of 0.5 m grid size. Thus four 
images, two for the last and two for the first returns of LiDAR 
scanner are produced which in the following are called “Last 
Range, First Range, Last Intensity and First Intensity". Each 
LiDAR image covers 2000 × 2000 grid points.  
 
3.2 SIFT Algorithm applied to the LiDAR Data   

In a first experiment, keypoint extraction related to LiDAR 
range and intensity is investigated by using all four LiDAR 
images. Table 3.1 shows a significant difference with respect to 
the number of extracted keypoints. LiDAR intensity images 
have 7 to 8 times more SIFT key point features than LiDAR 
range images which manifests a comparatively low range 
variation in the range images. The reflected signal  

 
 

Original image 
500*500 pixels 

original 
aerial image 
(20 cm) 

reduced 
image 

(40 cm)  

reduced 
image  

(80 cm) 

Number of 
SIFT features 3980 1326 378 

 
Table 3.1. Key points in different LiDAR images 

 
strength, which leads to the intensities in the range images, 
leads to texturing which is comparable to the greyscale aerial 
image. The spatial distribution of the keypoints is therefore 
sparse in the LiDAR range images and dense in the LiDAR 
intensity images. First return data tend to result in more 
keypoints than last return data, which was expected in advance.  
 
3.3 SIFT Keypoints extracted from the Aerial Image 

While LiDAR images have a resolution of 50 cm, the aerial 
image resolution is much higher with around 20 cm on the 
ground. To see the impact on the number of extracted keypoints 
the resolution of the aerial image is reduced to 40 cm and 80 cm 

ground pixel size by Gaussian filtering and resampling. Figure 
2 shows the extracted keypoints. The reduction of the 
resolution by a factor of 2 (linearly), i.e. 2 by 2 pixels are 
combined to 1 pixel, leads to a similar reduction of the number 
of extracted keypoints (Table 3.2).  
 
 

LiDAR  Last 
Range  

First 
Range  

Last 
Intensity  

First 
Intensity 

Number of 
Key Points  

1601 1828 11993 13393 

Spatial 
distribution 

poor poor good good 

 
Table 3.2. Dependency of SIFT keypoints from image 

resolution  
 
3.4 Impact of Base Level Smoothing of the Datasets on 
SIFT Keypoint Extraction 
While in the previous section smoothing and reduction of the 
resolution of aerial image was carried out, the base level 
smoothing is a filtering of the input image with the Gaussian 
kernel to define the base level of the scale space image 
according to Eqn. (2-1). Figure 3 shows the dependency of the 
number of extracted keypoints on base level smoothing for an 
aerial image, and for LiDAR First Range, Last Intensity and 
First Intensity. All image data sets are regions of 500 by 500 
pixels. Figure 3 also shows that the curves for the aerial image 
and both LiDAR intensity images are close to each other at a 
base level smoothing with a σ  of 1 and above. With a lower 
sigma value for base level filtering more keypoints are 
extracted from the aerial image than from the LiDAR intensities. 
A value of 1 for the base level σ  was used for all further 
experiments. The red line indicates the very small number of 
extracted keypoints in the range data. 
 

 
3.5 Impact of Octave Selection on Keypoint Extraction 

Figure 4 shows that with an increasing the number of octaves an 
increasing number keypoints is extracted. However with more 
than 5 octaves the number of extracted keypoints is almost 
constant. Thus, 5 octaves are used for the further experiments. 
The size of the image was again 500 by 500 pixels. The number 
of extracted keypoints varies with less than 10% between aerial 
image and the LiDAR intensity images.  

  
               a                                 b                                 c                   

    
               d                                  e                                 f 
 

Figure 2. (a,d) Aerial image (20 cm), (b,e) reduced resolution 
(40 cm) ,(c, f ) further reduced resolution (80 cm) 
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Figure 4: Dependency of matched features on the 
number of octaves 

 
3.6 The Impact of the Number of Sub-levels per Octave on 
Keypoint Extraction  

On each image scale represented by a certain octave a fixed 
number of sublevels (differently blurred images) is used in the 
SIFT concept to extract the keypoints as explained in Section 
2.1. With only two sub-levels a fairly small number of 
keypoints is extracted. this increases to a maximum of features 
if 4 sub-levels are employed for LiDAR intensity images and 5 
sub-levels for the aerial image (Figure 5). The curve for the 
aerial images starts from a lower number at sub-level 2 and 
intersects the curves for the LiDAR intensities near sub-level 4. 
 
 

 
3.7 The Impact of the Matching Threshold on the Number 
of Matched Keypoints 

To study the dependency of the number of matched features 
from matching parameters again image regions of 500 by 500 
pixels are used for the experiments. Matching is controlled by 
the threshold t (cf. Section 2.2). The lower the threshold t the 
more prominent should be the extracted keypoints. With values 
of t close to 1 a higher number of error is expected in the 
matched keypoints. Figure 6 shows a high sensitivity of the 
number of matched keypoints on the threshold t. Around a 
threshold of 0.85 a strong growth in the number of matched 
keypoints is observed. An increased base level smoothing (the 
red curve) produces less matched points.  
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Figure 6: The number of matched features as a function 
of the matching threshold   

 
3.8 Positive and negative LiDAR intensity images 

Samples of negative LiDAR intensity, positive LiDAR intensity 
and aerial images are depicted in Figures 7A, 7B and 7C. For 
the sample depicted in Figure 7A the aerial image is more 
similar to the positive LiDAR intensity images, whereas in 
Figures 7B and 7C a higher similarity of the aerial image to the 
negative LiDAR intensities can be observed. The reason for that 
is the Laserscanner operates with a frequency in the Near 
Infrared. Whether positive or negative LiDAR intensity images 
are used for keypoint extraction has almost no influence on the 
number of extracted keypoints. But the extracted keypoints are 
different which leads to a higher number of outliers if matched 
keypoints related to the positive LiDAR intensity images are 
used.  
 
3.9 RANSAC and Data Snooping used for Removing 
Outliers 

Firstly it should be emphasized that both procedures, RANSAC 
and Baarda’s data snooping, are appropriate for removing the 
outliers which are among the matched keypoints. If there is a 
sufficient number of corresponding keypoints, which match 
very well both procedures eliminate the outliers efficiently. If 
there is a high percentage of outliers and a weak geometric 
distribution of the extracted points RANSAC may stuck to a 
local maximum of the search space. But the iterative outlier 
elimination also failed by eliminating some good point pairs. A 
simulation would probably give a more detailed insight into the 
pros and cons of both methods that our experiments with real 
image data can do.  
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Figure 5: Impact of sub-levels on keypoint extraction  
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B) Aerial image , Negative LiDAR Intensity, Positive LiDAR  

 
C) Aerial image , Negative LiDAR Intensity, Positive LiDAR  

Figure7: Effect of the texture 

 
3.10 Visualisation of the Rectification Result 

After estimating the parameters of the transformation between 
the images, one image can be transformed into the coordinate 
system of the other one. The standard method of image 
rectification is used for this purpose. Figure 8 shows the 
rectified LiDAR image, which is superimposed to the aerial 
image.  
 

 

Figure 8 :Superimposed LiDAR and aerial images 

4. CONCLUSIONS 

Registration of aerial images and LiDAR data can be carried 
out successfully by using SIFT technique if the LiDAR 
intensity images are used for this purpose. In general, a large 
number of SIFT keypoints can be extracted and matched 
between this two data sets.  
 
Experimental findings with our data are:  
 

1. The number of keypoints extracted from LiDAR intensity 
images is 7-8 times higher than the number of extracted 
keypoints from LiDAR range data.   
2. The grey value distribution (texturing) of a LiDAR intensity 
image and an aerial image might be locally very different. 
Sometimes the negative (inverse) LiDAR intensities fit much 
better to the aerial image. Those differences have to be 
expected as the Laser scanner operates in the near infrared 
while the aerial is recoding radiation of the visible 
electromagnetic spectrum.  

 
3. The following parameters for extracting SIFT features are 
found to be most suitable:  A sigma level of 1 for the base level 
smoothing of LIDAR and aerial images and  5 octaves and 4 
sub-levels (number of images per octave) for creating the scale 
space representation.  
 
4. The ratio between the distances to the first and second 
nearest descriptors has to be lower than a given threshold. A 
threshold of 0.8 produced a low outlier quota but at the expense 
of a small number of matched keypoints.  
 
5. Regarding the outlier removal with RANSAC and Baarda’s 
data snooping no clear preference could be identified.  
 
Limitations that have been observed are:  
 
The invariance of SIFT features to small changes in 
illumination does not result in an extraction of suitable features 
from shadow areas in an aerial image.  
 
The polynomial transformation of second order which we used 
for image registration is only an approximation for a more 
general transformation model, e.g. a transformation based on 
rational functions.  
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