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ABSTRACT: 
 
Forest canopy height is an important input for ecosystem and highly correlated with aboveground biomass at the landscape scale. In 
this paper, we make efforts to extracte the maximum canopy height using GLAS waveform combination with the terrain index in 
sloped area where LiDAR data were present. Where LiDAR data were not present, the optical remote sensing data were used to 
estimate the canopy height at broad scale regions. we compared four aspatial and spatial methods for estimating canopy height 
integrating large footprint Lidar system (GLAS) and Landsat ETM+: ordinary least squares regression, ordinary kriging, cokriging, 
and cokriging of regression residuals. The results show that (1) the terrain index will help to extract the forest canopy height over a 
range of  slopes. Regression modles explained 51.0% and 84.0% of variance for broadleaf and needle forest respectively.(2) some 
improvements were achieved by adding additional remote sensing data sets. The integrated models that cokriged regression residuals 
were preferable to either the aspatial or spatial models alone.The integrated modeling strategy is most suitable for estimating forest 
canopy height at locations unsampled by lidar. 
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1. INTRODUCTION 

Measurements of forest structure are critical for biomass esti-
mation (Sun et al., 2008), biodiversity studies (North et al.1999), 
fire modelling (Finney, 1998), carbon stock estimation (Skole 
& Tucker, 1993), et,al.. Meantime, forest canopy height is an 
important input for ecosystem and is highly correlated with bio-
mass (Lefsky, 2005). Traditionally, these attributes have been 
measured in field using handheld equipment, which are time-
consuming and limited in scope to mapping at the landscape 
scale (Hyde et al. 2006). For passive optical sensors (Landsat 
TM/ETM+), it provide useful structure information in the hori-
zontal plane (Cohen & Spies, 1992), but is difficult to pene-
trating beyond upper canopy layers (Weishampel et al., 2000). 
Full waveform digitizing, large footprint LiDAR provides 
highly accurate measurements of forest canopy structure in the 
vertical plane (Nilsson, 1996, Lefsky et al. 1999). However, 
current lidar sensors have limited coverage in horizontal plane 
(Lefsky et al. 2002, Hyde et al. 2006).  
 
In present time, due to no single technology is capable of 
provide all broad scale information of vertical structure, there 
have been several calls for improving the applicability of 
remote sening data through multisensor integration (Hudak et al. 
2002), combining information from multiple sensor is a pro-
mising efforts to improving the accuracy of canopy height esti-
mation at landscape scales (Slatton et al., 2001, Wulder et al. 
2004).  
 
Lidar-Landsat TM/ETM+ integration has immediate relevance 
due to the anticipated launches of the Ice, Cloud, and Land 
Elevation Satellite (ICESat) (Hudak et al. 2002). In this study, 
our mainly objective was to estimate canopy height at broad 

scales by integrating the lidar and Landsat TM/ETM+ at the 
lidar sample locations. The basic data from GLAS (maximum 
canopy height) and biophysical attributes from Landsat 
TM/ETM+ (LAI, Forest cover and vegetation indices) were 
used for estimation of canopy height. We compared and tested 
four widely used empirical estimation methods: ordinary least 
squares (OLS) regression, ordinary kriging (OK), and ordinary 
cokriging (OCK), and the mixed model of cokriging of 
regression residuals. 
 
Our study area lies in mountain area of Three Gorges, which is 
representative of the age and structural classes common in the 
region. For forests on level ground, the waveform peaks of 
canopy surfaces and underlying ground within the footprint 
were easily separate. However, over sloped areas, the extent of 
waveform increased which inducing some errors. Harding and 
Carabajal (2005) point out that the vertical extent of each 
waveform increases as a function of the product of the slope 
and the footprint size, and returns from both canopy and ground 
surfaces can occur at the same elevation. In order to effectively 
extracting the canopy height in the sloped area, a new technique 
using Terrain Index algorithms was used for estimation of 
canopy height GLAS system in Three Gorges. 
 
 

2. STUDY AREAS AND DATA PROCESSING 

2.1 Sduty Areas 

Three Gorges area is a key area of the natural protective regions 
in China. It is located in 106º00′~111º50′E, 29º16′~31º25′N, 
and covers an area of approximately 5.8×104 km2. It lies in the 
lower part of the upper reaches of the Yangtze. To the north is 
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the Daba Mountain and to the south is the Yunnan-Guizhou 
Plateau. The areas of river valley and flatland in the reservoir 
area account for 4.3%; hilly areas, 21.7%; and mountainous 
areas, 74%.  
 
The reservoir area is having a typical subtropical monsoon 
climate, which is rainy, humid, and foggy in fall, warm in 
winter, hot and dry in summer. The average annual temperature 
is about 15ºC~19ºC. The average annual precipitation is 
1140mm~1450mm and the multi-year average run-off is 
405.6×108 m3 in the local river. The main vegetation there is 
Evergreen needleleaf forests, Deciduous needleleaf forests, 
Evergreen broadleaf forests, Mixed forests, Brushwood and 
Croplands. Due to agricultural development and human 
activities, the hilly vegetation and natural vegetation will 
gradually be replaced by agricultural crops. The forest cover is 
low in the reservoir area, with that in the eastern Sichuan 
section being only 16~17% and that in the western Hubei 
section being 25~38%. The standing timber structure was 
simple, being mostly pure forests, with masson pine occupying 
70%, mostly young trees. Statistical data in 2001 shows that the 
total population in the reservoir area was 19.621,200, including 
14.389,300 agricultural population and 5,231,900 non-
agricultural population. 
 
2.2 Lidar Data and Processing 

ICESat is a spaceborne, waveform sampling lidar system that 
using for measuring and monitoring ice sheet and land 
topography as well as cloud, atmospheric, and vegetation 
properties. The Geo-science Laser Altimeter System(GLAS) 
instrument aboard the  ICESat satellite launched on 12 January 
2003. GLAS received waveforms record 1064nm wavelength 
laser energy as a function of time reflected from an ellipsoidal 
footprint. It has 70m spot footprints spaced at 175m intervals 
(http://icesat.gsfc.nasa.gov/intro.html). In this study, GLAS 
data from L2A(October to November 19,2003), L3A(October, 
2004),L3C(February-March,2005),L3D(October to November, 
2005) and L3F(May-June,2006) were used. 

GLAS have many products (GLA01-GLA16). GLA01 products 
provide the waveforms for each shot. The product GLA14 
provides Global Land Surface and Canopy elevation. GLA14 
doesn’t contain the waveform, but some parameters derived 
from the waveform. Firstly, the GLAS waveforms were 
smoothed using Gaussian filters with width similar to the 
transmitted laser pulse. The noise level before the signal 
beginning and after the signal ending were estimated using a 
histogram method (Sun et al.2008). And then the signal 
beginning and end were identified by a noise threshold. In this 
paper, the threshold was set to the noise plus 4 times the 
standard deviation. The waveform extent is defined as the 
vertical distance between the first and last elevations at which 
the waveform energy exceeds a threshold level (Harding and 
Carabajal, 2005). Since the canopy height is related to the 
ground surface, not the signal ending, the ground peak in the 
waveform was found by comparing a bin’s value with those of 
the two neighboring bins. If the distance between the first peak 
and the signal ending is greater than the half width of the 
transmitted laser pulse, the first significant peak found is the 
ground peak (Sun et al.2008). The canopy height is defined as 
the distance between the signal beginning and the ground peak. 

The distance between the signal beginning and the ground peak 
was extracted by above methods when the surface is flat. Over 
sloped area, we used the Terrain Indices at the GLAS footprint 

location to canopy height. Terrain Indices was defined as the 
range of ground surface elevations within n × n sample 
windows applied to DEM at the footprint location (Lefsky, 
2005).  The following equation was used to estimation the 
forest canopy height on the sloped area: 
 
 

)( 210 lbgbwbh +−=         (Lefsky, 2005)  (1) 
 
 
Where  
       h is the measured canopy height 
       w is the waveform extent in meters 
       g is the terrain index in meters 

 l is the extent of the leading edge in meters 
0b  is the coefficient applied to the waveform, when 

corrected for the scaled terrain index  

1b  is the coefficient applied to th e terrain index 

       is the coefficient applied to the leading edge 2b
 
Then,the equation was fit using Levenberg-Marquardt 
algorithm (Craig Markwarddt).  
 
2.3 Landsat TM/ETM+ 

In this study, five Landsat (Enhanced) Thematic Mapper (TM/ 
ETM+) scenes (path/row: 125/39,126/39,127/39,127/38 and 
128/39) from 2002 served as the primary data source to 
estimate several spectral vegetation indices(SVIs). Firstly, 
geometric correction and atmospheric correction were 
performed using the Image Geometric Correction and ATCOR 
modules of the ERDAS image processing software respectively. 
These images were then rectified to the Gaussian Kruge 
projection (Spheroid: Krasovsky; Central meridian: 111º E;  
Central latitude: 0; False easting: 500000 meters; False nothing: 
0), and were resampled using the nearest neighbour algorithm 
with a pixel size of 30m×30m for all bands. The resultant RMS 
(Root Mean Square) error was found to be less than 0.5 pixels. 
Then some SVIs were calculated which  including EVI, NDVI, 
ARVI , MSAVI , SARVI , SAVI and the following vegetation 
indices:  
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Where  is the reflectance of band bi. Ecologically relevant structural 

attributes such as LAI and forest cover have been estimated from these 
SVIs. 

biρ

 
Prior research has shown that due to Landsat imagery’s 
widespread availability and the grain. extent, and multispectral 
features make it suitable for a variety of environment 
applications at landscape to regional scales. 
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3. ESTIMATION METHODS 

Firstly, the canopy height datasets were normalized with a 
square root transformation (SQRTHT); afterwards, all estimated 
SQRTHT values were backtransformed before comparing to 
measured height values (Hudak et al. 2002). 
 
3.1 Ordinary Least Squares(OLS) regression 

The OLS multiple regression model takes the general form: 
 
 

εβα ++= ∑
=

n

i
ii XZ

1

)(                          (7) 

 
 
Where, Z is the forest canopy height, Xi is the i explanatory 
variable (SVIs, LAI, forest cover and X and Y location), iβ  is 
the linear slope coefficient corresponding to Xi, ε  is the 
residual error (Kleinbaum et al.1998).  
 
3.2 Ordinary Kriging(OK) 

Kriging interpolates the sample data to estimate values at 
unsampled locations, based solely on a linear model of 
regionalization. The linear model of regionalization essentially  
is a weighting function required to krig and can be graphically 
represented by a semivariogram. The semivariance )(hγ  is the 
following equations. 
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Where )(hγ  is semivariance as a function of lag distance h, 

 is the number of pairs of data locations separated by h, 

and 

)(hN
z  is the data value at locations αμ  and h+αμ  

(Goovaerts, 1997). And in this study, the exponential models 
was used to simulate the nugget, sill, range and the shape of the 
sample semivariogram: 
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Where, a is the practical range of the semivariogram, c is sill. 
 
The OK model estimates a value *Z at each location μ  and 
takes the general form: 
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Where, )(* μZ  is the primary variable and αλ and αμ are the 
weights and locations of n neighboring samples respectively. 
The kriging  
weights was forced to sum to one: 
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3.3 Ordinary CoKriging (OCK) 

Cokriging is a multivariate extension of kriging and relies on a 
linear model of co-regionalization that exploits not only the 
autocorrelation in the primary variable, but also the cross-
correlation between the primary variable and a secondary 
variable. Cokriging can be graphically represented by the cross-
semivariogram, defined as: 
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Where, )(hijγ is the cross-semivariance between variables I and 

j, and is the data value of variable i and j at locations iz

α

jz
μ  and h+αμ  respectively. The OCK estimator of *Z at 
location μ  takes the form: 
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The traditional OCK operates under two nonbias constraints: 
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3.4 Integrated 

Residuals from the OLS regression models were exported and 
imported into ARCGIS software for kriging/cokriging. The 
same rules and procedures were followed for modelling the 
residuals as for modelling the SQRTHT data. 
 
 

4. RESULTS AND DISCUSSION 

In this paper, the needle forest and broadleaf forest were 
classified for estimation of the canopy height. The accuracy of 
classification was validation by our fieldwork. 
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4.1 Estimation of Plot Maximum Canopy Height 

Regression was used to estimate maximum canopy height as a 
function of waveform extent and the 3×3 terrain index. The 
regression models are following equations for each forest type. 

HNeedle =-1.379+0.702(w+0.0028g+0.104l)           (15) 
HBroadleaf =14.716+0.316(w-0.0127g-3.386l)          (16) 

 
 
Forest type R2  Std. F Sig. Counts.
Needle  .840 2.635 17.517 .000 14 
Broadleaf .510 4.264 2.772 .111 12 
All .530 3.913 9.762 .000 30 

 
Table 1.  Regressions relating Waveform Extent and Terrain 

Index to field measured maximum canopy height 
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Figure 1. Observed maximum canopy height Vs. estimates of 
the same, for  needle and broadleaf forest 

 
When  all forest sites were considered in a single regression, the 
resulting equation explained 53.0% of variance with an Std. of 
3.913. However, individual sites had clear biases. Regression 
equations explained between 51.0% and 84.0% of variance for 
each forest type(Fig.1 and Tabl.1). Through comparing 
observed maximum canopy height and estimation of the same, 
the R2 coefficient of needle forest is 67.5%, which greater than 
that of the broadleaf forest(67.3%). 
 
4.2 Results of OLS 

In this study, the multiple regression models were developed for 
needle forest and broadleaf forest respectively. The sample size 
of Landsat TM/ETM+ is 60m which similar to the GLAS 
footprint size. The models are following regression equation. 
 
 

Hneedle    =39.118-7.0E-007X(GK) -1E-005 Y(GK)+2.65LAI+ 
48.482ARVI-0.001EVI+1.532MSAVI+0.032NDVI-20.311 

SARVI+8.771SAVI+35.685VI1+5.619VI2+0.029VI3-15.311 
VI4+5.701VI5 -3.85FC                                                       (17) 
Hbroadleaf =-81.368-2E-007X(GK)+5.7E-005Y(GK)+2.875LAI 

+125.038ARVI+0.001EVI-263.005MSAVI+0.083NDVI-
113.512SARVI+151.085SAVI-11.133VI1+157.214VI2-
0.205VI3-52.567VI4-22.557VI5+1.258FC                         (18) 
 
 
Where, FC is the forest cover, X(GK) and Y(GK) is the x y 
location in Gaussian Kruge projection. These models explained 
between 55.8%-63.4%  of variance at the study area (Table 2). 
 
 
Forest type R2  Std. F Sig. Counts.
Needle  .558 3.323 5.556 .000 82 

Broadleaf .634 3.053 4.973 .000 59 
 

Table 2. Test of OLS Regression Equations 
 

The mape of  forest canopy height based on the OLS model is 
in the Figure 6(a). The predicted canopy height of OLS was 
compared with the measured canopy height in field(Fig.2). 
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Figure 2.  Measured canopy height Vs. predicted canopy height  
 
In order to compare the difference of the results between two 
forest type, we have modeled the results with the linear model. 
For the needle forest, the R2 coefficient is 69.2%, which greater 
than that of the broadleaf forest(50.62%).The regression model 
results preserved actual vegetation pattern, but underestimated 
taller canopies and overestimated shorter canopies. 
 
4.3 Results of OK/COK 

Firstly, the canopy height data were checked(Fig.3). From the 
following figure, we can find that the data is submit to the 
normal distribution. Hence, we performed the OK and OCK 
model in the ARCGIS software. The result of OK and OCK 
models are illustrated in  Figure4. 
 
 

 
(a) Data  Histogram                         (b)  QQPlot 

 
Figure 3.  normal distribution of canopy height data 

 
 

 
（a）Kriging                  （b）CoKriging 
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Figure 4. canopy height of OK and OCK models 
 

From figure4 and figure5, we can find that the result of OK is 
similar to that of OCK model. But comparing the predicted 
canopy height with the field measurement of the canopy height, 
the precision of OCK model is prior to that of the OK. However, 
the R2 coefficient of needle forest is less than that of the 
broadleaf forest. Cokriging proved slightly more accurate than 
kriging. The spatial models, kriging and cokriging, produced 
greater biased results than regression and poorly reproduced 
vegetation pattern. This mar be related with the distribution of 
lidar sampling points. 
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Needle Forest + CoKriging
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Broadleaf Forest + Kriging
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Figure 5.  Compare of the results of OK and OCK models 
 
4.4  Results of integration model 

Due to the precision of OCK is greater than that of OK. Here, 
we have only discussed the integration model of 
‘OCK+regression’. Residuals from the OLS regression were 
imported into cokriging. The result was illustrated in the 
figure6(b). 
 
 

 
（a）Regression                  （b）CoKriging+Regression 

 
Figure 6. canopy height of integration model 

 
Through comparing the field measurement of  canopy height 
with the predicted canopy height, the R2 coefficient of needle 
forest is 64.44%, which greater than that of the broadleaf 
forest(60.95%). Obviously, this results are greater than that of 

OK/OCK. The the R2 coefficient of broadleaf forest is also 
greater than that of the OLS (50.62%). However, the R2 
coefficient of needle forest is less than that of the OLS(69.2%). 
This is related with the distribution of lidar sampling points. An 
equitable distribution of lidar sampling points proved critical 
for efficient lidar_Landsat TM/ETM+ integration (Hudak et al. 
2002). 
 

Needele Forest+CoKriging+Regression

R2 = 0.6444

0
2
4
6
8
10
12
14
16
18
20
22
24

0 2 4 6 8 10 12 14 16 18 20 22 24
Field Measured Height

M
o
d
e
l
 
P
r
e
d
i
c
t
e
d
 
H
e
i
g
h
t

needle

线性 (needle)

 

Broadleaf Forest+CoKriging+Regression

R2 = 0.6095

0
2
4
6
8

10
12
14
16
18
20
22
24

0 2 4 6 8 10 12 14 16 18 20 22 24
Field Measured Height

Mo
d
el
 P
re
di
ct
ed
 H
ei
gh
t

broadleaf

Linear

 
 

Figure 7.  Measured canopy height Vs. predicted canopy height 
 
4.5 Discussion 

The results from this study confirm that forest height can be 
estimated using GLAS waveform combination with the terrain 
index in sloped area. Regression equations explained 51.0% and 
84.0% of variance for broadleaf and needle forest respectively. 
the result of this work indicate that the terrain index will help to 
extract the forest canopy height over a range of  slopes.  
 
Integration of GLAS and Landsat TM/ETM+ data using 
empirical modeling procedures can be used to improve the 
utility of both datasets for forestry applications. In this study, 
four integration techniques: OLS,OK,OCK and OCK+OLS 
models, were compared. In total, the integrated technique of 
ordinary cokriging of the height residuals from an OLS 
regression model proved the best method for estimating the 
forest canopy height. In future work, to improve the accuracy of 
the cnaopy height estimations and test the integration models in 
the sloped area once lidar sample data become readily available. 
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