
A database approach to very large LiDAR data management

LIU Hua *a, HUANG Zhengdong a, ZHAN Qingminga , LIN Penga

aSchool of Urban Design / Research Center for Digital City, Wuhan University

Donghu Nanlu 8, Wuhan, China 430072

KEYWORDS: LiDAR data, Octree, Quadtree, Local KD tree, Display precision

ABSTRACT:

This paper presents an approach to realizing LiDAR data management in DBMS. We use octree to partition data space, and build a
local KD tree at each octree’s node. In data organization, we take precise control on the size of the KD tree’s nodes. To effectively
visualize point cloud data, the display precision is defined. The basic concept is to judge whether a node is displayed or not, by
computing the size of a node’s data range after projection. We also discusses the method of screen-buffer and makes KD traversing
from front to back, which can reduce the number of points for displaying and accelerate display speed. This method is particularly
suitable for very dense data or data far away from the viewpoint.

1. INTRODUCTION

Light Detection and Ranging (LiDAR) is a data acquisition
technique based on laser technology, which has been used
widely in recent years. Advantages of using LiDAR include the
following: LiDAR allows rapid generation of a large-scale
DTM (digital terrain model); LiDAR is daylight independent, is
relatively weather independent, and is extremely precise. In
addition, because LiDAR operates at much shorter wavelengths,
it has higher accuracy and resolution than microwave radar [1].
Depending on specific conditions, the level precision of LiDAR
system ranges less than 1m, and height precision ranges
between 15cm and 20cm [2]. After being processed, LiDAR data
may generate highly accurate digital Elevation model (DEM),
contour map and orthophoto map.

Because of the huge amount of data and also the limitation of
computer hardware, there has been no effective approach to
organize and manage the LiDAR data. The visualization of the
data has also not been satisfactorily resolved. There are some
algorithms for the display of large volumes of data, which
usually are based on the LOD of triangular net[3]. Common
method to solve the problem is writing the data into a compact
file, by means of which to speed up frustum clipping and
processing.

However, for discrete LiDAR points, traditional methods of
LOD and hidden surface removal [4] are no longer applicable.
Furthermore, it only considers view frustum clipping, but pays
no attention to the relationship between the data points, so LOD
and hidden surface removal are not appropriate. As a result, it
surely can’t gain a satisfactory result. In this paper, we use
database to organize data and establish the relationship between
them, and build local KD tree for data index. The algorithms of
display precision control are presented.

2. KD TREE AND IMPROVEMENT

In order to process and manage large volumes of LiDAR data,
an efficient data structure is very important. The KD tree may
provide suitable solution.

KD tree is a binary tree in a K-dimensional space. In the
traditional binary search tree, the data classification standard is
a key word which is usually a number which have a certain
attribute, such as the coordinate on the X axis. For the K-
dimensional data, only one key word is not enough to
effectively partition the multidimensional data. KD tree makes
the key word alterable, which defines key word based on each
node and the coordinate on each axis will play the role of key
word in turn[5]. A usually mode is to make the (N%K+1)th-
dimensional coordinate value as key word if the node is in the
N-level, that is:

. . %node split node lefel K 1= +

There are two ways to build a KD tree: one is direct insertion,
but as KD tree hasn’t the ability to balance, the form of tree
totally depends on the order of input; the other way is to
calculate the form of KD tree in good balance and get the order
to establish the balance tree. In this way, the tree would get
balanced at the cost of pre-calculation.

Compared with the quadtree and octree, the KD tree has several
advantages, such as balance, constructing based on data
partition, and no empty nodes. The disadvantage is that, for
some uniform distribution of data, the depth of the tree will be
deeper. That’s because each node of KD tree only has two sub-
trees, while quadtree and octree have four and eight
respectively.
In traditional KD tree, each node has only one data point, which
means node must be split into two sub-nodes when it has more
than one point. This method is very wasteful both for query and
representation. So, a better standard which determines whether
the node should be split or not is necessary.

There are two basic methods to judge whether the node will
split or not: the method based on the number of points, and
based on the space.

The method based on the number of points is given a fixed
number N, which is defined as the largest number of points in
each node. If the number of point in a particular node is less
than or equal to N, the node needn’t to be split, otherwise

 463

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

continue to be split down. So, we should add a variable for each
leaf node to denote the number of points in this node, while
inserting a new data, examine the variable whether it’s greater
than N, if it is, split the node.

The method based on the space is given a fixed spatial scales R,
such as the volume or length of smallest bounding box
enclosing all data, or the radius of smallest sphere containing all
data in the node. When the node’s spatial scales are smaller
than R, the node needn’t to be split. This approach requires
adding some parameters of smallest bounding box or sphere.
And after each inserting, KD tree need to modify all parameters
from the root to the node where the inserted data stayed.

The N and R defined as a standard above should be estimated
from original data in advance. The above two methods show
some limitations if data are not evenly distributed. With the
number-based standard, the node involves a very large region in
sparse areas, and splits too much in dense areas; while in the
spaced-based standard, the node contains only one point in
sparse area, and involves large number of points in dense areas.
It takes advantage of finding nearest point while based on the
number of points, and takes advantage of simple operation in
display while based on the space. For our data management

purpose, we choose the space-based standard, but some rules
are added:
1). Based on the needs of displaying and processing, set a
normal space scale rMin for splitting. If the node’s spatial scale
is less than rMin, the node needn’t be split;

2). Considering the operational environment and complexity,
set the maximum number of points nMax. If the node’s number
of points is larger than nMax, the node must be split into two
nodes until the number is less then nMax;

3). While the node’s spatial scale is no less than rMin and the
number of points is no larger than nMax, we could split the
node as less as possible by taking in some error. Assume the
node is P. If it is split into two sub-nodes----A and B, calculate
the ‘percentage of precision loss’ f(P). Give a variable u, if
f(P)<u, point P needn’t to be split into two.

PL is the plane which minimizes the squared distances to the
points of P. g(P) means the squared minimum distances, V1(P)
and V2 represent the volume of smallest bounding box of P and
the cube of rMin respectively. k is a specified coefficient
defined by the programmer. The formula can be defined as
f(P)= g(P)/[g(A)+g(B)], and u=k*V1(P)/V2 .

Figure 1. The left figure shows a KD partition based on the space, where the node contains only one point is spares areas,
and can involves a large number of points in dense areas. The other shows a KD partition based on the number of 7,

this method can make the region very large or very small depending on the dense.

The structure of KD tree’s node and the tree is:

template <typename Xtype>
class KDNode
{
public:
 int axis ;
 Xtype x[SD];
 Xtype (*xList)[SD]; // Definition of data in nodes
 int dataNum; // Definition of the number of data in each node
 void insertData(Xtype x[][3],int n); //While the node needn’t to split, put all the data into node
 Xtype bound_cube_min[3]; // The bound of smallest bounding box
 Xtype bound_cube_max[3];
 KDNode(Xtype* x0, int axis0);
 KDNODE* Insert(Xtype* x);

464

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

 KDNODE* FindParent(Xtype* x0); // Search node, return the parent node
 KDNODE* Parent ;
 KDNODE* Left ;
 KDNODE* Right ;
};
template <typename Xtype>
class KDTree
{
public:
 KDNODE* Root ;
 KDTree();
 bool add(Xtype* x);
 void insertToKD(Xtype* data); // The function of add the non-leaf node
 KDNODE* find_nearest(Xtype* x0); // Find the nearest node
 Xtype x_min[SD], x_max[SD]; // Set bounding box
};

3. LOCAL KD TREE

Building a KD tree for a whole set of LiDAR data in traditional
way is less possible. One reason is the tremendous volume of
data. Another reason is that it’s required to sort the whole data
based on the coordinates in the three axial direction before
building KD tree, whose complexity is O(N*ln(N)). As large
data set consumes too much time, data partition is necessary. In
this way, we divide the data into small pieces and build local
KD tree for each piece of data, to help the organization and
management of data.

3.1 Using octree to confirm the bound of local KD tree

In order to avoid excessive search, we adopt the octree to
partition space, which makes point’s location known in advance.
It saves time of comparing with node’s key word during
searching, and facilitates judging whether it’s in the view
frustum.

The standard for splitting octree’s node is defined as: if the
node’s number of points is less than a pre-defined number, it
needn’t to be split. The pre-defined number is determined by
the capacity of KD tree. That can make the scale of KD tree
uniform, which is convenient for post-processing. In order to
get the balance between the octree’s depth and KD tree’s
saturation, the number should be defined as 2n.

The definition of a local KD tree includes two steps. Firstly, the
bound and density of the data should be determined to establish
octree. Then, each node is split into eight sub-nodes through the
center position of the bounding box until the node’s number of
point is less than 2n. The data of each leaf node in octree make
up of a local KD tree. In the octree, the nodes only store their
information about bounding box. Each leaf node is given an
index value for the convenience of research.

3.2 View frustum clipping

According to the position of viewpoint and the frustum, we
compute all octree’s nodes in view frustum. Read the data in
each node and build local KD trees.

The program that computes which nodes are in the view
frustum can be like this: seek from the root, if the node’s
bounding box and the view frustum have an intersection, seek
for node’s two children, otherwise return.

We note that in each vision, we need to identify the called KD
trees, and then read data from database to build KD trees. The
process is very cumbersome. In viewing frustum clipping, the
general view transform only changes the edge of the scene. For
local KD trees, a view transform is likely to retain most of KD
trees, only a small part of the trees will be changed into or out
of the view frustum. As the Figure 2 shows, when the view
frustum moved right, only several green regions enter the
frustum and several red regions quit. So, while the scene is
redrawn, we only need to compute these special trees, destruct
the red trees and construct the green trees. That will avoid
destructing and reconstructing many trees.

Figure 2. A view transform is likely to retain most of

KD trees. In this picture, only the green regions
enter the frustum and the red regions quit.

3.3 Traverse the octree front to back

For binary tree, a node has only two sub-nodes, the front to
back traversing order can be directly derived by comparing the
view position with the node’s key word. But for octree which
has eight children, the order from front to back is not so simple.
Consider the cube shown in the picture, it represents a node of
octree and it has eight children. If the viewpoint is in node 1,
it’s certain that we will traverse node 1 first and node 7 at the
end, because node 1 is in front of any other nodes and node 7 is
behind any others.

Notice that, three nodes, node 2, 4 and 5, have a public plane
with node 1 and only node 1 is in front of them. Moreover, they
are separated by lines AB, CD and EF, any one of which isn’t
in front of any other. There are three other nodes, i.e., node 3, 6
and 8, that have a public line with node 1, they are in the back

465

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

of node 1, 2, 4 and 5, and are separated by the three lines too.
Thus, the traversing sequence should be:

[1]——[2, 4, 5]——[3, 6, 8]——[7]

Figure 3. A cube which has a root and eight sub-

nodes.

Add a variable i for marking the traversing sequence and the
initial value is 0. Test the three-dimensional coordinates
respectively, if a coordinate of viewpoint is not in the node’s
bound, the node’s i will add one. When traversing the eight
sub-nodes, variable i gives the sequence.

The pseudo-code is below:

int node.calculateFrontOrBack()
{ int i=0;
for(int j=0;j<3;j++)
 if(!(eye[i]∈node.bound))
 i++;
return i;
}
tree.walkNode()
{…
 for(int j=0;j<4;j++)
 for(int k=0;k<8;k++)
 if(subNode[i].i==j)

 tree.walkNode(subNode[i]);
…}

For the issue of managing large volume of LiDAR data using
local KD trees, we choose octree to determine the bound of
local KD trees. Data are put into RDBMS in specific order in
pre-process, the KD trees are computed during run time, and
local KD trees can be quickly built by reading data from the
database. We also make some improvements on other details.
These methods are suitable for large amount of data, and can
achieve a satisfactory processing speed.

4. DISPLAY PRECISION

In displaying LiDAR data using local KD trees, there may be
some trees or nodes which are far from the viewpoint. Drawing
these trees or their nodes has less effect to the observer.
Consider a node far from the viewpoint that the region of data’s
projection on screen is only one pixel, despite how many points
the node contains. So only one point can be drawn instead of
drawing hundreds, even thousands of points from the node.
Based on this principle, we use the concept of screen precision
to control display based on local KD tree. That is, if a small
area on the screen contains many points, we only draw a

representational point instead of drawing all of them. The small
area usually to be defined as a pixel and the representational
point can be the point that splits the node into two.

Based on this idea, it’s needed to get two-dimension
coordinates on screen from any point after projection. The
region’s size consisting of the points’ two-dimension
coordinates on screen will determine whether its sub-nodes will
been shown or not.

Calculating screen coordinates is very simple in orthographic
projection. In perspective projection, the formula for
calculating is shown below.

Let eye position to be eye[3], view[3] means the direction of
view, and up[3] indicates which direction is up. Calculating the
vector multiplication exterior, make a coordinate system, eye[3]
as the origin, exterior as X axis, up as Y axis, view as Z axis.
For any data P, its projection is indicated in Figure 4. So the
point P’ will be the mapped point of P on screen. The lengths of
E’P’ and A’P’ will be the X and Y coordinates of P’.

Figure 4. The eye position is point O, view is Z-axis,
up is Y-axis, and exterior is X-axis.

OD’ is the distance from P’ to the XY plane, its length can be
count by the frustum and the size of scene. Because of

AB
PE

OD
AD

OD
DA

OD
EP

===
'
''

'
''

AB
OD

OD
OD

OA
OA

PA
AP '''''

===

, we can get:

'*'' OD
AB
PEEP =

,
'*'' OD

AB
PEEP =

.

PA, PE and AB respectively are the distance from P to plane
XZ, YZ and XY. So we could get the length of E’P’ and A’P’.

In order to examine a node’s precision, we need to calculate all
points in it, he process is time-consuming and very expensive.

466

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

A simple approach is using the vertexes of convex hull to
replace the whole data. Assume the data set in a node is S, and
build a convex hull CH(S), in which the set of vertexes is P(S).
For any point in P(S), compute its screen coordinates. Let the
set of two-dimension point is P’(s’), compute its convex hull
CH(P’(S)). If CH(P’(S)) is small enough, we will not show the
node’s sub-node.

But in fact, the complexity of computing convex hull is
O(n*ln(n)), it means that the computing is also time consuming.
Moreover, the convex hull would also have errors. As shown in
Figure5, if the green points are vertexes of the convex hull, then
the CH(P’(S)) is the region encircled by the green lines. But we
can only guarantee the region that contains green points is
actually the area we need. The gray area may have no any point
to be projected to, which indicates the inaccurate area.
To simplify calculation, we use smallest bounding box along
the axis to replace convex hull, which makes the computation
more imprecise (Figure 5). The area using bounding box is the
region encircled by the red lines. Compared with convex hull, it
generates four more squares (indicated as pink color). But this
method may discard the cumbersome computing for convex
hull, and effectively speed up the processing speed.

Figure 5. The smallest bounding box along the axis
would take the place of convex hull.

The above approach can reduce the points on screen, and
accelerate displaying speed. At the same time, some more
improvement will make the effect more satisfactory.

1) The KD tree is divided into three dimensions, after
projecting to two dimensional planes, there will be many
overlapping points projected to the same pixel. As a result, the
larger the data set is, the more there are overlapped points. To
enhance the efficiency further, we propose a BOOL screen
buffer, which records whether the pixel on the screen has been
correctly drawn. When we want to draw a point, examine the
corresponding pixel on screen, if it has been drawn, we will not
draw again.
2) Based on the above improvements, it’s possible that we draw
a point that is far from us first, and then when we want to draw
a closer point, we find the pixel has been drawn, so we give up
drawing. That is, the point isn’t drawn in a ‘correct’ way. In
order to consider the depth of point, we can use the depth buffer,
but it spends too much computing resources. A simple approach
is to traverse the KD tree in a “front to back” way. The order to
traverse a node is: examine which sub-node contains the
displayed point, traverse it, then draw the node’s split data, and
then traverse other nodes.
3) Classical KD tree defines the split axis of X, Y and Z in turn,
which ensures the fairness and makes it convenient to deal with.
But in this way, the different density on three dimensions may

make the node’s region anomalous. The best definition for split
axis is the dimension of largest spatial extent [6], which can
make node’s region nearly the same length in three dimensions
and ensure a stable efficiency.
4). After discussion on screen buffer, the standard of node’s
split can be added as: if pixels in the region after node’s
projection have all been drawn, the process ends. This standard
will simplify point display in tremendous volumes of data.

5. EXPERIMENTAL RESULTS

In a computer with Pentium4 2.4GHz CPU, 1G memory,
NVIDIA GeForce FX 5200 graphics card, we run the program
in three ways. These respectively include the original method,
the method using 1.5 pixels display precision, the method of
using 1.5 pixels display precision and screen buffer. We utilize
a data set of 3,200,079 points, with a disk size of 87.5M. Four
pictures for experiment are shown below:

Number of points: 237953; cost time (ms):6152.31

Number of points: 109785; cost time (ms): 3148.24

Number of points: 49468; cost time (ms): 1588.09

Number of points: 20202; cost time (ms): 757.467

Figure 6. Experiments results

As shown above, with the decrease of model’s percentage on
screen, the number of points becomes smaller and the display
time becomes shorter. The number of points and display time
maintain a linear relationship. This is consistent with our
original intention of using the points that will be shown and
discard the points that need not be shown.

With the increase of the length from viewpoint to model, the
number and time become smaller and smaller. Compared with
the way without screen buffer, the screen buffer reduces the
number in screen but increases the display time, that’s because
in this way it adds a judge of whether the pixel has been shown
or not for each ‘big’ node. This drawback can be improved by
the fourth improvement.

Noted that the number of points and the display time maintain a
linear relationship, we can get the result that, the display time in

467

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

this method depends on the number of points shown in the
screen, not the volume of data, that is, regardless of the amount

of LiDAR data, we could draw the scene within an acceptable
time.

with display precision with display precision
and screen buffer

Sum of Points Render time(ms) Sum of Points Render time(ms)

109785 3183.41 38415 3293.98

49468 1617.26 14467 1646.21

20202 759.041 4259 769.161

7743 316.376 1207 320.897

2700 118.496 321 120.296

992 47.2825 85 46.4422

259 11.6568 21 12.4862

123 5.55098 11 5.99378

17 0.800381 4 0.850667

1 0.0798984 1 0.0804572

Table. 1. The parameter in the ways of taking 1.5 pixel precision, and 1.5 pixel precision with screen buffer:

6. CONCLUSION

This paper discusses several aspects in managing and
displaying LiDAR data, i.e., data partition using octree,
building local KD trees, improving the KD node, and
accelerating display of very large LiDAR data. Experiments
show that the approach is particularly efficient for very dense
points or points far away from the view point. The display time
for the whole scene no longer relies on the volume of data, but
on the amount of points shown on screen. Nevertheless, KD
tree hasn’t the ability to insert or delete data dynamically. More
efforts are needed for our methods to process LiDAR data more
dynamically.

Acknowledgement: The research is funded by the Chinese
National High-tech R&D Program (863 Program:
2006AA12Z151).

REFERENCES

David, L., R. Martin, D.C. Jonathan, V. Amitabh, W. Benjamin
& H. Robert, 2003. Level of Detail for 3D Graphics, Morgan
Kaufmann
Jelalian, A., 1992. Laser Radar Systems, Boston: Artech House
Markus, G. & P. Hanspeter, 2007. Point-Based Graphics (The
Morgan Kaufmann Series in Computer Graphics), Morgan
Kaufmann Publishers, pp.152-154

Moore, A.W., 1991. Efficient memory-based learning for robot
control [Ph.D dissertation]. University of Cambridge

Samuel, R.E., 2001. Binary Space Partioning Trees and
Polygon Removal in Real Time 3D Rendering, Uppsala
University, pp.16-34

Yong H., 2003. Automated Extraction of Digital Terrain
Models, Roads and Buildings Using Airborne Lidar Data:
[Ph.D Dissertation for], Univ. of Calgary

468

