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ABSTRACT: 
 
In this contribution, we present a method for direct linear estimation of multiple homographies and optimization of estimation results 
by enforcing topological constraints by means of connected components. The applications are the detection of independent moving 
objects seen by a moving observer and sparse reconstruction of the scene. Security and surveillance applications require day-and-
night capability. Therefore thermal cameras are the preferred sensors. These sensors violate primary constraints for the estimation of 
the optical flow. The motion of the sensor is compensated by image stabilization, which allows us to utilize results from the 
extensive field of change detection, for example, background subtraction and temporal differences. We assume that the scene can be 
approximated by a composition of several planes. Each plane induces an independent homography for each image pair. A set of 
homographies for one image pair is called consistent if and only if all homographies refer to the same relative orientation but even 
though they may refer to different 3d-planes. We show that linear constraints can be induced to homography estimation to ensure 
consistency within a pair of views. The fundamental matrix allows us to formulate a solution independent of the calibration of the 
camera. Given a set of consistent homographies and a corresponding image segmentation for an image pair it is possible to improve 
the image stabilization by local warping instead of warping with one single homography. This approach is explored by experiments 
on disparity map estimation based on the homography estimation on the Middlebury-Stereo Benchmark dataset. Additionally, the 
robustness of the algorithm is explored using a synthetic scene. Finally we show first results of motion detection based on this 
method combined with temporal differences. 
 
 

1. INTRODUCTION 

Motivation. Homography estimation is used for 3D analysis, 
mosaicing, camera calibration and more. Our focus is the 
stabilization of image sequences for the estimation of 
independent motion. Since motion in an image sequence is 
usually utilized as one of the important cues for security 
surveillance, object detection and tracking and motion analysis, 
one can consider motion detection and segmentation as a basic 
problem in computer vision. Although it has been studied for 
several decades and various methods have been proposed, it is 
still of considerable interest. The typical sensors for visual 
security surveillance are thermal cameras. Because of their low 
local contrast and geometric resolution they require special 
algorithms different from optical flow (Kirchhof and Stilla, 
2006). On the other hand, many vision applications deal with a 
small depth relief of the observed scene compared with the 
extent of the image. Often these scenes can be approximated by 
a plane, e.g., the ground plane. A homographybased approach is 
appropriate for modeling such configurations. For urban 
environments, however, this is not sufficient. Manmade 
environments consist essentially of planes. Therefore, we 
assume that the scene can be described by a composition of 
several planes. This leads to the estimation of multiple 
homographies for a single pair of views. 
 
The estimation of multiple homographies for one pair of views 
can be implemented by successive estimation of single 
homographies followed by the exclusion of the inlier for the 

next estimation step. The main problem is that the independent 
estimation of multiple homographies is very instable due to 
small supporting regions. The most common solution to this is 
to introduce nonlinear constraints that represent the rigidness of 
the motion and the scene (Zelnik-Manor and Irani, 2002, 
Kaehler and Denzler, 2007). But these robustifications rely on 
an initial guess of the homographies followed by nonlinear 
optimization. In contrast, we propose a set of linear constraints 
to the homography estimation that represent the rigid motion 
only. Therefore, we are able to propose a linear estimation 
procedure for multiple homographies that rely on the same rigid 
motion.  
 
Related Work. In general, motion analysis has to be very 
robust when applied to unrestricted environments. Many 
approaches rely on optical flow computation (Kang et al., 2005, 
Woelk and Koch, 2004). Background subtraction (Ren et al., 
2003, Stauffer and Grimson, 1999) and temporal differences 
(Kirchhof and Stilla, 2006) are appropriate methods for motion 
detection. Applications like vehicle-borne or airborne video 
surveillance and object detection and tracking based on a 
moving platform require initial motion compensation (Ren et al., 
2003, Kirchhof and Stilla, 2006, Stauffer and Grimson, 1999). 
Optimal motion compensation can be computed from a 3d 
reconstruction and reprojection of every image point from the 
textured 3d model at the cost of high computational effort. A 
more efficient method is to approximate the image motion 
induced by the sensors motion by an affine mapping or a 
homography. This is sufficient for short baselines between the 
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views. But increasing the baseline increases the model violation 
to the point where it can no longer be neglected. This effect can 
be compensated by multiple homography estimation for each 
pair of frames. The corresponding 3d planes can become very 
small, resulting in inaccuracy of the homographies (Zelnik-
Manor and Irani, 2002). The estimation can be made more 
robust by the use of additional knowledge, for example, the 
rigidness of the motion and the scene. 
 
The conventional way to introduce the rigidness constraints is 
to parametrize the homography  by geometrically relevant 
parameters. The mapping of the image point  in the l-th 
frame to the k-th frame can be expressed by 
 
 

 
 
 
The index kl denotes a mapping with respect to a relative 
orientation from the k-th to the l-th frame. The inner orientation 
of the camera is represented by K. The relative orientation is 
given by the rotation matrix , the translation  is 
represented in the coordinate system of the k-th frame and the 
3d plane is represented by the normalized normal vector  
and the distance to the origin  observed in the coordinate 
system of the l-th frame.  is a nonzero scale factor. The 
rotation  and the translation  constitute the relative 
orientation between the two cameras with five parameters since 
only the ratio  is determinable from equation (1). The 
decomposition of  according to equation (1) is possible only 
if the calibration matrix K is known and has up to eight 
solutions. These eight solutions can be reduced to two 
reasonable solutions (Faugeras and Lustman, 1988) by ensuring 
that the 3d points lie in front of both cameras. Now it is possible 
to parametrize the homographies between two views by a global 
relative orientation (six parameters for translation and rotation) 
valid for every homography and the corresponding 3d planes 
(three parameters per plane), which leads to a minimal 
parametrization of the problem. (Note that in contrast to a 
single coplanarity assumption one has to deal with six instead 
of five parameters for the relative orientation). This minimal 
geometric parametrization can be used for multiple frames and 
one single 3d plane (Kirchhof and Stilla, 2006) as well as 
multiple planes visible in multiple views (Kaehler and Denzler, 
2007). 
 
A different way to treat multiple planes observed in multiple 
frames is to introduce rank constraints on a factorized 
composition of homographies to a multi collineation matrix 
(Zelnik- Manor and Irani, 2002, Shashua and Avidan, 1996). 
This method requires computation of a scaling factor for each 
correspondence and each homography since the homography 
gives only homogeneous relations between correspondences 
(equation 1). Contribution We introduce a method for direct 
linear computation of one or more homographies enforcing 
consistency with the relative orientation given by a fundamental 
matrix without knowledge of the calibration. We will show that 
this procedure is more robust against outliers than standard 
homography estimation. The method gives a least squares 
estimate for the algebraic error assuming an exact given relative 
orientation. We proceed with a nonlinear optimization of the 
result with enforcement of the topological constraint of 
connected components. In practice the relative orientation is 
computed from correspondences as well and is therefore also 

optimized during the non linear optimization. During the 
optimization the assignment of the correspondences to the 
multiple homographies is improved and the reprojection error is 
minimized. 
 
Implementation overview While estimating consistent 
homographies direct linear is at the focus of this contribution 
we like to give only a brief overview of the whole estimation 
procedure. We start with the detection of points of interest (POI) 
with the Foerstner-operator (Förstner and Gülch, 1987). The 
correspondences between subsequent frames are then 
established with the KLT-tracker (Shi and Tomasi, 1994). At 
this stage the correspondences are erroneous. Therefore a robust 
filtering technique based on an adaptive random sample 
consensus (RANSAC) (Fischler and Bolles, 1981, Hartley and 
Zisserman, 2000) is used to enforce the epipolar constraint 
presented in equation (2). Depending on the availability of 
calibration data the fundamental matrix respectively the 
essential matrix is estimated using the linear 8 point algorithm 
(Hartley and Zisserman, 2000) or the 5 point algorithm (Nist´er, 
2004). From the surviving correspondences we can now 
estimate consistent homographies for a single pair of frames by 
enforcing the epipolar constraint (2) on the homographies as 
presented in section 2 using RANSAC again. The iterative 
procedure of estimating homographies is stopped if to few 
correspondences are left or if the last homography had very low 
support. The resulting putative correspondences for each plane 
are an initial guess for the nonlinear optimization presented in 
section 2 which also takes care of the connected components 
constraints. The established plane based segmentation of the 
image can now be used for various applications such as dense 
depth estimation Figure 7 or motion detection Figure 6.  
 
Notation For formulation and representation, we use the 
framework of algebraic projective geometry. Homogeneous 
vectors and matrices will be denoted by upright boldface letters, 
e.g., x or H and Euclidean vectors or matrices with slanted 
boldface letters, e.g., x or H. In homogeneous coordinates, ’=’ 
means an assignment or an equivalence up to a scaling factor 

. Some parameters have to be represented in various 
coordinate systems. Observations in the coordinate system  
attached to the k-th frame are denoted by an overhead index, 

e.g., . Relative orientations representing the motion from  
to  or mappings between the two frames k and l are written 
as ( ; ) . We also have to represent various homographies 

for a pair of frames k; l. We use  for the i-th homography 

consistent with the fundamental matrix F and  for the 
homography that relies on the i-th 3D plane .  
 
 

2. METHODOLOGY 

In the first paragraph of this section, we introduce a method for 
direct linear computation of multiple homographies consistent 
with each other. Two homographies that rely on different 3d 
planes are defined to be consistent to each other, if they rely on 
the same relative orientation. A set of homographies is defined 
to be consistent if each pair of homographies in this set is 
consistent. It is easy to prove that this condition ensures that all 
homographies rely on a unique relative orientation. Therefore, 
the procedure of estimating multiple consistent homographies is 
equivalent to estimating homographies consistent with a given 
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relative orientation. Note that it would not be sufficient that one 
homography is consistent to all the others because homography 
decomposition is a quadratic problem and therefore two 
reasonable solutions exist (Faugeras and Lustman, 1988). In the 
second paragraph, we introduce our optimization procedure. 
During the optimization, the topological constraint of connected 
components is enforced. This constraint is motivated by the 
idea that we have to deal with a rigid scene that can be 
composed of several planar surface elements. The constraint is 
designed to prevent that any virtual 3D plane is fitted through 
the whole scene without any physical complement.  
 
Constraints for multiple homography estimation In this 
paragraph, we show that linear constraints can be induced to 
homography estimation to ensure consistency within a pair of 
views. The linear constraints for the homographies between two 
views can be obtained from consistency with the corresponding 
fundamental matrix , which only states the relative 
orientation  
 
 

 
 
 
The second part of the equation is well known as epipolar 
constraint. As stated before, more details on fundamental 
matrices and their estimation can be found in (Hartley and 
Zisserman, 2000). Combining the equations (1 and 2) results in 
the consistency constraint  
 
 

 
 
 

Equation (3) is valid for every point   of frame l even if the 

correspondence  is not an inlier of the homography 

. This implies that the matrix  is skew symmetric, 
which can be expressed by the matrix equation  
 
 

 
 
 
The advantage of the representation, that we present here, is 
that the constraints of equation (3) are homogeneous and linear. 
While equation (4) is symmetric, it gives us five linear 
independent homogeneous equations, that can be solved using 
singular value decomposition. The solution is a set of four 
homographies  
 
 

 
 
 

which are consistent with the fundamental matrix . Each 
homography that is consistent with the fundamental matrix can 

be represented by a linear combination of  

 
This linear combination can be estimated in a direct linear 
transformation model from the tracked image features with 
random sample consensus (RANSAC) (Fischler and Bolles, 
1981, Hartley and Zisserman, 2000). First we compute the 

action matrix from a set of correspondences  the same 
way as for standard homography estimation by  
 
 

 
 
 

where  is composed from the columns of the homography 
. Note that equation (7) is equivalent to equation (1). Then 

the direct linear estimation of the homography without 
constraints can be computed by solving equation (7) using 
singular value decomposition (Hartley and Zisserman, 2000). 
This procedure was used as comparison to our approach in the 
experiments in section 3.  
The linear constraints can now be enforced by multiplying the 
action matrix with composition of the columns of the set of 

homographies  
 
 

 
 
 
and solving for the multi-index  using singular value 
decomposition. The resulting homography can now be 
computed from the linear combination (6). The resulting 
homography is a least square solution of (7) with respect to 
constraint (4). A proof can be found in Appendix 5 of ((Hartley 
and Zisserman, 2000)). 
 
Alternatively the constraint can be embedded the same way as 
the constraints in (Shashua and Avidan, 1996, Zelnik-Manor 
and Irani, 2002, Kaehler and Denzler, 2007, Kirchhof and Stilla, 
2006). This means that the constraints are included in a 
nonlinear optimization after the initial homography estimation. 
Since the constraints are almost linear, the procedure will 
converge to the global minimum in one step. 
 
Topology and nonlinear optimization The fundamental matrix 
gives us a set of correspondences, hopefully no longer disturbed 
by outliers. The estimation of multiple homographies gave us 
an initial set of homographies and a initial partition of the set of 
corresponces by assigning each correspondence to the 
homography that fits best. In this step we update this partition 
in terms of connected components. In the same step we can 
optimize all homographies and the relative orientation with 
respect to (4). 
 
The first step toward the topological constraint of connected 
components is the labelling of the image. First the 
correspondences are labelled with the index of the homography 
that minimizes the re-projection error. Note that at this point 
correspondences are used only if they are an inlier for at least 
one homography. The pixel-wise labelling is then based on a 
nearest-neighbor calculation: Each pixel is labelled with the 
index of the closest correspondence. The key problem of this 
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procedure is that topological constraints can not be enforced 
direct. Therefore we keep only the labelling of the largest 

connected area. For each correspondence  we 

introduce the t + 1 dimensional state vector , where t is 
the number of homographies found for the two images. The j-th 

component of  represents the membership of the 

 to the j-th homography. If the correspondence 

 is labelled with j, the j-th component of  is 
set to 1. Correspondences that are not labelled receive a 1 in the 

t + 1-th component of the state vector . Finally, all 
state-vectors, homographies and the relative orientation are 
optimized by minimizing 
 
 

 
 
 
with respect to equation (4) using Levenberg-Marquardt 
optimization (Hartley and Zisserman, 2000). Here the j-th 
component of equals the reprojection error for the 

homography : 
 
 

 
 
 

with . The homogeneous points  and  are 
normalized by their third component.  converts a 
vector to a diagonal matrix.  gives the geometric 
distance between the point a and line b. Note that during the 
optimization the state vectors are treated as continuous 

variables. Therefore the state-vector  has to be 
normalized by its infinity-norm during the optimization to 
match the interpretation of a probability distribution. 
 
 

3. EXPERIMENTS 

The robustness of the algorithm is compared to standard 
homography estimation with a synthetic scene. The scene 
consists of about 100000 3d points located in three planes and a 
volume that is not occluded by the planes. 20 different baselines 
were tested. Figure 1 shows that the proposed algorithm 
requires about 50% fewer RANSAC runs than standard 
homography estimation with the same parameter setting for the 
adaptive RANSAC. The adaptive RANSAC estimates the 
number N of required runs by 
 
 

 
 
 
where inlier denotes the fraction of inlier and complexity the 
complexity of the model (4 for standard homography estimation 
and 3 for constraint homography estimation). Note that in this 

case complexity is the minimal size of a set of correspondences 
that define a unique hypothesis and not the number of estimated 
parameters. This choice of N ensures that with probability p (p 
= 0,99 in all experiments) at least one of the random samples 
was free from outliers. More important than the absolute values 
is the comparison with the theoretical values computed from 
equation (11)  for standard homography estimation 
and  for the proposed method. Only points located at 
the largest plane were treated as inliers which gaves a 
persentage of 75%. This indicates that constrained homography 
estimation is more robust against noise when the convex hull of 
the hypothesis generating set decreases. 
 
 

  
 

Figure 1: Histogram of required RANSAC runs for estimating 
one of the three homographies induced by the three planes. Top: 

standard homography estimation; bottom: Proposed method 
with constraints on the homography. 

 
 

 
 

Figure 2: Mean of the distribution of detected true inlier. The 
exact number was 745. 

 
 

 
 

Figure 3: Mean of the orientation error of the normal vector in 
degrees. 
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Figure 4: Correspondences between two views are displayed in 
one of the views. The labelling of the correspondences is colour 

coded. 
 
 

 
 

Figure 5: Temporal difference between a reference view with a 
view transformed by a homography. 

 
 

 
 

Figure 6: Temporal difference of a reference view and a view 
transformed by local warping with multiple homographies. 

 
 
In the second experiment, the algorithm was assessed with the 
Middlebury-Stereo Benchmark dataset. Figure 7 shows the 
results of the evaluation: The third row shows the result of a 
classical dense stereo technique using dynamic programming 
(Falkenhagen, 1997) while the fourth row shows the results of 
the proposed method. Large disparity is displayed bright while 
black indicates that the disparity could not be computed. The 
disparity map of the proposed algorithm is computed from the 
state vector with an estimate of the disparity for the 
corresponding homography. The result for the second dataset 
shows a large gap at the lower right corner. This occurs because 
the object lies in the same 3d plane as a larger object in the 
middle of the frame. The algorithm has correctly rejected the 
smaller area. The effect can be solved by computing additional 
local homographies for such areas. To show how the algorithm 
works the result was not improved. 
 
In the final experiment, we demonstrate the capability of the 
proposed algorithm for independent motion detection. We used 
a dataset captured with an AIM thermal camera in the 8 – 12µm 
band. The baseline between the two views was about 5m. 
Figure 4 shows the labelling of the correspondences with the 

best homography. The resulting segmentation was uncertain 
and some regions were not labelled as well. Therefore we used 
the minimum of the absolute difference between the 
transformed and the reference image for every homography for 
the boundaries between different segments and the 
unsegmented regions. The outcome of the proposed algorithm 
in Figure 6 is compared to the stabilization of the scene with 
one single homography in Figure 5. The bright regions at the 
buildings at the right side of Figure 5 appear because the 
estimated homography was fitted to the complete set of 
correspondences which where very dense at the buildings on the 
left side of the figure. These bright regions would result in 
falsely detected motion. The bright regions at the margin of 
Figure 6 are caused by the forward motion of the sensor. 
Because of this motion, the transformed frame is much smaller 
than the reference frame. 
 

4. CONCLUSION 

We have presented a novel method for direct linear estimation 
of consistent sets of homographies. The consistency was 
enforced by linear constraints using the fundamental matrix. A 
valid topology in terms of connected components of the 3d 
points corresponding to the same 3d plane projected in the 
reference frame was ensured by the selection of the largest 
labelled regions combined with non-linear optimization of the 
back projection error based on the correspondences established. 
 
Since the algorithm is currently implemented in MATLAB, a 
meaningful computation time can not be given. Nevertheless it 
is known that structure from motion, which involves the same 
computational effort, is possible in real time. At present, the 
labelling of the pixels is based on nearest neighbours. This often 
results in frayed boundaries between different segmented 
regions. Additional image information such as edges should be 
used to improve the results. In similarity to the approach of 
(Woelk and Koch, 2004) the results can be improved by 
computing the state vector pixel wise in boundary regions. This 
should result in smooth boundaries between different labelled 
regions. The topological constraints can also be enforced by 
Markov-Random-Fields. This statistical modelling may 
improve the accuracy but at the cost of high computational 
effort. 
 
Obviously the processing is affected by the precision of the 
fundamental matrix. Without loss of generality we can say that, 
the precision of the fundamental matrix in terms of the 
geometric distance between an image point and the 
corresponding epipolar line has to be higher than the threshold 
for the homography estimation, because otherwise we would 
not be able to compute any homography. Since the fundamental 
matrix is updated during the nonlinear optimization smaller 
errors in the fundamental matrix would not disturb the overall 
result as long as the initialization point lies within radius of 
convergence. A detailed analysis of this radius has to follow. 
 

OUTLOOK 

The presented method can not be adapted to multiple frames 
and one plane. But in a similar way we can build up some 
additional constraints for multiple planes and multiple frames. 

We assume that we have found two homographies  and 

 for one image pair. The line of intersection between the 
two corresponding 3d planes is mapped identically by both 
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homographies. Therefore the projection of this line to the l-th frame  is invariant under the homography 
pairs l and k+1 the line g is also invariant under the 
corresponding homography  

   
 Since the 3d line and the projection is the same for the image  

 
 

 

   

   

   

   
 

Figure 7: From top to bottom: one frame of the dataset, ground truth disparity map, disparity map computed with 
dynamic programming and the outcome of the proposed algorithm. 
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