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ABSTRACT: 

The prime objective of this paper is to develop a new method for regularizing noisy building outlines extracted from airborne 
LiDAR data. For the last few decades, a lot of research efforts have been made towards the automation of building outline 
regularization, which include Douglas-Peucker’s polyline simplication, least-square adjustment, model hypothesis-verification, and 
rule-based rectification. This paper presents a new method to rectify noisy building polylines by dynamically re-arranging quantized 
line slopes in a local shape configuration and globally selecting optimal outlines based on the Minimum Description Length 
principles. The optimality is achieved when a building polyline is maximally hypothesized as the repetition of identical line slope 
and inner angular transition are enhanced with minimal numbers of vertices. A comparative evaluation of the proposed 
regularization method is compared with existing methods using simulated building vectors with different random errors. The results 
show that the proposed method outperforms the selected existing algorithms at the most of noise levels. 
 
 

1. INTRODUCTION 

3D building geometric modelling in urban areas is in great 
demand for a variety of applications such as urban planning, 
mobile communication, 3D city modelling and virtual reality 
(Sohn and Dowman, 2007). Since human-centric building 
modelling is time consuming and very costly, a fast and general 
method for simplifying irregular building boundary lines based 
on segmentation results is highly required in dynamically 
changing urban areas. In the last few decades, considerable 
research effort has been directed toward mainly reconstructing 
building models using aerial imagery and airborne laser 
scanning data obtained from passive and active sensors such as 
camera and laser scanner (Weidner et al., 1995; Ameri, 2000; 
Sohn and Dowman, 2007; Sohn et al., 2007; Sampath et al., 
2007). However, the current state-of-the-art techniques in 3D 
building reconstruction have not been matured yet, and still 
produce large errors in reconstructed building outlines. Thus, 
many enthusiastic researchers have introduced different 
techniques in the geometric regularization. However, these 
research efforts have gained only limited success in constrained 
environments requiring many pre-specified thresholds to 
control the geometric regularity which are not often the case in 
practice. Therefore, developing the new technique to implicitly 
drive regularization rules from given data domain is urgently 
required.       

This study is organized into six sections. Section 2 discusses the 
existing regularization methods selected for current 
comparative performance test. In Section 3, we introduce a new 
geometric regulator developed based on Minimum Description 
Length (MDL). Section 4 presents a comparative analysis of the 
proposed technique’s performance with the selected geometric 
regulators. Quality assessment for each method is provided 
using the geometric regularity error matrix in Section 5. Finally 

the paper will end with some concluding remarks and 
recommendations for future research. 

2. PREVIOUS RESEARCH WORKS 

For the last few decades, many research works concerning the 
geometric regularization of 3D building shape has been 
conducted. We selected four representative techniques from the 
literature to conduct a comparative analysis of the geometric 
regularization over noisy building vectors. Theses include 
Douglas-Peucker’s algorithm (Douglas and Peucker, 1973), 
Local Minimum Description Length (Weidner and Förstner, 
1995), Feature Based Model Verification (Ameri, 2000) and 
Rule-based Rectification (Sampath and Shan, 2007). In this 
section, we briefly explain the above listed algorithms, which 
performance will be later compared to a new regularization 
method proposed in this study.  

2.1 Iterative Polyline Simplication 

The classical Douglas-Peucker (DP) line-simplication algorithm 
has been widely recognized as the most visually effective line 
simplication algorithm (Ramer, 1972). This simple algorithm 
start to construct a polyline with edge segments which link a 
prior initial vertex selected from edge points. The process 
recursively discards the subsequent vertices whose distance 
from the initial polyline less than ζ > 0 error tolerance, but 
accepts the vertex as part of the new simplified polyline if it is 
farther away from the line larger than ζ, which becomes the 
new initial vertex for further simplication. This process 
continues until all remaining vertices from the initial polyline 
are less than ζ. 
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2.2 Model Hypothesis-Verification 

Weidner and Förstner (1995) regularized nosy building outlines 
extracted from high-resolution DSM using MATCH-T based on 
a local Minimum Description Length (LMDL).  The MDL 
principal is well-known optimization method to find a good 
balance between nominal error distribution and model 
complexity based on Occam’s razor. Starting from the initial 
building boundary obtained from the DP algorithm, the method 
select four consecutive points as a local unit of the polyline 
regularization. With this local point set, the ten different 
hypothetical regularization models are generated (Figure 1). 
The hypotheses are generated to consider the orthogonality 
between consecutive lines by moving two middle points or to 
enhance the simplicity by removing one of the middles points.  
 

 

Figure 1. Ten alternative hypotheses for local configuration 
with optimum case 10 (Weidner et. al., 1995). 
 
For each hypothesis, the description length, DL, is measured on 
the goodness-of-fit between the hypothesized model and its 
corresponding observations and on the model complexity.  
Given a regularization hypothesis, H, and the observation, D, 
DL is now defined as  

 DL = L(D|H) + L(H)   (1) 

where L(D|H)  is the likelihood of H describing D and L(H) is 
the complexity measure of H. Weidner and Förstner (1995) 
suggested L(D|H) and L(H) in Eq. (1) as 
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In Eq. (2), Ω is the weight sum of the squared residuals between 
D and H.  H’s complexity in the last term of Eq. (2) depends on 
the number of unknown parameter, Np (i.e., the number of 
vertices associated to generate H), and constraints, Nc (i.e., the 
number of parameters to constrain the orthogonality. The 
optimal hypothesis, H*, is determined by simultaneously 
minimizing Ω and the number of vertices used to generate H.    

Because of local-based approach, this method can produce 
different results according to starting point among building 
boundary points when regularization process is performed. That 
is, the shape of regularized polygon can be changed according 
to the starting point of the procedure. In order to achieve the 

global geometric relation of resulting polygon, another global 
hypothesis such as orthogonality and parallelity is needed. 

2.3 Least-Squares′ Adjustment 

Ameri (2000) introduced the Feature Based Model Verification 
(FBMV) for regularizing 3D polyhedral building shape 
extracted from high-resolution multiple airborne images. The 
method is developed based on the total least-squared adjustment. 
In here, the approach is implemented by using only laser 
scanning data. The first step of FBMV is to extract initial value 
for vertices and line parameters by DP algorithm. Then, these 
edge points serve to compute building planar parameters. 
Finally, the total least-squared adjustment is performed based 
on linearity, connectivity, coplanarity, and orthogonality as 
shown in Eq. 3. The linearity constraint is used to minimize the 
perpendicular distance between LiDAR data and representative 
lines per each segment. The intersection coordinate of two 
adjacent lines can be computed based on the connectivity 
constraint. The coplanarity constraint is applied under the 
assumption that all boundary points must be located on the 
same planar surface. Since the constraints in Eq.3 are formed as 
nonlinear equation, the equations must be used after changing 
them to linearized forms. 

( )
( )

( )
( )12

0212121

12
0

12
0

12
0

,0~),,(

,0~),,(

,0~sincos),,,(

,0~sincos),(

−

−

−

−

++=

−++=

−+=

−+=

O
I
j

I
j

I
j

P
I
j

I
j

I
j

I
j

I
j

I
j

Cjj
I
jj

I
j

I
j

I
jjj

Ljjijijj

PσNeccbbaazyxO

PσNezcbyaxzyxP

PσNeρθyθxyxρθC

PσNeρθyθxρθL

 

(3)

iii zyx ,, : 3D coordinates from LiDAR data 

jj ρθ , :Angle between edge and x axis,                                    

             distance between origin and line 
:,, I

j
I
j

I
j zyx 3D coordinate of intersections between edges 

:,, cba Plane components 
:, 21,2121 ororor cba Direction vectors for two edges 

:,,, OPCL Linearity, Connectivity, Coplanarity, Orthogonality 

 
In case of orthogonality, if α (angle between vectors) exists 
within t > 0 the acceptable tolerance, the orthogonal property is 
applied to the vertex as  

tt +≤≤− 00 9090 α  (4)
 

 
FBMV provides flexibility to control conditional constraints 
such as orthogonality, parallelity and symmetricity 
simultaneously. However, it still requires hard-constraints to 
facilitate these regulators. Similarly to the well-known least-
square problems, the performance of FBMV is subject to initial 
conditions provided by DP. 
 
2.4 Rule-based Rectification 

Sampath & Shan (2007) developed a Rule-based Regularization 
(RR) for refining a coarse building boundaries extracted by 
classical supervised classification using IKONOS imagery. The 
method consists of two-step regularization processes. A coarse 
building boundary is obtained by DP, thereby eliminating noisy 
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boundary points. The second step is to further rectifying 
outlying points with perpendicular constraints which is pre-
specified. After dividing slopes into two groups in horizontal 
and vertical direction, a simple least square adjustment is 
performed to regularize boundary lines with irregular shape. 
Since the slope direction is only divided into two directions, in 
case of the building polygon with more than two directions, the 
proposed regularizing process is not working well. However, 
this approach can rapidly provide the good solution for 
regularization in the building with simple shape. The line 
equation and orthogonal constraint equation can be used as 
shown in the following equation.  
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:, jj yx Horizontal coordinates from LiDAR data 

:sM Slop for vertical or horizontal (=-1/ Mh,or,v)  

:,OL Linearity, Orthogonal constraint  (MhMv = –1)  
 

 
 

3. A NEW BUILDING SHAPE REGULARIZATION 

In this section, we propose a novel method for incrementally 
regularizing noisy building outlines by considering newly 
driven geometric regularity parameters in MDL framework. 
The optimal shape regularity is achieved by testing 
hypothetically regularized models with regularity favoured 
objective function.  
 
3.1 LMDL Limitations 

As shown in Weidner and Förstner (1995), the most benefit 
taken from the MDL regulator is that the method is generic not 
to require hard-constraints (i.e., pre-specified thresholds) to 
explicitly constrain the domain knowledge on the shape 
regularity. For instance, both FBMV and RR pre-specify an if-
then rule set to facilitate the regulator following the 
orthogonality and parallelity, which is only working well with 
certain limited condition. However, the MDL provides more 
flexibility to implement such regularization rules with soft-
constraints (i.e., cost function or objective function).  
 
In LMDL, the cost function is to minimize the description 
lengths which bitwise encode the cost to select a hypothetical 
model when it is true in terms of the residual likelihood and the 
model complexity. The optimization of LMDL is achieved by 
verifying entire model candidates that are generated with 
different model complexity. An optimized model will be 
achieved to produce reasonable residuals with the simplest 
model. Although LMDL was successfully applied to the 
building shape regularization problem, we have observed two 
major limitations that could be improved; (1) locality and (2) 
limited encoding scheme for the model complexity. LMDL is 
conduced over a local set of four consecutive points, by which: 
firstly, the regularization result by LMDL depends on starting 
local point set and secondly, the orthogonality and parallelity to 
generate hypothetical models are relatively determined in 
relation to the positions of the two (starting and ending) anchor 
points of the local point set. Moreover, the model complexity is 
only penalized by the number of the vertices forming the model. 

However, with the same number of vertices, polygons with 
different model complexity can be made.           
 
3.2 Geometric MDL  

We propose a new method to regularize noisy building outlines, 
called Geometric MDL (GMDL), which encodes the model 
complexity with different regularity measurements from LMDL. 
In GMDL, we define the shape regularity to show: (1) the 
directional repeatability, (2) the regular angle transition, and (3) 
the number of model parameters. That is, the optimal model is 
selected if the polyline has as many as possible identical line 
directions, ND; smoother or more orthogonal inner angle 
transition between adjacent lines, QΔθ; and smaller numbers of 
vertices, NP. This can be described in MDL framework as  

PPPθθPDD NKWNQWNNWlnHDL 22ΔΔ2 logloglog2
2
Ω)( +++−= (6)

In Eq. (6), the first term describes the closeness between model 
and observation as in Eq. (2), and the last term indicates the 
model complexity. Note that the weight factors (WD, WP, WΔθ) 
are firstly settled as default value such as one. Ω is the sum of 
the squared residuals between model and observation. 

3.3 Methodology 

An optimization strategy to determine H* that minimises Eq. (6) 
is comprised of following tasks.  

3.3.1 Initial Vectorization: After ordering building boundary 
points by using a modified convex-hull method, an initial 
building outlines are reconstructed with linked edge segments 
obtained by DP algorithm.  
 
3.3.2 Quantizing Line Directions: We apply Compass Line 
Filter (CLF) developed by Sohn et al. (2007) to initial line 
segment, which is quantized into one of eight line directions. 
CLF is designed as a set of quantized line direction {θi: 
i=1,…,8}, where the direction of the first compass line is 
horizontal and the others are spaced with equally 22.5 degree as 
shown in Figure 2. 
 

1

2

3

4
56

7

8

22.5 deg

11.25 deg
1

 

Figure 2. Illustration of CLF: A set of quantized line directions 
with 22.5° 

 
All line directions {θ} are measured by xsinθ – ycosθ = d and 
assigned into one of eight CLF numbers, where θ indicates the 
angle between a line segment and x-axis, and d is the line 
distance from the origin. Finally, the representative line 
directions with respect to each CLF number are calculated by 
weight-averaging cumulative directions belonging to the same 
CLF number. 
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3.3.3 Computing Model Complexity: Once all the lines are 
grouped with respect to CLF, the total numbers of line 
directionality (ND), which are ranged between one and eight, 
forming building outlines are determined. The angular 
transitional regularity (QΔθ) are determined to have the 
minimum score of 0 (i.e., favoured regularity) if the inner angle 
difference between two consecutive lines close to 90˚ or 180˚, 
while the maximum score of 2 (i.e., un-favoured regularity) as 
in general the building outlines with the acute angle at one 
vertex is rare, the penalty value must be assigned with higher 
value compared to the other index numbers (Table 1). 
 

i Δθi QΔθi 
1 0.0 ~ 11.25 2 
2 11.25 ~ 33.75 1 
3 33.75 ~ 56.25 1 
4 56.25 ~ 78.75 1 
5 78.75 ~ 101.25 0 
6 101.25 ~ 123.75 1 
7 123.75 ~ 146.25 1 
8 146.25 ~ 168.75 1 
9 168.75 ~ 180.00 0 

 
Table 1. Quantized  QΔθ. 

 
3.3.4 Regularizing Hypothesis Generation: For each vertex, 
GMDL generate a number of regularizing model hypothesis in 
two different ways. Instead of selecting the four local point set 
used in LMDL, GMDL selects three vertices to generate 
hypothetical solutions (Figure 3): (1) the anchor point, v1, that 
are fixed during the hypothesis generation; (2) the floating point, 
v2, that could be movable; (3) the guiding point, v3, that 
provides a guidance how v2 moves.  
 

(a) 

1v
2v

3v
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Anchor Point

CLF 1

CLF 8

CLF 4
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CLF 2

Anchor Line

 
 

Figure 3. The possible alternative hypotheses at anchor 
point: (a) by moving v2 and (b) by eliminating v2. 

As illustrated in Figures 3(a), a number of hypothetical models 
are generated by moving v1. A floating line centered at v1 can 
move along the anchor line passing through v2 and v3 by 
replacing the floating line’s direction with CLF’s ones. By 
intersecting the floating and anchor lines, a new vertex is 

computed for hypothesizing a regularized model. Figure 3(b) 
shows alternative hypothesizing method by eliminating v2. 
Once v2 is eliminated, the floating lines are generated by the 
same way illustrated in Figure 3(a) and then, the floating and 
guiding point are changed to v3 and v4. Finally, a new vertex 
will be computed by intersecting the newly computed floating 
and anchor lines.  
 
3.3.5 Global Optimization: The following Figure 4 and Table 
2 show an example of GMDL regularization. 
 
 
 
 
(a)  

 
(b)  

  
(c)  

  
(d) 

  
(e)  

  
 

Figure 4. Principal steps of the regularization of irregular 
building boundary lines: (a) initial shape, (b) vectorization 
based on Douglas-Peucker approach, (c) reconstruction of lines 
within dotted line, (d)merge, (e) final optimal configuration 
 
Figure 4(a) shows initial outlines formed by using boundary 
points extracted based on modified convex-hull algorithm after 
building detection. Figure 4(b) is the initial simplified polygon 
simplified by DP and initial DL value for the null hypothesis is 
calculated. In the next step (c), after computing {DL} for the 
entire vertices, the optimal hypothesis to produce the minimum 
DL, which is smaller than the null hypothesis, is selected (see 
the dotted box in Figure 4(c)). In Table 2, the null hypothesis’s 
DL (Figure 4(b)) is larger than the one in Figure 4(c) because 
the configuration eliminating one of vertices from building 
outlines mainly contributes to the optimal configuration.  If 
neighbouring line’s directionality has the same CLF value, a 
simple merging procedure is performed as shown in Figure 4(d). 
The last step (Figure 4(e)) presents the final optimal outlines 
after recursively conducting the processes illustrated in Figure 
4(c) and (d) until the minimum DL obtained at the current 
iteration is larger than the one at the previous iteration. 

Step NP ND QΔθ L(M) Ω /2ln2 DL 
(b) 12 4 3.33 34.65 22.61 57.26
(c) 11 4 2.66 30.55 23.62 54.17
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(d) 9 4 3.11 25.53 24.26 49.79
(e) 4 2 0.0 6.00 15.82 21.82

 
Table 2. The values of DL elements in each step 

 
 

4. EXPERIMENTAL RESULT 

The performance of the proposed shape regularization 
techniques was estimated based on simulated 3D building 
points. 3D reference building vectors were manually captured, 
with which LiDAR points were generated by intersecting 
LiDAR rays with digitized 3D building vectors. The reference 
points were simulated to have a point density of 11 points/ m2.  

Figure 5. Simulated reference building points and boundary 
line in 3D (left) and 2D (right). 

The reference building shown in Figure 5 was simulated with 
noise free condition that is all points were generated with about 
0.3m point spacing. To evaluate different shape regularization 
methods under various noise levels in LiDAR data, we added 
the five random noises (±5cm, ±10cm, ±15cm, ±20cm and 
±25cm) to the building boundary points extracted from 
reference. Note that these random errors are only considered in 
x-y horizontal directions because this study focuses on 2D 
shape reconstruction. The boundary points were extracted in a 
2D buffer zone made around initial building outlines obtained 
by DP algorithm. The buffering size was heuristically 
determined based on the data domain knowledge of average 
point spacing for each test set. The first column of Figure 6 
presents initial boundary lines extracted from the building test 
datasets simulated with five different noise scales. Based on 
these datasets, we applied the shape regularization methods (DP, 
LMDL, FBMV, RR, GMDL) that were discussed in previous 
sections. From the second to the sixth column in Figure 6 shows 
the results of regularization from initial boundary lines by the 
four regularization methods. All the algorithms were 
implemented using Microsoft Visual C++ and tested in the 
desktop computer with Intel’s Pentium IV CPU with 1GB 
system memory. 
 
 

5. QUALITY ASSESSMENT 

In order to achieve optimal model selection in building 
boundary modelling, performance and cost factors of each 
model must be taken into account. Therefore, before selecting 
the optimal model to a building shape, the performance of each 
regularization model must be tested with respect to various 
factors. The quality of each reconstructed model is evaluated 
based on error matrix shown in Table 3. In Table 3, R, E, P and 
V refer to Reference, Extracted, Polygon and Vertex. The score, 
which is used to judge the suitability of each model, is 

calculated by summing each element of error matrix. The value 
closer to zero indicates to have higher shape regularization.  
 

Category Description 

 Vertex 
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(VC) 
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Table 3. Error matrix 

 
Table 4 shows error measurements across tested regularization 
methods according to different noise levels from ±5cm to 
horizontal ±25cm horizontal random errors. As shown in Table 
4, LMDL has a tendency to over-simplify building boundaries 
as shown in Figure 6(b) and (d). CD score for LMDL is more or 
less larger than the others because the slope directionality is 
decided based on local alternative models and constraints. 
FBMV’s score significantly increases as the random noise level 
becomes higher. This is because FBMV does not consider 
achieving the model simplicity by eliminating noisy vertices. 
Thus, the induced errors become very high in VC and AC. In 
this context, we can conclude that FBMV is not suitable for 
regularizing building outlines corrupted with high noise level. 
In case of RR, the score shows better performance at the low 
noise level, but was rapidly lowered as the noise level becomes 
higher as pre-fixed simple rules cannot efficiently handle very 
noisy boundaries. As shown in Figure 6 and Table 4, the 
performance of GMDL is outstanding regardless of the 
complexity of building polygon. 
 

Error (cm)  
Category ±5 ±10 ±15 ±20 ±25

LMDL 0.20 0.40 0.20 0.40 0.20
FBMV 0.20 0.30 0.40 1.00 2.00

RR 0.00 0.00 0.20 0.60 1.00

 Vertex 
Complexit
y   (VC) 

GMDL 0.00 0.00 0.00 0.00 0.00
LMDL 0.08 0.06 0.46 0.10 0.09Angle 

Complexit FBMV 1.98 3.00 4.41 8.19 21.0
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RR 0.16 0.28 2.48 4.22 6.99y   (AC) 
GMDL 0.23 0.17 0.19 0.04 0.88
LMDL 2.41 2.61 4.76 3.43 6.80
FBMV 2.82 2.55 2.24 2.12 2.32

RR 1.86 2.24 2.87 3.02 3.41

Corner 
Difference 

(CD) 
GMDL 1.94 1.80 2.37 1.79 3.44
LMDL 0.32 0.16 0.36 0.15 0.29
FBMV 0.3 0.42 0.57 0.53 0.21

RR 0.01 0.01 0.32 0.21 0.82

Orientatio
n 

Difference   
(OD) GMDL 0.01 0.02 0.00 0.00 0.08

LMDL 0.25 0.13 0.55 0.15 0.28
FBMV 0.23 0.22 0.20 0.10 0.03

RR 0.04 0.04 0.06 0.05 0.03

CM 
Difference 

(CMD) 
GMDL 0.05 0.06 0.07 0.07 0.03
LMDL 0.03 0.03 0.00 0.02 0.03
FBMV 0.00 0.01 0.00 0.01 0.01

RR 0.02 0.02 0.01 0.01 0.01

Area 
Difference 

(AD) 
GMDL 0.02 0.02 0.01 0.02 0.01
LMDL 3.31 3.42 6.35 4.27 7.71
FBMV 5.56 6.52 7.85 11.9 25.6

RR 2.11 2.62 5.97 8.14 12.2
Total 
Score 

GMDL 2.27 2.09 2.68 1.95 4.48
 

Table 4. Performance evaluation of tested geometric regulators 
according to different noise levels 

 
 

6. CONCLUSIONS 
This study presented the analysis of existing generalization 
methods and the new automatic regularization method of 
building irregular polygon, in which quantized line vectors are 
dynamically re-arranged based on MDL theory. The main 
aspect of proposed GMDL method is to provide a robust 
solution to incrementally regularize noisy building boundary by 
minimizing both residual errors and model complexity. A new 
objective function was introduced to augment geometric 
regularity in terms of the geometric repeatability, regular angle 
transition and the number of vertices used. We conducted a 
comparative evaluation of GMDL’s performance with the four 
existing algorithms including DP, LMDL, FMBV and RR using 
simulated building data added with five different noise levels. 
The results showed that GMDL outperforms all the regulators 
selected at the most of noise levels, and GMDL’s performance 
was measured approximately more than three times higher in 
average compared to the others at the highest noise level. 
Achieving the robustness against high noise level by GMDL is 
important for applying it to the real-setting environment. As 
future researches, we will extend GMDL from 2D vectors to 3D 
polyhedral cases, by which large-scale 3D building models can 
be incrementally refined in temporal domain.  
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Figure 6. The results of regularization from initial boundary line with the random error of (a) ±5 cm, (b) ±10 cm, (c) ±15 cm, 
(d) ±20cm, and (e) ±25cm  
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