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ABSTRACT: 
 
Airborne laser scanning technology is primarily perceived as a means for gathering detailed three-dimensional information about the 
surface and objects on it. It is therefore not surprising that the majority of the laser related research has focused on the detection of 
the terrain within the point cloud and on distinct surficial objects like building roofs and tree canopies. Nonetheless, the dense 3D 
data contains information about linear entities, some of which are of subtle form. While some of the efforts have been made into 
extracting linear elements from laser scanning data, the attention was mostly turned to dominant elements that are very clear and 
distinct. We present in this paper a model for the detection of linear features of various sizes and magnitudes laser data. Our focus is 
on the detection of subtle linear elements. We apply the model to detect and extract paleo shorelines that have the form of small 
ridges. Such fossil shorelines are clear markers of receding lakes and record the annual high and low stands. Results show that ridges 
of ~20 cm height can be identified and separated from the surrounding features in data. 
 
 

1. INTRODUCTION 

Airborne laser scanning has been used for mapping applications 
for more than a decade seeing the lion's share of research 
focusing on the extraction of the terrain (see e.g., Sithole and 
Vosselman, 2004), of salient objects like buildings (e.g., 
Vosselman and Dijkman, 2001, Brenner, 2005) or of roads and 
trees (Clode et al., 2004, Vosselman, 2003, Yu et al., 2004). As 
a result, features extraction models were mostly associated with 
the detection of surface segments usually of planar ones (Lee 
and Schenk, 2001; Vosselman, 2001; Filin, 2002; Hofmann, 
2004). In contrast, the detection of linear elements has received 
little attention so far or was only considered as a byproduct of 
surface extraction procedures, e.g., roof ridgelines that resulted 
from the intersection of neighboring planes (e.g., Vosselman 
and Dijkman, 2001).  

Focusing on the extraction of linear features, Brügelmann (2000) 
presents an edge-extraction based approach seeking breaklines 
in dense laser datasets. The focus is on salient features, aiming 
to add linear constraints to digital terrain models. The model is 
based on finding lines of extreme curvature values in the data, 
and its application is demonstrated on a fairly dense dataset (7 
points/m2) showing a relatively smooth object (a dike), with a 
set of relatively distinct lines. Briese (2004, 2006) presents a 
semi-automated approach which is based on following lines of 
maximum curvature. Contrasting Brügelmann (2000), the 
detection of points with high curvature values is implemented in 
a similar fashion to the extraction of the roof ridges. Local 
planes are fitted in both sides of the seed points (according to its 
direction) and if the angular difference between them is strong 
enough, the line is extended. The process terminates when the 
curvature value drops below a preset threshold value. Brzank et 
al. (2005) detects breaklines by first applying a step edge-
detection operator (Canny) to approximately locate lines where 
strong enough responses occur. The extracted lines are then 
used for fitting tangential hyperbolic surfaces. As the authors 

point, the predefined surface shape around the line is assumed, 
which may not fit in all cases. Rutzinger et al., (2006), outlines 
an object-based extraction framework and demonstrate it on the 
extraction of moraines. A preset definition of the phenomena 
distinctiveness dictates the search window and curvature related 
parameters. Features are extracted by skelatonization of high 
curvature regions. In Lantz et al., 2003, a set of predefined 
filters, which are based on surface inclination and orientation, 
are used for identifying different types of object features like 
roads and ditches. This detection is based on seeking angular 
difference according to the set of filters and is valid to well-
defined and sharp transitions.  

Nonetheless, lines showing in laser data can be a result of much 
subtler transitions, ones whose saliency will rather be associated 
with their elongated form than the actual edge (step or crease) 
response. We study in this paper the detection of subtle linear 
features in airborne laser scanning data. The lines of interest 
here are paleo shorelines, which are linear entities formed as a 
result of lakes retreat. We propose an autonomous model for 
their detection and characterization, and demonstrate the ability 
of LiDAR driven models to detect land-features of minute size 
and on large-scale.  

The reminder of the paper is structured as follows; we begin 
with a short description of the shoreline formation process and 
demonstrate their realization along the coastal plains. The 
presentation of the proposed methodology for LiDAR based 
shorelines detection follows. As we show, several phases are 
involved in the detection, but it is their agglomeration that leads 
to the ability to detect shorelines in various forms. Following 
the presentation of the model, results and analysis that 
demonstrates the application of the algorithm conclude the 
presentation. 
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20 cm 
20 cm 

Figure 1. Shorelines along receding lakes, a) a side looking aerial view showing shorelines in different phases, b) shoreline whose 
actual realization as a line is being mainly marked by drifted wood, c) the realization of shorelines as show in laser scanning data, d) 
different realization of the shorelines in the LiDAR data showing their diversity and variability. 

 
 

2. FORMATION AND REALIZATION OF 
SHORELINES 

Formation of shoreline sequences can generally be ascribed to 
receding lake levels, usually as a result of water diversion, or 
extensive water use (see e.g., Street-Perrott and Harrison, 1985; 
Abelson et al., 2006). As the lake retreat, a set of deserted 
shorelines, appearing as topographically elevated beach-ridges, 
are left behind on the costal plain. The formation of the beach 
ridges is related to the wave impact during spring storms. The 
precise location of each shoreline marks the uppermost 
elevation that the lake level reached during the winter and 
spring before the gradual slow retreat during the dry season. In 
cases where the drop of water-level is rapid, the created 
shorelines from every year are preserved. Normally, the wave 
action in the next winter does not reach the previous beach ridge 
after the level has dropped during the summer, and so one 
shoreline will consist of two linear features, one for each season. 
Shorelines therefore serve as annual markers that record past 
water levels during periods of decrease and are useful in 
reconstructing episodes of lake retreat. Through time the clear 
steps become subjected to changes, and are modified by gully 
formation, incision of pre-existing stream channels, and runoff 
erosion. We also note that in rare episodes during unusually 
rainy winters the level rise and the wave actions erode previous 
shorelines. In addition to erasing preceding shorelines, the 
erosion caused by the rising water creates a conspicuous large 
step, which is preserved by the subsequent drop of the water. 
The morphology of modern steps is readily correlated to 
recorded precipitation. 
 

Figure 1 illustrates the nature of the shorelines. In Figure 1a, a 
side looking view of well-preserved sequence of shorelines, 
with steps of ~30 cm high, are clearly seen. In Figure 1b, a 
solitary shoreline located in an exposed coastal plain is seen. 
Here the main manifestation of the step is in the very narrow 
line mostly defined by drifted wood. Figures 1c and 1d show 
the realization of shorelines in the LiDAR data. The two sets 
differ by the underlying topography, but in both cases the steps 
are ~20 cm high. The notable fact is that the actual edge is not 
well defined and was eroded over time, almost to blend with the 
underlying topography. We note that even though those lines 
are expected to form equal height contours, tracing their actual 
elevation shows that they do not preserve a constant height. 
This has to do with erosion coupled with the effect of the 
surface topography. 
 

3. DETECTION MODEL 

Geometrically, shoreline sequences can be described as 
composed of coupled linear features representing a local 
extrema in the surface curvature (see Figure 1). The higher 
linear features relate to the seasonally-high water stand, and be 
characterized by locally minimal curvature values. The lower 
lineaments, representing the seasonal low-stand, are featured 
conversely by locally maximal curvature values. Shoreline 
sequences therefore alternate signs from negative (winter) to 
positive (summer), where within each zone (positive or negative) 
their actual location will be along the local extremum value. 
Nonetheless, because of surface erosion and noise, the extracted 
features will only form a set of fragmented lines. An 
agglomeration of the fragments into a complete, descriptive 
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feature should then follow. Our proposed model is therefore 
built on a framework that first detects regions within which 
shorelines are expected to lie, then finds their outlines, and 
finally connects compatible fragmented shorelines into a single 
entity. In the following, each stage is discussed in detail. 
 

3.1 Detection of seed shorelines region 

Shoreline points will be described as forming a local extrema in 
the surface curvature. They can be quantified by the Hessian 
form, H  
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with Z the heights as derived from the LiDAR data. For a 
stationary point to be a valley or a ridge point, H must be semi-
positive or semi-negative definite respectively, and so, having 
one eigenvalue that equals to zero (more realistically, close to), 
while the other is either positive for summer or negative for 
winter ridges. We compute H numerically via 
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with d the window size. While polynomial derived estimations 
(e.g., Besl, 1988; Mitášová and Hofierka, 1993) can also be 
considered an option, the numerical estimation we apply is both 
computationally efficient and can easily adapt to characterizing 
the variety of sizes, shapes, forms and directions that shorelines 
wear. In the following section we describe its adaptation into a 
multi-scale analysis. 
 
 

 
Figure 1. Curvature along profiles extracted across the coastal 
plains in different sites, showing different magnitudes, other 
than the two strong peaks, all ridges are smaller than 1 m and on 
average are ~20 cm high.  

3.1.1 Multi-scale parameter analysis 

The common practice for the detection will be applying a fixed 
kernel size and searching for sufficiently strong responses (in 
Brügelmann, 2000 low pass smoothing by a Gaussian filter is 
applied to attenuate noise effect). As Figure 2 shows, in the 
current case it is almost impossible to set a predefined threshold 
value that will manage capturing “strong” responses relating to 
the locally maximal curvature. Additionally, smoothing the data 
to attenuate noise effect might blur the shorelines and eliminate 
them. Because of the variety of forms and surface texture 
characteristics, responses may have different magnitudes. 
Therefore, the surface curvature and the eigenvalues 
computation are performed in multi-scale manner, in different 
levels from fine to coarse, searching for a "significant" response. 
To assess the responses, the retrieved parameters are studied in 
terms of the limit of detection. 

Limit of detection – A ridge, or a seasonally high water stand 
shoreline related point, requires one of the eigenvalues derived 
from H to be positive and the second to be equal to zero, 
namely λ1 < 0 and  λ2=0. Similarly, a valley, or the seasonally 
low water stand shoreline related point, requires λ1 > 0 and 
λ2=0. Deriving an upper and lower bound responses level, ε1 
and ε2, such that > 1 1λ ε  and  2 2λ ε≤ , can either be approached 
by learning from examples, or be estimated theoretically by 
deriving accuracy estimates for λ1 and λ2 as a function of the 
elevation accuracy. Since our objective is finding the minute 
detectable shorelines, we analyze the LiDAR driven bounds. 
The accuracy of λ1 and λ2 is controlled by the second-order 
partial derivatives (assuming that second-order mixed 
derivatives equals to zero in ridge and valley points) accuracy as 
derived from Eq. (2). Following the propagation of the elevation 
accuracy onto these parameters and onto the eigenvalues we 
obtain 
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with z the normalized Gaussian distribution. Equations (3), (4) 
and (5) show that 

1,2
mλ  is scale dependent and with the 

increase of d (scale decrease), λ will be estimated more 
accurately. Therefore, instead of setting a unique threshold for 
the entire scene, each point will be examined via its own Z-test, 
for a scale which can accommodate the first significant response. 
The result of this procedure will be regions with significant 
positive and negative responses. 

 

In Figure 3 we demonstrate the seed regions in which responses 
that are strong enough to trigger detection were found. The 
different coloring reflects the levels in which a response was 
recorded. As can be seen even within the seed region of a single 
shoreline, there are detections in different levels of resolution. 
In this case they can be attributed to changes in the underlying 
surface topography and their weathering. 

3.2 Detection of the shoreline curve  

The detection of the actual shoreline locations is triggered by 
the seed region that can be regarded as topographic bound for 
the exact location of the curve. The curve should follow the 
extremum of the terrain curvature (principal curvature), and 
preferably be smooth. The exact location is identified, in most 
cases, by a change in the curvature gradient value. Both shape 
and boundary constraints are accommodated by casting the 
problem as energy minimization in which the shoreline curve is 
modeled as an active contour whose shape is guide by internal, 
spline, and external, path, forces (Kass et al., 1988). 
Representing the position of the contour as x(s), with s as the 
arc-length parameter, its energy functional can be written as 
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with Ec, the contour energy, Eint, the internal spline energy, and 
Eext, the external energy arriving from the terrain (by means of 
the LiDAR data). The internal spline energy is composed of a 

first- and second- order terms aiming controlling the length of 
the curve arcs, and its smoothness respectively 
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with α, controlling the first-order, and β the second-order terms 
(α and β can also be set as functions of s but they are usually, as 
here, set as constants). The optimal curve should minimize 
Eq.(6), and must satisfy Euler equation 
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with the internal force, ( ) (" "" )x s x sα β− , discouraging the 

stretching and bending, and the external potential force, ∇Eext, 
forcing the curve to converge towards the shoreline path. The 
external energy function, Eext, is derived from the laser data, and 
given K(x, y), the terrain curvature, f(x, y), which is the change 
in curvature will be used for the external energy with 
 
 
 ( )( ,  )= ,extE K x y f x∇ = −∇ − y  (9) 
 
 

Since the internal energy is influenced by the spline setup, it is 
the external energy that drives the contour to its actual location. 
We initialize the curve from the medial axis of the seed region 
which theoretically will be close enough to the final desired 
location (we note that looking for local exterma will be a more 
aware choice, however this is being taken care of the active 
contour).  

 
 

 
 
 

 
 

Figure 2. The detected seed regions for, a) the wet season, b) the dry season, the different colouring within the regions reflect the 
resolution levels in which a response was recorded (hot colours – small scales). Notice that even within single shoreline seed region 
there are detections in different levels of resolution.  
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3.3 Connecting fragmented features   

Erosion processes, surface roughness, measurements noise and 
formation of small channels across the ridgeline, lead to 
disconnections in the extracted shorelines, both in those relating 
to the dry and wet seasons. The curvature signal will therefore 
be too weak to pass the statistical test needed to trigger a 
response. It is therefore likely that a given ridgeline will be 
broken into several, individual, segments. As the objective of 
the model is to extract the ridgeline in an as complete form as 
possible, those undetected gaps should be bridged. The 
proposed approach for connecting fragmented shorelines is 
divided into two complementary stages; the first selects the 
candidate line pairs to be connected, the second finds the 
optimal path in terms of energy minimization and consistency 
of the overall sequence. This path tracking focuses on 
accumulating weak signals into a meaningful linear feature that 
will connect the two strong lines in both its ends. For generality 
the two stages are driven without making use of prior 
knowledge. For shorelines, such knowledge can relate to their 
height, and so, height difference criterion will lead to a 
considerable decrease of the search space (disqualifying pairs 
whose the height difference exceed a given threshold). 

3.3.1 Limiting the matching candidates 

Without any prior knowledge, each of the detected lines will be 
treated as a fragment with all the other lines sharing similar sign 
considered an appropriate match. We maintain a line continuity 
criterion assuming that lineamental features should preserve 
their local orientation. Based on the orientation criterion a set of 
candidate shorelines to connect are considered for each probed 
shoreline fragment. 

3.3.2 Finding an optimal path 

Linking the two candidate lines can be cast as a path finding 
problem. As noted, surface curvature signals in disconnected 
areas are weak but still exist. We therefore apply a tracking 
strategy that is based on finding a path that minimizes the 
energy involved in traversing this area. Energy will be measured 
in terms of curvature values by looking at paths between two 
pairs of end points and searching for the shortest path in term of 
curvature values, namely  
 

 ( ) ( )( ) ( )( )( ),, min ,i j p i j pd p d i j d i j∈= ∑ = ∑ , ∈  (10) 

 
with , a candidate path between the two end points, p p the 
shortest path, and ( ),d i j the weight between two consecutive 
points. For wet season lines the terrain curvature values will be 
negative, and therefore weights will be assigned as 

. For the dry season shorelines, the curvature 
values will be positive. Therefore, to achieve minimum energy 
we flip the signs for the weights, namely 

( ) = ( ),d i j K j

( ) ( ),d i j K j= − . 

Ridgelines cannot intersect among themselves and the upper 
part of the ridge cannot intersect with its lower part (which we 
term its negative reflection). Therefore, following the path 
finding between the edges, a logical consistency test of the 
linking paths is performed. Our implementation simply removes 
links that intersect other lines, but we note that by grading all 
analyzed links for each end point, it is possible to find an 
optimal combination that maintains the ridgeline topology. An 
alternative is finding the k-shortest paths (see Yen, 1971; 

Shibuya, 1995) and eliminate intersections (particularly 
between the ridgeline and its negative reflection). 

 

 

Figure 3. Detection of sequence of shorelines, with black wet 
season shorelines, and white dry season related 

 
 

4. RESULTS AND DISSCUSION 

We demonstrate the application on three regions featuring 
different characterizations, acquired along the Dead Sea coastal 
plain. Since the mid-1960s, increasing diversion of water from 
its northern Dead Sea drainage basin started a continuous 
process of artificial drop in the lake level, which was 
accelerated since the 1970s, reaching an average rate of 1 my-1 
in the last 10 years. At present the lake level extends 28 m lower 
than the early 20th century high stand. The resulting 
environmental deterioration along the coastal plains was 
featured in soil erosion and incision of channels which were 
forming with the exposure of the coastal plains, and the 
formation of surface discontinuities, e.g., due to shoreline 
exposure (see Figures).  

In Figure 4, a sequence of shorelines can be seen, with ridge 
height of ~20 cm. The seed regions from which the detection 
was initialized are shown in Figure 3. As Figure 3 illustrates, 
the detection of the wet season shorelines has stronger 
responses compared to the dry season ones. This difference in 
responses can be attributed to effect of surface erosion, which in 
smoothing the beach ridge makes the lower part of the ridge less 
distinct. As can be seen in Figure 4, the lines generally follow 
the ridges (and their negative reflections) and that the gap 
bridging has managed keeping track with the ridge line. In the 
lower part of the shore (upper left corner) the detection has 
limited level of success. This can be attributed to the relatively 
steeper slopes of the overall topography there (resulting in a 
denser set of shorelines). The curvature analysis there had 
therefore difficulties overcoming the strong carrying surface 
signal. 

In Figure 5 we demonstrate the detection of shorelines where 
channels that were formed along the edge incise them. In Figure 
5a the detection of ridgelines and their negative reflections is 
shown. It is not surprising to notice that in addition to the 
shorelines the channels ridges were extracted as well. To 
separate the two different ridges we categorize them by the 
general orientation, which results in two distinct clusters (see 
Figure 5b). In Figure 5c we show the ridge (positive and 
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negative) related points belonging to the north-west south-east 
lines following the connection of the fragmented lines. It can be 
seen that the minimal path was the one crossing the channels. It 
is optimal within the potential set of path that could link the 
points. 

 

 
Figure 4. Detection of shorelines where the ridges are dissected 
by channels, a) the result of the ridgeline extraction, b) a polar 
histogram showing the orientations, c) the shorelines related 
segments (wet – black and dry – white)and the with the bridged 
gaps (dashed). 

 
Finally, Figure 6 shows the extraction of the shorelines that 
from the data shown in Figure 1d. The area there is relatively 
flat at the upper part with a modest slope developing as it 
approaches the lake. In the flat part, the shorelines are hardly 
noticeable after undergoing erosion. The shorelines also differ 
from one another in the curvature magnitude, again alluding to 
the need for a multi-resolution based analysis. The results show 
that while being subtle in appearance, the detection model has 
managed identifying them, and where the response was too 
weak and no candidate counterpart of connection existed, the 

line did not develop further. Overall the results show that the 
ridgeline detection model has manage identifying subtle lines of 
~20 cm height within large regions, these results illustrate the 
great potential of LiDAR derived applications in extracting fine 
features geomorphic or others. 

 

 

Figure 5. Detection of shorelines for the dataset in Figure 1d, 
with black wet season shorelines, and white dry season related. 

 
 

5. CONCLUSIONS 

We presented in this paper a model for the extraction of 
ridgelines from airborne laser scanning data. Differing from 
edge based approaches the proposed model seek areas which are 
homogenous in their curvature sign and with values significant 
enough to overcome background noise. The use of multi-scale 
approach allows detecting different ridge realizations. This 
removes the need to define what strong edge should be and 
allows focusing on subtle ones. The use of active contour to 
converge into the actual ridgeline allows integrating both 
external, surface constraints, with internal, line related ones, 
thereby controlling local noise effect. Casting the bridging as a 
path finding problem allows modeling the connection in terms 
of energy minimization problem. The results show how the 
proposed approach has managed identifying subtle ridgelines.  
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	In Figure 4, a sequence of shorelines can be seen, with ridge height of ~20 cm. The seed regions from which the detection was initialized are shown in Figure 3. As Figure 3 illustrates, the detection of the wet season shorelines has stronger responses compared to the dry season ones. This difference in responses can be attributed to effect of surface erosion, which in smoothing the beach ridge makes the lower part of the ridge less distinct. As can be seen in Figure 4, the lines generally follow the ridges (and their negative reflections) and that the gap bridging has managed keeping track with the ridge line. In the lower part of the shore (upper left corner) the detection has limited level of success. This can be attributed to the relatively steeper slopes of the overall topography there (resulting in a denser set of shorelines). The curvature analysis there had therefore difficulties overcoming the strong carrying surface signal.
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