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ABSTRACT:

For the acquisition of Digital Surface Models (DSM), LIDAR has proven a reliable and accurate observation technique. In contrast to
the generation of a Digital Terrain Model, which can be derived from the corresponding DSM by morphological filtering, the extraction
of building models from the DSM requires more sophisticated modelling techniques. Here we follow a data-driven approach. The high
density of recorded airborne LIDAR data inspires to develop concepts which are relying on the bulk of data. Accordingly, we have
decided to reconstruct building models from LIDAR data by fitting surface planes with the well-known RANSAC technique. After
the mere plane fitting, plane regions have to be formed and adjacent plane regions are intersected. A possible separation of roof faces
by vertical walls is taken into account. By exploiting the established neighbourhood relations of all plane regions and the computed
intersection lines the 3D coordinates of corner points of the building can be estimated. A global adjustment is performed in which
corrections to the plane parameters are provided in order to conserve the planarity of the polyhedral surfaces.
Our main focus in this paper, however, is the creation and reorganization of the roof topology. Insignificant structures in the building
model have to be eliminated; this corresponds to unifications or splitting of corner points. It is crucial to preserve consistency within
the reorganization process. In particular, in the horizontal projection of the roof, the edges are allowed to intersect only in the corner
points. The polygons confining the planar roof surfaces have to be closed and consistently oriented. The paper proposes rules for the
reorganization of the topology and illustrates our overall approach for building reconstruction with an example.

1. INTRODUCTION

Intensive research has been carried out during the last decade to
develop algorithms for the collection of 3D city models. At first
aerial and space images have been used as primary sources for the
3D measurements, later on the interest of the research community
was attracted by LIDAR data. An excellent overview is given by
(Baltsavias et al. 2001) and (Vosselman and Brenner 2005). To-
day, a number of semiautomatic and automatic approaches are
proposed which are using airborne stereo imagery or airborne LI-
DAR data. Furthermore, the integration of both, LIDAR data and
aerial images, is stressed in order to improve the algorithmic de-
velopments (Schenk and Csatho 2002).

Here we follow a data-driven, generic approach to reconstruct
buildings from LIDAR data. The fundamental steps are to seg-
ment the data into planes and to combine these planes to a poly-
hedral model (Vosselman 1999, Rottensteiner 2003, Alharty and
Bethel 2004). The advantage of those generic approaches is their
high adaptability to complex shapes and to great details of build-
ings, in particular to roof structures. In a recent work (Tarsha-
Kurdi et al. 2007) compared a Hough transform and a RANSAC
based technique for automated detection of building roof planes
and concluded that the RANSAC algorithm was more reliable in
detecting the roof planes.

It seems to be more promising to fit 2D or 3D parametric mod-
els like surface planes or 3D primitives to the LIDAR DSM than
to extract edges or corners from the LIDAR point cloud: With
the former technique we are relying on the bulk of data, not on a
small subset of points featuring extreme curvature or more gen-
eral discontinuity measures. The interpolation of the original LI-
DAR data on a regular grid is frequently blurring the disconti-
nuities in the LIDAR DSM. Accordingly, we have decided to
reconstruct building models from LIDAR DSMs by fitting sur-
face planes with the well-known RANSAC technique. Whereas

RANSAC was originally developed for robust estimation of the
model parameters of one single model, it can be likewise applied
for the fitting of an a priori unknown number of models to a
dataset. The procedure simply has to be performed repeatedly.
Points which have been found to be compatible with a particular
model are marked. Careful tuning of the thresholds is indispens-
able.

After the mere plane fitting, plane regions have to be formed from
the subsets of points which are compatible with the individual
planes. This can be achieved by morphological filtering, in partic-
ular majority filtering. By connectivity analysis we obtain the re-
gion boundaries in the horizontal plane and the corresponding ad-
jacency matrix. With the term“boundary piece”we denote in the
following a continuous (uninterrupted) border between two adja-
cent regions. We shall call the ends of the boundary piecesnodes.
Obviously from any node at least three boundary pieces emanate.
A special case of boundary pieces are closed ones which do not
feature nodes.

We assume that the building outlines are given, possibly as se-
quences of connected points. So far the boundaries of the regions
are irregular, they are to be approximated by linear segments. We
intersect the planes of adjacent regions. As roof faces which are
neighboured in the horizontal plane may actually be separated
by vertical walls, we have to check for any intersection line if its
horizontal projection is compatible with the corresponding region
boundary in the horizontal plane. Otherwise an approximation
of the region boundaries in the horizontal plane can suitably be
achieved by a 2D-RANSAC fit. We call the first type of edges in
the horizontal planeintersection edges(I-edges), the second type
of edgesjump edgesor discontinuity edges(D-edges).

As more than two accepted edges which should end in a com-
mon corner in general do not intersect each other in the same
point, the positions of the building corners have to be computed
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by an adjustment. Here a local adjustment for the corner coordi-
nates is insufficient, as the planarity of the polyhedral surfaces is
to be conserved. Therefore, a global adjustment is performed in
which the plane and D-edge parameters are considered as obser-
vations and the corner coordinates as unknowns. As conditions
we impose that the building edges must intersect each other in the
corner points. Since the conditioned adjustment with unknowns
may lead to ill-conditioned normal equations, we use the com-
mon Gauss-Markov model and take the conditions as pseudo-
observations into account.

The main focus in the paper is laid on the creation and reorga-
nization of the roof topology (Section 2). The mathematical for-
mulation of the global adjustment is presented in Section 3 and
first results of the implemented algorithms are discussed and vi-
sualised in Section 4.

2. AN ALGORITHM FOR THE CREATION AND
REORGANIZATION OF THE ROOF TOPOLOGY

2–1 General Considerations

Whereas the term topology features different aspects in mathe-
matics, we shall use it here in the sense of “adjacency relations”.
Since we restrict ourselves to a2 1

2
-D consideration, i.e. since we

assume that theoutwardnormal of each plane has a z-component
bigger or equal to zero, the establishment of the topology can be
performed essentially in the horizontal plane. Admittedly, verti-
cal walls require an additional consideration as the directions of
their outward normals are indeterminable from a 2D view.

As we have already identified regions, boundary pieces and nodes,
a preliminary topologyis already established, regardless of the
edges which have been fitted. However, this preliminary topology
in general cannot be accepted as the final one. On the one hand it
might be inconsistent with the correspondinggeometricalsitua-
tion as defined by the edges, in particular if intersections between
two subsequent edges are far from their provisional endpoints.
On the other hand, it might be unnecessarily complicated, e.g.
if very short boundary pieces without any fitting edges (“empty
boundary pieces”) exist, which prevent the preceding and the suc-
cessing edge to intersect as they “naturally” should. In general,
we consider the parameters of the so far determined geometric el-
ements, in particular the plane parameters, as much more reliable
than the preliminary topology. Whereas the plane parameters are
supported from a bulk of fitting points, the preliminary topology
depends frequently on the affiliation of few pixels in the vicinity
of the nodes and therefore may have been affected by blurring
effects in the data and even more by the morphological filter pro-
cess.
That means, we have to reorganize the topology, taking into ac-
count the geometrical situation as given by the edges which have
been accepted so far. In particular, we have to decide which re-
gions are adjacent to each other, which edges meet in a corner,
which edges should be eliminated or newly introduced, see figure
1 as an example. Figure 1(a) illustrates the accepted elements, the
preliminary topology is induced by the irregular boundary pieces
only. Figures 1(b) – 1(e) show possible alternative topologies.

Evidently, we may use the preliminary topology as a first guess
and improve it stepwise until our requirements are fulfilled. As
geometriccriteria for establishing the topology we use the fol-
lowing:

1. The so-far accepted elements planar regions and edges must
be retained.

(a) Preliminary topology and fit-
ted edges

(b) Edges according to
preliminary topology (red
edge inserted)

(c) Reorganized topol-
ogy I

(d) Same as figure 1c, ad-
ditional edge inserted

(e) Reorganized topol-
ogy II (non-admissible)

Figure 1: Reorganization of topology: Problem and possible so-
lutions

2. New planar regions must not be introduced.

3. The parameters of the so-far accepted elements should be
changed as sparsely as possible.

4. There should be as few corners as possible.

5. Short edges (also vertical ones) should be avoided.

6. Acute angles should be avoided.

The first two criteria in contrast to the others are “must”-require-
ments, for which we shall permit only rare exceptions. It is obvi-
ous that the stated requirements partly contradict. For the situa-
tion of figure 1, e.g., we have to choose between a relatively short
new edge and a relative small distortion of the accepted edges.
Generally, the more additional edges are introduced, the weaker
are the constraints which may enforce changes of the so-far com-
puted parameters.

2–2 2D Model Consistency

We deal with 2D model consistency on three levels; the first two
are related totopological, the last one togeometricalconcepts.

2–2.1 Level 1: We may represent the roof topology by an
undirectedgraph, which is defined by the nodes and the exist-
ing connections between these nodes. The connections can be
identified with the boundary pieces, of course. For this level, we
claim the following consistency conditions:

1a) Every node must have at least two neighbours, i.e. should be
connected at least with two other nodes, unless it is connected to
itself.
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1b) Each connection must appear at least in one closed path, i.e.
in a sequence of connected nodes where the start node is the same
as the end node and no connection is used twice.

1c) The graph must be planar.

Conditions 1a), 1b) ensure that the topology features no one-
dimensional parts; condition 1b) is excluding cases like figure
2(a). Condition 1c) means that the graphcan be visualized in a
planar representation without crossing connections. Figure 2(b).
shows an example where condition 1c) is violated. Figure 2(c)
on the contrary is planar; on the current level of definition it is
equivalent to figure 2(d).

(a) Graph with 1D-feature (b) Non-planar Graph: K5

(c) Planar Graph (d) Planar Graph, alternative rep-
resentation

Figure 2: Examples for 2D-topologies

2–2.2 Level 2: As the main result of the RANSAC algorithm
are planar segments, it will be helpful to introduce an additional
topological element “face” which can be identified with the 2D
region. Lateron, we shall assign 2D-coordinates to the nodes and
thereby establish a distinct planar representation of the graph; for
this representation the faces should form a complete and disjoint
(non-overlapping) segmentation of the plane. On the current (still
topological) level, however, we definefaceswithout referring to
geometric concepts. First we introduce acyclic orderingof the
connections which are emanating from a node. (On the geometric
level we shall order the connections according to the azimuths of
the emanating edges in a clockwise sense. With this interpretation
of the ordering, figures 2(c) and 2(d) become distinguishable.)
Once an ordered sequence of connections is established for each
node, we are able to defineloopsby the following rule:

Select a node and a connection starting from this node. Then
repeat the following procedure:

Search the corresponding end node of the current connec-
tion and identify the connection in the connection list of this
end node. Select the next connection in this list . . .

until the current node equals the starting node and the current
connection equals the starting connection.

The sequence of nodes obtained in such a way we call aloop.
Note the fundamental difference between a closed path as ap-
pearing in condition 1b) and a loop: In the former we are free in
each step to choose the next connection, in the latter not. With
the given definition of a loop, we have also established anorien-
tation, as the reversed sequence of the nodes of a loop in general

does not correspond to a loop any more. We now claim a further
condition for topological consistency:

2*) In any loop no connection must appear twice.

With this condition we may exclude cases of crossing connec-
tions as in figure 2(c).

With the concept of loops we are now ready to define: Aface is
an object which is delimited by exactly one outer loop and arbi-
trarily many (possibly zero) inner loops. What is an “inner” and
what is an “outer” loop is up to our declaration, so far. We ad-
mit exactly one exceptional face which features only inner loops.
This face we callcomplementary face, it corresponds to the re-
gion outside the building, but does not include inner court yards.
With the definition of faces given, we require the following con-
sistency conditions, which are partly redundant with condition
2*):

2a) Each connection must appear in the boundary (i.e. in the
delimiting loops) of exactly two faces.

2b) At least for one of the two faces the connection must be part
of an outer loop.

2c) The connection must have opposite orientation within the re-
spective loops of the adjacent faces.

An overall check for the consistency of the topology is given by
the well-known Euler-Poincaré theorem. This theorem can be
formulated in different ways. Very convenient is the formulation
given by (C. Séquin):

I −N0 +N1 −N2 +N3 − · · ·ND = R1 −R2 +R3 − · · ·RD.
(2-1)

HereI denotes the number of individual, non-connected assem-
blies, N0 the number of nodes,N1 the number of connections,
N2 the number of faces etc.R1 is the number of closed ring
“connections”,R2 the number of annular, ring-shaped faces,R3

the number of solid-body handles. As the dimension D in our
case is 2, we are faced with objects up to index 2 only. The equa-
tion represents a necessary condition for consistency.

2–2.3 Level 3: Finally we take into account thegeometrical
relationships. On this level, the nodes and corners are equipped
with 2D coordinates. The connections between the nodes are as-
sumed to be combinations of linear segments in IR2. It is to be
emphasized that the latter assumption is not yet fulfilled by the
“preliminary” elements!
We add the following consistency conditions:

3a) The ordering of the connections emanating from a node must
feature ascending azimuths of the corresponding edges.

3b) Inner loops of a face have to be situated completely inside the
outer loop of the face.

3c) Inner loops of a face must not overlap. The edges of the inner
loops of a face must not intersect or touch each other except in
the registered nodes.

3d) Edges of a loop must not intersect or touch each other, except
neighboured edges in the registered nodes or corner points.

The preliminary topology fulfills the requirements 1a) - 1c) and
2a) - 2c) automatically. Inconsistencies on the former two levels
may occur by redundancies in the data structure, e.g., if the list
of connections departing from a node is incompatible with the
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corresponding loops defining the faces. This can be avoided by
correct implementation.
The conditions of the current level might be violated, for instance,
if two accepted neighboured edges of a loop are linked by inter-
secting them: The edges might be elongated and intersect other
edges of the loop polygon. Figure 3 shows an example: Edge a is

(a) Preliminary topology and fitted edges

(b) Reversal of edge c due to intersection with edge a

Figure 3: Computation of approximate node coordinates, for ex-
planations see text

an accepted I-edge, edges b, c, d are accepted D-edges. The re-
gion in dark blue is the exterior of the building. Edges c, d belong
to the same boundary piece, whereas the questionable node fea-
tures the edges a, b, c. Obviously the intersection point between
a and c is situated even beyond the “far end” (far from the node)
of c. And since the footpoint of this intersection is accepted as
the new endpoint of edge c at the side of the node, the direction
of c will be reversed, as is shown in figure 3(b)! Edge d is not
incident to the node, but anyway intersected now by the edges a
and b. To avoid such reversals of edges, we permit an exception
from the rule, that a fitted (accepted) edge must not be eliminated
any more.

Conditions 3b, c can be verified with point-in-polygon algorithms;
condition 3d can be verified by intersecting the non-neighboured
edges of a loop and checking if the intersection point is situated
between the endpoints of the two edges, respectively. Condition
3a) is redundant, but can be used as a criterion for the unification
of nodes, see section 2–5.

2–3 Topological operations

Which operations are to our disposal in order to change the pre-
liminary topology? Just inserting new boundary pieces between
already existing nodes would be meaningless, as we would have
the same 3D plane on both sides. Therefore, we are left with four
possible operations, which are illustrated in figure 4:

1. Unification of neighboured nodes by elimination of the bound-
ary piece connecting them

2. Splitting of a node into two nodes by insertion of a new
boundary piece connecting them.

3. Separation of a region into two pieces by tying it off in the
middle.

4. Unification of two regions of the same 3D-plane which share
a common node.

Figure 4: Topological Operations

Obviously operation 2 is the inverse to operation 1 and operation
4 is inverse to operation 3.
With the elimination or insertion of a boundary piece by operation
1 or operation 2, also an adjacency between two regions is elimi-
nated or newly created, respectively. Operation 1 is only possible
for nodes from which more than three boundary pieces are inci-
dent: If a node with three emanating boundary pieces is splitted,
one of the resulting nodes features only two emanating bound-
ary pieces and is therefore no node anymore, see figure 1(d). In
fact, we shall lateron append edges to or cut away from existing
boundary pieces, but these are not topological operations in the
strict sense, as they let the adjacency relations between the re-
gions unaltered.
Operations 3, 4 are exceptions from the requirement stated in the
previous section, that new regions must not be inserted neither
eliminated. By operation 3 possibly a new node is generated and
possibly one or two boundary pieces are subdivided, by operation
4 possibly a node is eliminated and possibly one or two pairs of
mutually adjacent boundary pieces are unified.

2–4 Proposed Algorithm

We propose the following algorithm:

1. Computation of approximate node coordinates

2. Elimination of “empty” boundary pieces by unification of
the end nodes of the boundary piece (operation 1)

3. Combination of the edges of a boundary piece to a con-
nected chain

4. Splitting of nodes according to the criteria given in subsec-
tion 2–6 (operation 2)

5. Consistency check for the loops according to the conditions
3a, b, c. If necessary, introduce new nodes (operation 3)

6. Global adjustment of the plane and edge parameters
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After the global adjustment of the roof parameters, operations 2
and 4 could be applied additionally, if the residuals of certain
elements are exceeding a preselected threshold.

2–5 Unification of Nodes

After the detection of edges by RANSAC, we shall probably be
left with “empty” boundary pieces, i.e. boundary pieces to which
no edges could be fitted. This may happen for the short sides
of narrow regions between long parallel edges, but also if cor-
ners are “smeared” to very short boundary pieces by the plane
fitting or the morphological filtering, respectively. We may wish
to eliminate the latter kind of boundary pieces and retain the for-
mer. However, we prefer to eliminate in a first stepall boundary
pieces having no edges fitted to them, except if the “azimuth con-
dition” 3a) of section 2–2 would be coarsely violated. Figure
5 shows an example, where the retaining of “empty” boundary
pieces between parallels would lead to undesired results: In Fig-

(a) Preliminary Topology and fitted
edges

(b) Reorganized Topology I (c) Reorganized topology II

Figure 5: Reorganization of Topology; see text for explanation

ure 5(a) the situation after the line fitting is sketched. Regions C
and E are weakly inclined roof surfaces, regions B and D feature
the same horizontal direction of the normal vectors as C and E re-
spectively, but are stronger inclined. For the boundary pieces ED,
CE and BC I-edges have been accepted, for the boundary pieces
AB and AD D-edges have been found. The boundary pieces AC,
CD are empty. P3 and P4 so far represent the same node. Obvi-
ously figure 5(c) shows the “natural” topology for this situation,
the more as the edges DE, BC and CE intersect nicely in point
P1. However, if we retain the empty boundary piece CD with the
argument that it forms the connection between the parallels AD,
DE, we are not able to unify the points P1 and P4 and therefore
we obtain the undesired solution illustrated in figure 5(b). If we
eliminate all empty boundary pieces, we can easily generate the
desired topology in the following step, the splitting of nodes, as
will be shown.
Theoretically, there are cases for which the proposed proceeding
fails, we did not encounter such a case in our numerical experi-
ments, however.

2–6 Splitting of Nodes

We propose two criteria for the decision, if a node is to be split or
not:

1. If two almost parallel edges are emanating nearly in the
same direction from a node, the node is split into two nodes.

2. If the maximal distance between the intersection points of
any neighboured edges emanating from the node exceeds a
certain threshold, the node is split.

3. In both cases, all edges emanating from the old node have to
be affiliated to one of the new nodes. If one of the new nodes
is left with only one edge (apart from the new connection),
the old node is not split, but a new edge is inserted between
the node and the “solitary” edge.

For the last case, see figure 1(d) as an example.

Figure 6: Splitting of Nodes I, for explanations see text

2–6.1 Case 1 Let us first consider the case of parallel edges.
We try to determine approximate coordinates of the new nodes
by intersecting each of the parallels with their non-parallel neigh-
bours in the same node if existing, see figure 6 as an example:
here the edges c, d can be used for intersection with the parallels
a, b. If only one or no intersection point at all could be deter-
mined, we propose to insert a new edge between the parallels
orthogonally, possibly using the mean of the original endpoints.
Now the other edges emanating from the old node have to be as-
sociated with one of the two new nodes. Firstly we define:

Definition of directional sectors:
Let two directional sectorsI, II in the horizontal plane be lim-
ited respectively by one of the parallel edges on the one side and
the opposite direction of the newly inserted edge plus a chosen
threshold angleϕ on the other side.

As an example, see figure 6. We propose the following rules for
the affiliation of edges to the new nodes:

1. Edges which meet the node in one of the two sectors I, II,
are associated with the respective node.

2. Any edge which is situated outside the sectors I, II, is asso-
ciated to that node, which features the smaller orthogonal
distance to the respective edge.

According to the former rule, edge c in figure 6 is affiliated to
node A, according to the latter rule, edge d is associated with
node B. It is easy to see, that by these rules also the situation of
figure 5 is resolved in the desired way.

2–6.2 Case 2 The case if the second criterion is fulfilled dif-
fers slightly from the case of parallel edges, see figure 7. Again,
we intersect neighboured edges in order to compute approximate
coordinates of the two new nodes. But here we use only intersec-
tions for which the mean node is situatedoutsideof the smaller
of the two sectors which are given by the intersecting edges. In
figure 7 for instance the intersection point B’ of the edges a, c
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Figure 7: Splitting of Nodes II, for explanations see text

is excluded, because its connection B’M with the mean node M
is situated within the directional sector spanned by the edges c,
a. Proceeding in this way, we avoid non-admissible solutions as
in figure 1(e). Now from all the non-excluded intersections in
the node we select the two having their largest distance from the
mean node as the new corner points and associate the edges of
the node to one of the two intersections. We define

Definition of directional sectors:
Let two directional sectorsI, II in the horizontal plane be lim-
ited respectively by the opposite direction of the newly inserted
edge plus (for the one side) or minus (for the other side) a chosen
threshold angleϕ.

See figure 7 as an example. With these slightly different defini-
tions of sectors compared to the case of parallel edges, we pro-
pose the same rules for the affiliation of edges as above:

1. Edges which meet the node in one of the two sectors I, II,
are associated with the respective node.

2. Any edge which is situated outside the sectors I, II, is asso-
ciated to that node, which features the smaller orthogonal
distance to the respective edge.

A situation like in figure 1(a) can be resolved with the given rules.

Figure 8: Splitting of Nodes III, for explanations see text

In either of the two cases we have proposed to affiliate edges ac-
cording to their direction (within a certain directional sector) as
the first criterion. Figure 8 shows that unlovely acute angles could
appear if this criterion would be dropped. According to the “dis-
tance” criterion we would obtain the solution at the right, because
the corners A, C have the biggest distance from the “mean node”
M and edge b is closer (even incident) to A than to C. However,

the solution in the middle is preferable, as it avoids the acute an-
gleα. This example also shows that it may be advisable to com-
pute new approximate node coordinates after the affiliation of the
edges.

3. ADJUSTMENT OF THE GEOMETRY

Once the topology has been reorganized, we are able to adjust the
geometrical elements, i.e. the plane and edge parameters. Up to
now the final horizontal position of the nodes has not yet been
fixed, the edges emanating from a node do not exactly meet in
a point in the horizontal plane. From a 3D point of view, the
I-edges may be even warped. The necessary adjustment cannot
be performed locally, i.e. for each node indiviually, because this
would lead to non-planar roof surfaces. Therefore, we enforce
the intersection of the edges in the nodes by means of a global
adjustment. The “natural” model for the adjustment would be the
conditioned adjustment with unknowns, where the plane and edge
parameters enter as observations and the node coordinates repre-
sent the unknowns. In our experiments we were faced with ill-
conditioned normal equations for this model, most probably due
to linearly dependent conditions. Such a linear dependence e.g.
occurs, if an I-edge is interrupted by crossing edges or regions, so
that the edge is affiliated to more than two nodes. For this reason
we prefer the common Gauss-Markov model with the conditions
introduced as pseudo-observations. The plane and edge parame-
ters as well as the approximate node coordinates are introduced
as observationsandas unknowns.
If a node features D-edges, it may have more than one height
coordinate because the D-edges represent vertical walls in a 3D
view. On the other hand, if two planar regions participating in
a node are separated by an I-edge which is emanating from the
node, they must have the same height coordinate in the node. We
therefore classify the planar regions participating in a node into
groups having the same height.

We use the plane equations in the following form:

x p1 + y p2 + z − p3 = 0 (3-2)

Herex, y denote the horizontal coordinates,z the height coordi-
nate andp1, p2, p3 the plane parameters. We prefer this formula-
tion compared to the common implicit equation

x nx + y ny + z nz − d = 0, (3-3)

wherenx, ny , nz denote the components of the normal vector of
the plane. As the normal vector features unit length, its compo-
nents are not independent. Therefore, the covariance matrix with
respect to the parametersnx, ny , nz, d, which we obtain from the
least squares fit within the RANSAC process, is singular! We can
apply the former formulation, since we have excluded very steep
planes so that in our case alwaysnz > 0. Obviously

p1 = nx/nz, p2 = ny/nz , p3 = d/nz (3-4)

In the same way we have to avoid singular covariance matrices
for the edge parameters and therefore use polar line parameters
α, d:

x cos α + y sin α − d = 0 (3-5)

Applying the plane and line equations (pseudo-observations), we
obtain the following linearized observation equations for the planes
and D-edges:

v−w = xidpk,1 +yidpk,2 −dpk,3 +pk,1dxi +pk,2dyi +dzi,j

(3-6)
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v − w =
(yi cos αm − xi sin αm)dα − ddm + cos αmdxi + sin αmdyi

(3-7)
Herei represents the index of the respective node,k the index of
the plane,j the index of the respective equivalence group within
the node (of planes featuring the same height in the node).m rep-
resents the index of the respective edge.w represents the respec-
tive inconsistency andv the respective residual of the pseudo-
observation. Edge-conditions are only introduced for D-edges as
the parameters of the I-edges follow from the plane parameters.
For the plane and D-edge parameters we introduce the covariance
matrices which we have obtained from the RANSAC fit. For the
condition pseudo-observations we introduce relatively strong, for
the coordinate psuedo-observations relatively weak weights, of
course.

As the plane parameters are much more reliable than the D-edge
parameters, one may pose the question why the D-edges are intro-
duced into the global adjustment at all. However, in a node where
we have two parallel I-edges which are situated nearly parallel in
opposite direction, the D-edges may be useful in order to stabilize
the horizontal position of the node.

4. TEST COMPUTATIONS

As a test example for the proposed procedure we used the “Neue
Schloss” of Stuttgart, a building which features various details.
The company TopScan, Rheine, Germany kindly provided us LI-
DAR data covering the city of Stuttgart, Germany. The data
have been interpolated on a regular grid with 0.5m grid size. By
means of morphological segmentation we obtained the building
area. Figure 9 shows a perspective contour plot of the Digi-

Figure 9: LIDAR DSM of Neues Schloss, Stuttgart

tal Surface Model of the Laser data. Figure 10 shows the seg-
mented regions in the horizontal plane together with the adjusted
edges. The topology is reorganized, the edges are completed.
Each colour corresponds to a certain plane. I-edges appear in
red, D-edges in black, edges of the building boundary in yellow.
Due to the majority filtering, the situation looks quite homoge-
neous; small regions have been eliminated. Figure 11 finally rep-
resents a perspective view of the building model. In the central
part of the building, a complicated steeple structure is located.
Here RANSAC was not able to fit significant planes. Apart from
this problematic zone, the model is satisfactory.

Figure 10: Topology reorganized, after adjustment

Figure 11: Topology reorganized, after adjustment, perspective
view

5. CONCLUSIONS AND FUTURE WORK

Whereas the building reconstruction by means of volume primi-
tives renders reliably complete building models, the generic ap-
proach presented here may leave undetermined regions and re-
acts sensitive to the preselected thresholds and parameters. On
the other hand it turns out to be very flexible in the modelling of
complicated building structures. Future work will concentrate on
the improvement of the morphological filtering, the further de-
velopment of topological operations and the reasonable filling of
undetermined regions.
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http://www.cs.berkeley.edu/ sequin/PAPERS/EulerRel.pdf (visited in
April 2008).

Tarsha-Kurdi, F., Landes, T. Grussenmeyer, P. 2007. Hough-Transform
and Extended RANSAC Algorithms for Automatic Detection of 3D
Building Roof Planes from Lidar Data.Int. Archives of Photogramme-
try and Remote Sensing,Vol. XXXVI, PART 3/W52, pp. 407-412.

Vosselman, G. and C. Brenner (Eds.) 2005. Proceedings of the ISPRS
Workshop Laser Scanning 2005.Int. Archives of Photogrammetry and
Remote Sensing.Vol. XXXVI, PART 3/W19.

Vosselman, G. 1999. Building reconstruction using planar faces in very
high density height data. In:Int. Archives of Photogrammetry and Remote
Sensing,Vol. XXXII/3-2W5, pp. 87-92.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 
 

126




