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ABSTRACT: 
 
Traffic-related data analysis plays an important role in urban and spatial planning. Infrared video cameras have capabilities to 
operate at day and night and to acquire the scene sampled with video frame rate, but at the cost of geometric resolution. In this paper, 
an approach for the estimation of vehicle motion and the assessment of traffic activity from airborne IR video data is presented. This 
strategy is based on the separate handling of detection and tracking vehicle in the video, which differs from the common method 
developed to extract the object motion. The reason for it is that static vehicles are also intended to be detected. A single vehicle 
detector is firstly applied to find the vehicles in the image frames of video successively. Sensor movement is compensated by co-
registering the image sequence under the selected geometric constraint. Afterwards, a progressive grouping concept considering 
temporal coherence and geometric relation is designed to recover the vehicle trajectories and classify them into static, moving and 
uncertain type. Image matching and the topology of trajectory are integrated into grouping process to aid the verification. Testing 
the algorithm on an IR video of urban area show us a promising result that 83% of moving vehicles are successfully extracted which 
is able to serve as basis for traffic density analysis.  
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Traffic-monitoring systems rely on sensors to acquire traffic 
information. In last decade many ground-based sensors, e.g. 
loops detectors, bridge sensors and stationary cameras have 
been widely used and extensively studied (Hu et al., 2004). 
Airborne-video data acquisition for traffic-parameter estimation 
has been explored as an alternative to conventional data-
collection methods, because it may enable us to cover a 
relatively broad area and potentially derive additional 
parameters such as travel time, relative velocity, vehicle 
trajectory, etc (Shastry & Schowengerdt, 2005; Cohen & 
Medioni, 1998; Reinartz et al., 2006). Thermal IR cameras 
provide us the possibility of night vision and sensing the traffic 
situation at day and night. Moreover, temperature is an 
important feature for recognition tasks and also gives an 
important cue for the activity of cars; temperature can be 
remotely sensed by IR-cameras sensitive in the 3-5μm or 8-
12μm spectral band. But the activity of cars cannot only be 
restricted to their movement, and they have to be counted based 
on need of application. Independent of the color or type all 
vehicles appear similar with respect to their size and outer 
conditions (Stilla et al., 2004, Ernst et al., 2005). Often they 
will appear as cold spots on the warmer road surface, but for 
active vehicles parts of them may appear as hot spot (e.g. 
exhaust).  
 
Since the videos are taken from a moving platform the simple 
optical flow estimation cannot be used to detect object motion, 
we have to distinguish the sensor movement from true object 
movement in the scene in order to characterize traffic activity. 
A number of approaches have recently been proposed to 
automatically detect vehicles or vehicle queues in the IR images 
of dense city areas or to detect moving objects and estimate 
vehicle movement from airborne IR video. Stilla & Michaelsen 
(2002) have developed a method of detecting single vehicle in 

the aerial IR images of urban areas based on spot-filtering. In 
Hinz & Stilla (2006) a detector for extracting single vehicles 
and vehicle queues combing global and local context is 
introduced, we can hardly get information about time from the 
single image. Concerning IR video, Kirchhof & Stilla (2006) 
have applied planar homograph as geometric tool to co-register 
the video data and attempted to detect and track moving objects 
by analyzing the motion channel. Michaelsen & Stilla (2004) 
have analyzed and accessed different methods for pose 
estimation from an oblique airborne video in order to optimize 
processing chain for specific scene reconstruction. 
 
All previous works mentioned above can be regarded as the 
foundations and components of traffic monitoring system from 
airborne platforms. In this work we will give an integrated 
contemplation. A strategy of accessing traffic scene and 
estimating vehicle motion from airborne IR video is designed. 
The complete processing chain is implemented in the context of 
separation of detection from tracking of vehicles, which will be 
presented and discussed in following sections. Image matching 
is only used to aid verification of the vehicle instance to 
recovered trajectory.  
 

2. DETECTION OF VEHICLES IN EACH FRAME 

In order to detect vehicles in single images, we have 
implemented an existing automatic approach (Stilla & 
Michaelsen, 2002). Because of low contrast and noisy 
characteristic of IR image, many parking cars along two 
margins of the road have failed to be detected. An improvement 
upon this method has been made towards the increasing the 
completeness of vehicle detection. 
 
The algorithm of single vehicle detection used here is based on 
following two assumptions: 
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⑴ The image is searched for cold-spots (black) which represent 
the vehicles themselves. 
⑵For a moving vehicle, a hot-spot presenting the warmed 
engine bonnet must exist around a cold-spot. 
 
 
 
 
 
 
 
 
 
 
 

Figure.1 Examples of thermal IR-image section  
 
Since we want to estimate traffic parameters in this project, the 
detection of moving vehicles is brought into focus. While 
applying this algorithm for vehicle detection, some imaginable 
problems emerge instantly, e.g. a car had started just recently, 
the engine bonnet has not warmed up yet; the hot spot of 
vehicle is missing. (Fig.1) Therefore it is at first not possible to 
distinguish still vehicles from moving vehicles. It is only about 
the detection of vehicles in this step. 
 
As many vehicles can not adequately be distinguished from 
road surface in the thermal IR spectrum, the thresholding 
method used by the old toolbox can not segment the region for 
vehicle hypothesis correctly. Consequently we decided to 
improve the segmentation process by jointly considering the 
regions obtained by spot-filtering operation. This process not 
only provided clues for vehicle position delivered to image 
segmentation but also can generate hypotheses for vehicle 
region itself whose features were analyzed to verify the vehicle 
hypotheses of weak contrast. Finally, detection results from 
both routes have to be fused and comprise the result of vehicle 
detection from single IR images. (Fig. 2) 
 

 
Figure.2 Result of vehicle detection in one image 

A few errors emerged during the detection: 
— Oversegmentation, which means that the completeness 

of vehicle detection has increased while the 
correctness reduced. 

 
— Smokestacks and house corners are falsely extracted 

due to lack of context information, so we can use GIS-
data in order to restrict the search of vehicles only on 
roads and/or parking lot. 

  
All of test images have been processed successively to obtain 
the (row, col) coordinates of vehicles. 
 

3. PROCESSING OF IMAGE SEQUENCES 

Our approach of processing airborne infrared video acts as the 
preparatory step to obtain static and dynamic information of 
vehicle for performing general analysis of traffic density, which 
consists of two major sub-steps. The first sub-step is egomotion 
estimation and video stabilization, comprising the co-
registration of every two images in the video, it is important for 
separating sensor movement from vehicle movement. In 
Sect.3.2 all of the vehicles detected in each frame of video by 
last step will be transformed into a unified coordinate frame, e.g. 
the domain of the last image in video. Primary product of this 
step is synthetic image mosaic in which the motion field 
induced by the displacement of the platform has been cancelled. 
The overall processing chain is depicted in Fig.3. 
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Figure.3 Workflow of approach for processing image sequences 
 
3.1 Image sequence stabilization 

To be able to establish the geometric relation between every 
two images, Image stabilization has been chosen to perform this 
task. Image stabilization consists of registering the two images 
and computing the geometric transformation Τ that warps the 
image 1I  such that it aligns with the reference image 0I .We can 
utilize three geometric tools listed below to realize the Co-
registration: 
 

⑴ Planar homograph  
⑵ Affine model 
⑶ Perspective model (not implemented in this work)  
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There are diverse fashions to implement co-registration within 
the frame of whole image sequences. We use different results 
generated by various combination of geometric tools and 
transformation orders to compare and demonstrate their ability 
for selecting the best one.  
 
Being independent of geometric tools, the co-registration 
procedure can be divided into two main processes: 
 

⑴ Initial relative orientation   
(a) Pre-processing steps e.g. initialize some empirical 

parameters for operators (e.g. offset of the search 
window, threshold for gray value matching etc.) and 
read the coordinates of vehicles. Since these initial 
parameters have a great influence over the quality of 
co-registration, they should be selected carefully  

(b) Feature points are extracted with Förstner-operator.  
The image domain can be reduced upon road region, 
so that it can better fit the prerequisite of planar 
homograph, but at the expense of the quantity of 
robust feature points. Therefore, this restriction is 
ignored in the case of directly transformation order 
due to low overlapping rate. 

 

 
 
Figure.4 Correspondence found by relative orientation 
RANSAC 
 

(c) Compute a projective transformation matrix between 
two images based on RANSAC. 
Feature points from both input images are read to 
serve as candidates of corresponding points based on 
gray-value matching. 
Once the initial matching is complete, a randomized 
search algorithm (RANSAC) is used to determine the 
transformation matrix of homograph. 
Because of the nature of RANSAC operator hardly 
yields the same result on every call.  

(d) Homograph prepares the corresponding points for 
affine transformation. 
Matched input points filling the condition of 
RANSAC are output as additional product, namely 
corresponding points for affine relation. (Fig. 4) 

⑵ Refinement of the orientation  
 After initial relative orientation, the estimated   
parameters should be refined. The least squares 
bundle adjustment is the classical method and usually 
delivers the best results. Depending on the scene 
characteristics also some simple transformations, e.g. 
affine transformation, yield similar result, especially 
when the baseline between the images is small.   

 
3.2 Transformation of vehicle points 

After every two images are co-registered and connected by the 
transformation matrix, we have to sequentially project vehicle 
coordinates into reference image domain using homogeneous 
transformation matrices. 
 
For our case, e.g. the vehicles of image 45 have to be 
transformed 50 times, into last image, namely image 95, die 
vehicles of 46.image 49 times, etc.; or the vehicles of image 45 
are transformed directly into image 95. Both need the loop 
operations of same number. 
 
Finally, all of the vehicles points detected from different images 
sampled temporally have been transformed into the coordinate 
frame of the last image which serves as the reference frame in 
our experiment, and also been plotted on the mosaicked image 
sequence being free of camera motion, leading to yielding the 
stabilized map of vehicle detection. In this map, the moving 
vehicles are supposed to build a trajectory, whereas the still 
vehicles ought to accumulate together like a point cluster. Then, 
we can analyze and measure vehicle trajectories on the basis of 
this result image, if we have plotted a cross sign at each 
position of transformed vehicles. 
 

 
Figure.5 Stabilized map of vehicle detection by sequentially affine 
transformation 

 
After accomplishing transformations of vehicle points and 
analyzing the experiment results of different configurations, we 
can estimate the vehicle activity based on trajectory plotted on 
the best result image — sequentially affine transformation 
(Fig.5), where it can be seen that parking cars accumulate 
nearly in the same place and slightly shift; trajectories of 
moving cars are obvious. 
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4. AUTOMATIC CHARACTERIZATION OF VEHICLE 
MOVEMENT  

In this step, the objective of our approach is to automate the 
analysis process of interpreting and inferring vehicle movement 
by means of information acquired by airborne IR camera. The 
stabilized map of vehicle detection is generated by last two 
steps; where vehicles detected from the single IR frames are 
projected into coordinate system of the reference frame and 
depicted as blue cross. Multiple instances of one vehicle entity, 
corresponding to different discrete time tags of recording, tend 
to build and describe the temporal behavior of the vehicle 
trajectory. In order to characterize and analyze the traffic 
activity, it is required to reconstruct the trajectories of vehicles 
in this map, and to label them as moving or static. Our strategy 
to perform this task features a progressive operational concept 
and split and merge of trajectory based on temporal coherence 
and geometric relation. The correspondence relation between 
detected single vehicles of each frame is to be re-established 
here. We do not use image difference and matching to 
characterize the moving object just as normal methods, but 
rather perform detection and tracking of vehicle separately.  
 
4.1 Coarse classification   

The first step of our strategy is to classify the vehicle region as 
four different classes of by means of clustering analysis and 
temporal coherence criterion. The vehicle region map is 
generated by labelling connected components in the stabilized 
map of vehicle detection, which can be viewed here as binary 
image when using an image of single intensity as background. 
Afterwards initial vehicle regions for trajectory delineation and 
classification are created; they can serve as trajectory 
candidates for single vehicle entity. These initial regions are to 
be undergone the classification process according to a feature 
measure of region density describing cluster physical 
compactness. This feature measure is defined as follows: 
 

 ( _ _ / _ ) *  (10 / _ - _ )FM Maj A L R A Ind Ma Ind Mi=    (1) 
 
where Maj_A_L is the length of major axis of region; R_A is the 
number of vehicle points included in a vehicle region; Ind_Ma 
/Mi is maximum/minimum index within a region. 
 
If FM >=1 and Real_area > 1, classified as candidates for 
moving vehicle; If FM <1 and Real_area > 1, classified as 
candidates for static vehicle; If Real_area = 1, classified as 
single vehicle class. A joint consideration with compatibility of 
temporal index within single vehicle regions is necessary. 
Because vehicle instances from two vehicles in reality may 
merge into one initial vehicle region (hybrid class) displayed 
here, so it has to be delivered to split process further. The result 
map after this step is showed in Fig.6. 
  
4.2 Refinement of classification results 

Due to unavoidable existence of co-registration and detection 
errors, vehicle points belonging to static category usually do not 
accumulate in connected cluster. In this intermediate step we 
merge the green category of vehicle region map generated from 
last step, and analyze the white points to split them into 
independent vehicle regions. For analysis of static category, we 
take these regions as seed point, and then do a search in the 
close surrounding area, in which red, blue and green vehicle to 
be analyzed concerning temporal and geometric accordance 
with the seed region. In order to generate hypotheses for static 

vehicle, we have to further verify them via image matching; 
then, those regions confirmed by two operations above will be 
accepted as static vehicle and aggregated with seed region to 
build the new green class labelled as one region.  
 

 
Figure.6 Vehicle region map after first classification, green: static 
vehicle; blue: single vehicle; red: moving vehicle; white: hybrid vehicle 
 
One usually has to restrict the amount or eccentricity of green 
region, after or while merging green region with another green 
class, so as to exclude some ones being lacking of temporal 
completeness of trajectory or of inordinate trajectory elongation. 
The advantage of this step is that the problem domain and 
complexity can be reduced; we can focus on individual vehicle 
category by sequential processing. 
 
4.3 Grouping and extracting vehicle trajectory  

Based on results generated by last step, the green regions 
supposed to be static vehicle class are relatively fixed and here 
we focus on the red vehicle region, attempting to group these 
fragmented regions into reasonable trajectory of moving vehicle.  
The grouping algorithm is implemented by sequentially 
searching process based on jointly analyzing geometric relation 
and temporal coherence, starting from an arbitrary red vehicle 
region and orientating the search direction towards the major 
axis. The criterion for testing the compatibility between 
temporal index and geometry is used and formulated as below: 

{ } { } { } { } { } min max   min max  i j i j j iT T O and T T or T T∩ = − − mu

-st be consistent with the distance between border points of 
each region: ,min ,max j,min i,max-    - ,  ij i jd R R or R R=  

 
i.e, ,min ,max/( )ij i jThreshV t d T T ThreshV t− Δ ≤ − ≤ + Δ     (2) 
 
where iT , jT  are temporal index set of two vehicle region i and 

j; miniR , maxiR are border points of each region; ijd is distance 
between border points (usually max or min temporal index) of 
each region; ThreshV is the threshold relating to assumed 
vehicle velocity; tΔ is allowable deviation affected by detection 
and co-registration accuracy, ,min ,max( )i jT T− can be replaced by 

,min ,max( )j iT T− . 
 
After examining the assumed accordance of temporal coherence 
with geometric distance, we extend and link the adjacent 
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vehicle regions to create the whole trajectory of vehicle entity, 
and then we take into account the topology within each 
trajectory of moving vehicle. It is required to achieve 
distribution optimization for vehicle trajectory. The graph 
description (Fig.8) of vehicle regions (Fig.7) is created to 
support this task, the extraction of the vehicle trajectory 
amounts to find an optimal path along each connected nodes. 
Defining an optimality criterion to characterize an optimal path 
is equivalent to associating to each edge of the graph a cost. 
Each edge of the graph corresponds to an image match between 
vehicle instances of two regions. We have also to consider the 
relations between each node evaluated above, since nodes 
describing the same vehicle entity are likely to demonstrate the 
optimal accordance of temporal coherence with geometric 
configurations. Therefore we assign for each edge connecting 
region i to j the following cost: 

2 2
,min ,max1 ( /( ) ) ( )

ij
ij

ij i j i ji

C
c

d T T ThreshV θ θ
=

+ − − + −
 (3) 

 
where, ijC is the correlation between regions i and j, and ,  i ijθ θ  
represent the orientation angles of major axis vector of region i 
and connection vector from region i to j.  
 
Generally, the trajectory of a moving vehicle is assumed to be 
resolved by adequate temporal resolution, which means it 
should consist of enough vehicle instances detected from at 
least 40% of the total frames; otherwise these trajectories have 
to be assigned to the vehicle object of uncertain status 
(behavior). Finally, all of vehicle points are grouped to vehicle 
entities that are classified into three categories regarding 
movement.  
 

  
(a)    (b) 

Figure.7 Vehicle region map: before (a) and after (b) trajectory 
grouping 
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Figure.8 Graph representation and analysis of vehicle regions in 
Fig. 7 

 
5. RESULTS  

We used the IR video data captured over a dense build-up area, 
including two main roads with moving and parking vehicles on 
them, to test our algorithm proposed above. Fig.9 illustrates the 
classification result of vehicle movement concerning movement 
- three categories: red: moving vehicle; green: static vehicle; 
blue: uncertain. It can be seen that most of the parking vehicles 
along road sides located in the centre area covered by the IR 
video are detected and classified into the static class, and a large 
proportion of the static class vehicles are also represented by 
the parking vehicles, which is reasonable for this test scene. 
Due to similar appearance with vehicle, some green class 
vehicles are falsely detected among the building roofs, which 
correspond to chimneys in reality. Only 5 moving vehicles with 
distinct moving trajectory have been found. Although the 
number of extracted moving vehicle is much fewer compared to 
static class, it has represented essential dynamical information 
for traffic analysis. The uncertain class contains either vehicle 
anomaly generated in the detection step or vehicle entities 
whose trajectory can not be resolved by available temporal 
resolution, e.g. vehicles located in the margin of image mosaic.  
 
Afterwards, we try to derive the velocity of moving vehicles 
based on their trajectories. Basic information concerning 
infrared video dataset used here can be acquired in advance: 

— Pixel size (GSD) of the image: 0.5 m;  
— The whole test area is covered by 51 images in all, 

FPS = 25 image/sec, so the duration of flight △t = 
2.04 s.  

The length of car’s trajectories is obtained via sample pixel 
coordinates, which we have selected and read out from Fig.10 
empirically, here the both trajectory curves are approximated 
with 5 sample points. 
 
It yields following velocities: 
V1 = 58 km/h 
V2 = 51km/h 
V3 = 42 km/h 
V4 = 36km/h 
V5 = 41 km/h 
 

 
Figure.9 Classification result of vehicle movement 
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Figure.10 Trajectories of moving cars and their approximated curves 

 
The detection and classification of static and moving vehicles 
for movement indication is evaluated in terms of completeness 
and correctness against reference data, respectively. Due to the 
lack of simultaneously captured optical images, the reference 
data used for this evaluation has been manually acquired from 
the same data set as used for extraction. Hence, one has to keep 
in mind that the above mentioned values refer to the capabilities 
of a human operator working with such kind of imagery. The 
evaluation does not refer to real “ground truth”.  
 
Evaluation criteria           static vehicle         moving vehicle 
Correct decisions  112      5 
False alarms  15      0 
Missing decisions  26      1 
Completeness [%]  81.2%      83.3% 
Correctness [%]  88.2%      100% 
Table.1 Evaluation of vehicle movement indication 
 
Details of the numerical evaluation of the test video are 
summarized in Table.1. The velocity of moving vehicles 
derived by analyzing the trajectories is also not able to be 
verified strictly. However, the values lie in the expected 
velocity limit allowed in the city area, and so are plausible. 
 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we have addressed issues related to automatic 
analysis of airborne IR video for vehicle movement indication. 
Vehicles are automatically detected and distinguished with 
respect to their status. The velocity of vehicles can be derived 
subsequently as an important parameter for traffic density 
analysis. The proposed algorithm is driven by a progressive 
operation concept. Following compensation of sensor 
movement, vehicle instances from stabilized map are examined 
and grouped based on temporal coherence and geometric 
relation, to construct the vehicle trajectory. This process is 
realized by analyzing the vehicle region map and supplemented 
by image matching and trajectory topology. An implementation 
of algorithm on the test data has delivered us promising result, 
especially for the moving vehicle. Future work can be put on 
improving vehicle detector and exploiting thermal information 
of IR image to support motion analysis. Considerably more test 
data are required to verify the statistical evaluation of the 
algorithm performance. 
 
 
 

ACKNOWLEDGMENT 
 

The authors are grateful to FGAN-FOM Research Institute for 
Optronics and Pattern Recognition for providing video data.  
 

REFERENCES 
 

Angel, A., Hickman, M., Mirchandani, P., Chandnani,D., 2002. 
Methods of traffic data collection, using aerial video. The IEEE 
5th International Conference on Intelligent Transportation 
Systems, 2002. Proceedings, Page(s):31 - 36 
Cohen, I., Medioni,G., 1998. Detection and Tracking of Objects 
in Airborne Video Imagery. In: Workshop on Interpretation of 
Visual Motion, CVPR98, Santa Barbara 
Ernst, I., Hetschler, M., Lehmann, S, Lippok, A., Ruhé, M., 
2005. Use of GIS Methodology for Online Urban Traffic 
Monitoring. In: Int. Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. XXXVI, Part 
8/W27, URBAN2005 
Hinz, S., Stilla, U., 2006. Car Detection in Aerial Thermal 
Images by Local and Global Evidence Accumulation. In: 
Pattern Recognition Letters, 27: 308-315 
Hu, W., Tan, T., Wang, L., Maybank, S., 2005. A survey on 
visual surveillance of object motion and behaviors. IEEE 
Transactions on Systems, Man and Cybernetics, Part C: 
Applications and Reviews, 35(3):435-441 
Kirchhof, M., Stilla, U., 2006. Detection of moving objects in 
airborne thermal videos. ISPRS Journal of Photogrammetry and 
Remote Sensing, 61(3-4):187-196 
Michaelsen, E., Stilla, U., 2003. Estimation of vehicle 
movement in urban areas from thermal video sequences. 2nd 
GRSS/ISPRS Joint Workshop on Remote Sensing and data 
fusion on urban areas, URBAN 2003. 105-109 
Michaelsen, E., Stilla, U., 2004. Pose estimation from airborne 
video sequences using a structural approach for the construction 
of homographies and fundamental matrice. In: Fred A, Caelli T, 
Duin RPW, Campilho A, Ridder Dde (eds) Structural, syntactic, 
and statistical pattern recognition: S+SSPR, LNCS 3138, Berlin: 
Springer, 486-494 
Paska, E., Toth, C., 2004. A Performance Analysis on Vehicle 
Detection from Remotely Sensed Imagery, Proceedings of the 
ASPRS Annual Conference, Denver, May 23-28 
Reinartz, P, Lachaise, M., Schmeer, E., Krauss, T., Runge, H., 
2006. Traffic monitoring with serial images from airborne 
cameras. ISPRS Journal of Photogrammetry and Remote 
Sensing, 61(3-4):149-158 
Shastry, AC., Schowengerdt, RA., 2005. Airborne Video 
Registration and Traffic-Flow Parameter Estimation. IEEE 
Transactions on Intelligent Transportation Systems, 6(4):391-
405 
Stilla, U., Michaelsen E., 2002. Estimating vehicle activity 
using thermal image sequences and maps.  Symposium on 
geospatial theory, processing and applications. International 
Archives of Photogrammetry and Remote Sensing. Vol. 34, Part 
4 
Stilla, U., Michaelsen, E., Soergel, U., Hinz, S, Ender, HJ., 
2004. Airborne monitoring of vehicle activity in urban areas. 
International Archives of Photogrammetry and Remote Sensing. 
Vol 35, Part B3, 973-979 
 

1 

2 

3 

5

4 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

 

228


